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ABSTRACT 

The damping effect on the energy flow between an excited structure and a receiving acoustic cavity filled with a 
heavy fluid will be studied in this paper. In particular, in the high frequency domain, classical Statistical Energy 
Analysis (SEA) relation describing the energy transmitted between two subsystems indicates that the energy ratio of 
the two subsystems is independent of the damping loss factor of the excited subsystem. However, this relation is 
based on a weak coupling assumption which does not hold in the case of a heavy fluid. Then, we will study the con-
sequence of the non respect of this assumption on the energy flow and the damping effect. The Dual Modal Formula-
tion (DMF) is used to describe the fluid-structure coupling from the modes of each uncoupled subsystem. This for-
mulation allows us to study the convergence of the modal series, to determine easily the modal energy of each sub-
system and to compare these results with the classical SEA assumptions. We observe that the fluid added mass effect 
and the non-resonant coupling have a strong effect on the energy flow between the structure and the cavity for fre-
quencies below the critical frequency. As a result, the energy ratio of the two subsystems is not always independent 
of the damping loss factor of the excited subsystem as it will be shown on an example. 
 

1 INTRODUCTION 

The interaction between a vibrating structure and an acoustic 
cavity is a vibroacoustic problem which concerns many in-
dustrials. The fluid-structure interaction between the two 
closed domains is a complicated process which had been 
investigated theoretically and experimentally by many re-
searchers ([1-5]). However, these studies consider generally a 
cavity filled with light fluid (air). The coupling between the 
structure and the cavity is then weak (i.e. the modes of the 
structure and the modes of the cavity are not greatly influ-
enced by the coupling) and some simplifying assumptions 
can be introduced in the model. It is the case for the classical 
Statistical Energy Analysis (SEA) [5] model which could be 
used to analyse the structure-cavity coupling in the high fre-
quency domain. The model expresses globally the energy 
exchanged by the resonant modes of the two subsystems (i.e. 
the structure and the cavity). When the structure is excited, 
SEA indicates that the energy ratio between the two subsys-
tems is independent of the structural damping. As the energy 
of the structure decreases when the structural damping in-
creases, the energy of the cavity decreases also in the same 
order of magnitude. It is an important result for noise control. 
It says that the noise level inside the cavity can be controlled 
by the damping of the excited structure.  

In this paper, we are interested by studying the behaviour of a 
flexural structure coupled with a cavity filled with a heavy 

fluid (water for example). This case shows among others 
some applications in the nuclear and the submarine indus-
tries. The coupling between the structure and the cavity is 
strong; the classical SEA assumption of weak coupling is not 
respected. We are especially interested by analysing the con-
sequence of the strong coupling on the structural damping 
effect on the acoustic field in the cavity. In other words, we 
would like study if the energy ratio is always independent of 
the structural damping if the cavity is filled with a heavy 
fluid. To do that, we will consider the case shown on figure 1 
and composed of a rectangular flat plate coupled with a paral-
lelepiped water-filled cavity. The plate is supposed simply-
supported and excited by a normal point force. For this aca-
demic case, the Dual Modal Formulation (DMF) [6] could be 
used to describe the fluid-structure coupling from the modes 
of each uncoupled subsystem. The energy of the resonant 
modes and the non resonant modes of the two subsystems 
could be estimated without a weak coupling assumption. 
DMF will permit to compare the energy ratio with different 
structural damping in the case of a heavy fluid. 

This paper is organized as follows. We propose to remember 
some classical SEA results before to describe the Dual Modal 
Formulation for the structure-cavity coupling. Some results 
are then presented in term of modal energy distributions. The 
fluid added mass effect and the non resonant transmission are 
identified. The results are then compared for different damp-
ing.  
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2 TEST CASE DESCRIPTION 
 

 

Figure 1. A rectangular simply-supported plate excited by a 
point force and coupled to a parallelepiped water-filled 

 cavity. 
 
We consider the plate-cavity system described on figure 1. It 
is composed of a rectangular simply-supported plate coupled 
with a parallelepiped cavity. The cavity is filled with water 
(mass density ρ0=1000 kg/m3, celerity c0=1500 m/s, damping 
loss factor η2=0.01). The plate is made of steel (mass density 
ρ=7800 kg/m3, Young modulus E=2.1011Pa). It is supposed 
to be excited by a random point force with a white spectrum 
in the frequency band of central frequency ωc and of band-
width ∆ω. The behaviour of the plate will be described by 
Kirchhoff equation whereas the Helmholtz equation is sup-
posed to be respected into the fluid domain. 
Two different test cases will be considered in this paper. The 
parameter values describing them are given on table 1. They 
have been chosen in order to have enough resonant modes in 
the frequency bands of interest (i.e. third octave bands cen-
tred on 1000 Hz, 2000 Hz and 3150 Hz). One can notice that 
the frequencies of interest are well below the critical fre-
quency of the 8mm thick plate immerged in water (around 
28kHz).  

 

Table 1. Geometric parameters of the two test cases. 
 
3 STATISTICAL ENERGY ANALYSIS  
 

 
Figure 2. SEA model of the plate coupled with the cavity. 

 
The basic SEA schema of the plate coupled with the cavity is 
given on figure 2. It indicates that the injected power by the 

external force, 1
injP  is either dissipated by the plate 1dissP  or 

exchanged with the cavity
21→P . The cavity being not directly 

excited( )02 =injP , it dissipates the energy received from the 

plate. 
 
The energy conservation for the plate and the cavity writes 
([5]):  
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The injected power by the external force is given by [5]:  
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where n and M are respectively the modal density and the 

mass of the plate,  and >< 2F  is the time averaged of the 
quadratic force in the frequency band of interest.  
One can notice that this quantity is independent of the plate 
damping factor.  
 
Using simplifying assumptions (weak coupling, resonant 
transmission,…), the classical SEA model links the power 
exchanged by two subsystems to their total energies:  

( )22111221 EEP c ηηω −=→ , 
 

(3) 

whre 12η and 21η  are the coupling loss factor and 21  , EE , the 

total energy of the plate and the cavity, respectively. 
 
The dissipated powers in the frequency band ∆ω are:  

11
1 EP cdiss ηω= , for the plate, and, 

22
2 EP cdiss ηω= , for the cavity, 

 

 
(4) 

where 1η  and 2η  are the damping loss factors of the plate 

and the cavity. 
 

Injecting (3) and (4) in (1), and assuming that 1
injP >> 21→P , 

one can write:  
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The ratio of the two energies is then independent of the plate 
damping factor, η1:  

122

21

1

2

ηη
η
+

≈
E

E . 

 

 

(6) 

 
Moreover, in the classical SEA process [5], the total energy 
of the plate and the cavity are deduced from a physical quan-
tity:  
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where >< 2V is the space averaged of the quadratic plate 

velocity and  >< 2p  is the space averaged of the quadratic 

pressure in the cavity. These relations are established on the 
assumption that the kinetic energy and the potential energy of 
each subsystem have almost the same magnitude. 

Introducing (7), (8) in (5), (6), one can write:  
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The space average quadratic velocity of the plate and the 
space average quadratic pressure of the cavity are then in-
versely proportional to the damping loss factor of the plate. 
Then if the damping of the plate is multiplied by 10, the vi-
bratory level and the pressure level should decrease of 10dB. 
This result has been obtained by using the classical SEA 
assumption. We will verify, with the Dual Modal Formula-
tion described in the next section, if its result hold in the case 
of a heavy fluid. 
 
4 DUAL MODAL FORMULATION (DMF) 

DMF permits to calculate the force response of two coupled 
subsystem from the knowledge of the modes of each uncou-
pled subsystem. A modal schema is obtained which is in 
accordance with the schema assumed in the SEA formulation 
[5]. This approach is then well adapted to investigate the 
effect of a heavy fluid on the SEA development of the previ-
ous section. DMF has been described in [6] for the general 
case of the coupling of two elastic continuous mechanic sys-
tem. The application to the plate-cavity system is straight-
forward. The DMF for this particular case is well know in the 
literature (see [1-2]). 

4.1  Calculation of the forced response 

As the cavity-plate system is excited by a random force of 
white spectrum

ffS in the frequency bandω∆ , the time aver-

age of the responseφ at a receiving point, ωφ ∆><  is given 

by: 

 ( ) ,
2

ωωφ
ω

φω dHS fff ∫
∆

∆ =><  
 

(11) 

where ( )ωφfH  is the frequency transfer function between 

the excited point and the receiving point. It corresponds to 
the frequency response at the receiving point when the sys-
tem is excited by a unit harmonic force. It will be estimated 
in this section with the dual modal formulation. 

DMF is based on modal expansions with the modes of each 
uncoupled subsystem [6]. The plate is described by a dis-
placement field (i.e. normal displacement) and its uncoupled-
free modes (i.e. modes in-vacuo of the simply-supported 
plate) whereas the cavity is described by a stress field (i.e. 
acoustic pressure) and its uncoupled-blocked modes (i.e. 
modes of the parallelepiped cavity with rigid boundaries on 
the 6 faces). The uncoupled modes of the plate and of the 
cavity can be easily calculated on this academic case (see 
[2]). 

 The modal expansions of the plate displacements, W and the 
acoustic pressure, p may be written: 
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where:  - 
pW

~
 and pχ , are, respectively, the displacement 

shape and the amplitude of the pth mode of the plate; 
 - 

qp~  and 
qξ , are, respectively, the pressure shape 

and the amplitude of the qth mode of the cavity; 

Thereafter, the space and time dependencies are suppressed 
of the notation whereas they are always considered. DMF 
establishes the response of the plate coupled with the cavity 
from a weak formulation of the problem and using expan-
sions (12-13). With the change of variable, 

qq ζξ &= , 
 

(14) 

the following modal equation system is finally obtained [6]: 
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(15) 

where: - 
pqp FKM ,,  are the generalised masses, stiff-

nesses and forces given by:  
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 - 
pqW are the modal interaction works: 
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(17) 

 
One can notice that the equation system (15) can be inter-
preted as the coupling between a set of oscillators associated 
to the plate with another set of oscillators associated to cav-
ity. It corresponds to the modal coupling shema suggested in 
the classical SEA formulation ([5-6]). 

Now, considering the time-harmonic dependency tje ω and 
normalising the generalised mass and stiffness to unit; the 
system can be rewritten on a matrix form: 
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with the matrixes: 
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[ ] ,12 QPpqWW
×
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and T indicates the transpose of the matrix. 

The solution of this system is given by; 

( ) 1

1
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1
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2

111 FWYWY T −−−=Χ ω , and, 
 

 

(23) 

112
1

222 Χ−=Ζ − TWYjω . 
 

(24) 

As the matrix 
22Y is diagonal, it is easy to calculate its in-

verse. The relation (23) requires to inverse a square ma-
trix PP×  (i.e. matrix of dimensions equal to the number of 
the plate modes). The time necessaries for this calculation do 
not depend of the number of modes Q considered for the 
cavity. Then, we could consider a large number of resonant 
and non-resonant modes for the cavity. In contrary, the com-
puting time increases highly when the number of modes of 
the plate increases. It is, however, not an obstacle for the 
considered cases.  

With the modal amplitudes obtained with Eq. (23,-24), it is 
easy to obtain the harmonic response at any point of the sys-
tem using the modal expansions (12,13). The response in the 
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frequency band is then obtained discretizing the integral in 
(11). 

4.2  Modal energy and total energy 

As we have notice previously, Eq. (15) can be interpreted as 
the coupling of two oscillators sets. Each set of oscillators 
represents the set of the uncoupled modes of a subsystem. A 
kinetic and a potential energy can be estimated for each oscil-
lator (i.e. mode). The sum of these two energies gives the 
total energy of the mode, which is called here the modal en-
ergy. 

In this section, we will establish the relations between the 
modal energies and the total energy of each subsystem. For 
the sake of clarity, we consider the case of a harmonic force 
at the angular frequency ω. 

The time averaged of the kinetic energy of the plate is given 
by:  
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Introducing the modal expansion of the plate displacement 
and taking the modal orthogonality property into account, 
one obtains: 
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which can be rewritten: 
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with the kinetic energy of the pth oscillator (i.e. mode), 
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By the same way, the potential energy of the plate may be 
expressed as: 
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with the potential energy of the pth oscillator: 
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The total energy of the plate which is defined as the sum of 
the kinetic energy and the potential energy may be written: 
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where >< T
pE  represents the total energy of the pth oscillator 

and it is called the modal energy. 

For the cavity, the potential energy is given by: 
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Introducing the modal expansion of the acoustic pressure and 
taking the modal orthogonality property into account, one 
obtains: 
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represents the kinetic energy of the qth oscillator (of mass 

qK ). 

The potential energy of the cavity is then related to the ki-
netic energy of the modes. This result which could be surpris-
ing at first sight is due to the fact that the oscillator displace-
ment is the modal pressure. 
 
Similarly, the kinetic energy of the cavity is related to the 
potential energy of the oscillators: 
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The total energy of the cavity is given by: 
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where >< T
qE  represents the total energy of the qth oscilla-

tor. 

One can notice that for a resonant mode (i.e. ωω ≈q
), one 

has: 

>>≈<< S
q

K
q EE . 

 

(38) 

This equivalence between the kinetic energy and the potential 
energy for a resonant mode is used in the classical SEA for-
mulation to estimate the total energy of a subsystem from 
twice its kinetic energy (for example to obtain Eq. 7). This 
statement holds as long as the response of the system is 
dominated by the resonant modes. We will see in the next 
section that this equivalent between the kinetic and potential 
energies do not hold when the non resonant contributions are 
significant.  
 
5 ANALYSIS OF RESULTS  

The calculations developed in the previous section are 
achieved on the two test cases described in section 2. Three 
third octave bands are considered: 1000Hz, 2000Hz, 3150Hz. 
In order to study the convergence of DMF, different calcula-
tions had been made with different numbers of modes P and 
Q taken into account in the modal expansions. They show 
that it is not necessary to take modes of the plate over 4500 
Hz to have converge results until the third octave 3150 Hz. In 
contrary, for the cavity, the convergence is slow and necessi-
tates taking a large number of non resonant modes. The mo-
dal parameters taken into account for the results shown in this 
section and the numbers of resonant modes for each third 
octave are given on table 2.  

 

 

Table 2. Modal parameters of the DMF calculation. 
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5.1  Fluid added mass effect and non resonant 
modes 

Figure 2 shows the modal energy distribution (i.e. modal 
energy versus eigenfrequency) of the plate for the third oc-
tave 1000 Hz. The limits of the frequency band have been 
symbolised with vertical dash line. It can be observed that the 
modes having highest energy levels are not contained in the 
excited third octave band. Their natural frequencies are just 
above this band. This could be explained by the effect of the 
heavy fluid of the cavity as it will be shown in this section. 
Indeed, the modal energy distribution of the cavity shown on 
figure 3 indicates that a great number of non resonant modes 
(having natural frequencies above 5000 Hz) have a signifi-
cant energy level. These non resonant modes are not coinci-
dence in frequency with the resonant modes of the plate but 
are coincidence in space with these modes.  

 

Figure 2. Modal energy distribution of the plate. Excitation 
of the plate in the third octave band 1000 Hz (band limits 

symbolised with dashed lines). Test case 1 

 

Figure 3. Modal energy distribution of the cavity. Same case 
than figure 2. 

These space coincidences are illustrated on figure 4 by plot-
ting the modal interaction works Wpq (see Eq. (17)) between 
the resonant modes of the plate and the modes of the cavity. 
We can observe that the modal interaction works are lower 
for the resonant modes of the cavity than for the non resonant 
modes of the cavity having natural frequencies above 
5000Hz. The resonant modes of the cavity are not coinci-
dence in space because the frequencies of interest are well 
below the critical frequency of the plate. The modes of the 

cavity which are coincidence in space with the resonant 
modes of the plate have higher natural frequencies (i.e. above 
5000 Hz).  

 

Figure 4. Modal interaction works, Wpq for the resonant 
modes of the plate in the frequency band [950 Hz -1050 Hz]. 

To analyse the effect of the non resonant modes of the cavity 
on the resonant modes of the plate, we can suppose:  
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when Qnr is the modal order of the first non resonant mode 
which is considered (for example, the first mode in frequency 
above 1800 Hz).  
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one can approximate nrY22
 by: 
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Eq. (23) is given by: 
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This equation may be rewritten on the form: 
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pM  represents the modified generalised mass, 
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and pω  the modified eigenvalue. 

'

1

p
pp M

ωω = . 

 

 
(47) 

Then, the non resonant modes of the cavity which contribute 
significantly at the cavity response have an added mass effect 
on the modes of the plate. This effect is quantified by Eq. 
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(46,47). An illustration of the added mass contribution of the 
cavity non resonant modes on the 164th modes of the plate is 
given on figure 5. This contribution corresponds to the square 
term in the summation of Eq. 46 and can be compared to the 
unit value of the generalised mass. One can see that the cav-
ity modes around 6000 Hz add the highest mass on this plate 
mode. The eigenfrequency of this mode is around 1238 Hz. 
By taking into account the added mass effect with Eq. (47), 
one obtains a modified eigenfrequency of 1001 Hz. On figure 
6, one proposes to observe the modal energies of the plate in 
function of the modified eigenfrequencies. The modal ener-
gies of highest values are then contained in the frequency 
band of excitation (contrary to the figure 2). This shows that 
the added mass on the plate modes is well due to the non 
resonant modes of the cavity which are coincidence in space. 
This added mass can be easily estimated with Eq. (47).  

 

Figure 5. Added mass contribution of the non resonant 
modes of the cavity on the 164th mode of the plate.  

Test case 1. 

 

Figure 6. Modal energy distribution of the plate with correc-
tion on the plate eigenfrequency. Excitation of the plate in the 

third octave band 1000 Hz. Test case 1. 

On another point, one can notice on figure 3 that the equiva-
lence between the kinetic energy and the potential energy 
does not hold for the non resonant oscillator. The potential 
energies of the non resonant modes in space coincidence with 
the plate modes are very higher than their kinetic energies. 
By consequence, the kinetic energy of the cavity is well 
higher than its potential energy as shown on table 3. This 
focus on a matter in a SEA context when the total energy of 

the cavity should be estimated from the space averaged of the 
quadratic pressure of the cavity (see Eq. (8)). Indeed, to illus-
trate this matter, one has given in table 1 the total energies of 
the plate and the cavity estimate with Eq. (7-8) and the point 
responses at 100 positions in each subsystem (i.e. space aver-
age estimate from 100 points results). The total energy of the 
plate is correctly estimated by this approach but the total 
energy of the cavity is underestimated about 10 dB. Expres-
sions (7-8) make the assumption that the kinetic and potential 
energies are equivalent whereas it is not the case for the cav-
ity due to the significant non resonant mode contribution. 

 

Table 3. Values of the kinectic, potential and total energies 
of the two subsystems. Excitation of the plate in the third 

octave band 1000 Hz. Test case 1. 

5.2 Energy ratio versus damping loss factor 

We are now interesting on the effect of the structural damp-
ing on the energy levels. This is of practical interest for noise 
control in the cavity. 

On figure 7, one compares, for two plate damping values 
(η1=0.01, η1=0.1), the spectrum of the space average of the 
quadratic velocity of the plate and the spectrum of the space 
average of the quadratic pressure of the cavity. These space 
averages have been estimated from the mean about 100 
points inside each subsystem. One can observe that the mul-
tiplication by 10 of the damping lead to a division by 10 of 
the quadratic velocity as it could be expected in reference to 
Eq. (9). On another hand, the quadratic pressure is not di-
vided by 10; this is in contradiction with Eq. (10).  

 

Figure 7. Comparison for two plate damping values 
(η1=0.01, η1=0.1) of the space averaged of the quadratic ve-
locity of the plate (upper) and the quadratic pressure of the 
cavity (lower).  Excitation of the plate in the third octave 

band 2000 Hz. Test case 1. 

To study this point, one proposes for the same case, the mo-
dal energy distributions of the plate and the cavity on figure 8 
and 9, respectively. The energy of the resonant modes of the 
plate decreases of 10 dB when the plate damping value is 
multiplied by 10 whereas the energy of the non resonant 
modes of the plate is practically unaffected by the damping 
changes. For the cavity, the energy of the non resonant modes 
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which are coincidence in space with the resonant plate modes 
decreases of 10 dB whereas the energy of the other modes 
(resonant or non resonant) decreases only of 5 dB. The 10 dB 
energy decrease of the resonant modes of the plate leads to 
the 10 dB energy decrease of the non resonant modes of the 
cavity which are in space coincidence but it does not lead to 
the 10 dB energy decrease of the modes of the cavity which 
are in frequency coincidence. The consequence is that the 
total energy of the cavity does not decrease of 10 dB as it is 
emphasized on table 1 and 2 for the two test cases. Whatever 
the frequency band and the test case, a decrease of about 10 
dB can be observed for the plate. For the cavity, the decrease 
varies between 6.5 dB and 10 dB. The variations are even 
more important if one considers the “pseudo” energies esti-
mated from the space average of the sound pressure (i.e. be-
tween 5 dB and 10 dB). The role of the plate damping is then 
more or less important in function of the frequency band and 
the test case. The parameters which control the efficiency of 
the plate damping on the cavity response filled with a heavy 
fluid have not yet be identified. It is an important point if we 
would like to maximaze the damping effect on the noise re-
duction inside the cavity.   

 

Figure 8. Comparison for two plate damping values 
(η1=0.01, η1=0.1) of the modal energy distribution of the 

plate. Excitation of the plate in the third octave band 2000 Hz 
(band limits symbolised with dashed lines). Test case 1. 

 

Figure 9. Comparison for two plate damping values 
(η1=0.01, η1=0.1) of the modal energy distribution of the 

cavity. Excitation of the plate in the third octave band 2000 
Hz (band limits symbolised with dashed lines). Test case 1. 

 

 

 

 

Table 4. Comparison for different plate damping values and 
different third octave band of the total energy of the two sub-
system: (a), Ei, total energy calculated with the modal energy 

of subsystem i (see Eq. 31,37); (b), EEi, total energy esti-
mated from the space averaged of the physical field of sub-

system i (see Eq. 7,8). Test case 1. 

 

 

Table 5. Idem than table 4 for test case 2. 

 

6 CONCLUSIONS 

The vibro-acoustic behaviour of an excited structure coupled 
with a receiving acoustic cavity filled with a heavy fluid has 
been studied using the Dual Modal Formulation. By analys-
ing the modal energy distributions of the plate and the cavity, 
one has observed that the fluid added mass and the non-
resonant coupling have a strong effect on the energy flow 
between the structure and the cavity for frequencies below 
the critical frequency. The presence of a heavy fluid induces 
interaction between the plate and the cavity which is more 
difficult to analyse than for a light fluid. Comparisons with 
different plate damping values have shown than the plate 
damping is less efficient on the cavity response than on the 
plate one. This is in violation of the classical SEA model 
which can be explained by the non respect of the weak cou-
pling assumption for a cavity filled with a heavy fluid. The 
role of the plate damping is then more or less important in 
function of the frequency band and the considered case. The 
parameters which control the damping efficiency on the cav-
ity response have not been identified. It is an important point 
which should be addressed in the future in order to maximaze 
the damping effect on the noise reduction inside the cavity.   
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