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ABSTRACT

The damping effect on the energy flow between asited structure and a receiving acoustic cavitiedilwith a
heavy fluid will be studied in this paper. In padiar, in the high frequency domain, classical iSiaal Energy
Analysis (SEA) relation describing the energy traitted between two subsystems indicates that tkeggmratio of
the two subsystems is independent of the dampisg flactor of the excited subsystem. However, thiation is
based on a weak coupling assumption which doehalidtin the case of a heavy fluid. Then, we willdst the con-
sequence of the non respect of this assumptioheerergy flow and the damping effect. The Dual Mdtbrmula-
tion (DMF) is used to describe the fluid-structemipling from the modes of each uncoupled subsysténs for-

mulation allows us to study the convergence ofrtfoelal series, to determine easily the modal enefgach sub-
system and to compare these results with the clEsSEA assumptions. We observe that the fluid dddass effect
and the non-resonant coupling have a strong effiedhe energy flow between the structure and théycéor fre-

guencies below the critical frequency. As a reshk, energy ratio of the two subsystems is not ydvadependent

of the damping loss factor of the excited subsysierit will be shown on an example.

1 INTRODUCTION

The interaction between a vibrating structure améeoustic
cavity is a vibroacoustic problem which concernsmmnan-
dustrials. The fluid-structure interaction betwethe two
closed domains is a complicated process which hegh b
investigated theoretically and experimentally bynmae-
searchers ([1-5]). However, these studies congjeeerally a
cavity filled with light fluid (air). The couplindpetween the
structure and the cavity is then weak (i.e. the @sodf the
structure and the modes of the cavity are not lyréafiu-
enced by the coupling) and some simplifying assiompt
can be introduced in the model. It is the casetferclassical
Statistical Energy Analysis (SEA) [5] model whicbutd be
used to analyse the structure-cavity coupling & High fre-
guency domain. The model expresses globally theggne
exchanged by the resonant modes of the two sulnsy<iee.
the structure and the cavity). When the structarexcited,
SEA indicates that the energy ratio between the sulusys-
tems is independent of the structural damping.h&senergy
of the structure decreases when the structural oamip-
creases, the energy of the cavity decreases altteisame
order of magnitude. It is an important result foise control.
It says that the noise level inside the cavity barcontrolled
by the damping of the excited structure.

In this paper, we are interested by studying thebieur of a
flexural structure coupled with a cavity filled wita heavy
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fluid (water for example). This case shows amonigers
some applications in the nuclear and the submarides-
tries. The coupling between the structure and thaty is
strong; the classical SEA assumption of weak cogpB not
respected. We are especially interested by anglykie con-
sequence of the strong coupling on the structuaahming
effect on the acoustic field in the cavity. In atlveords, we
would like study if the energy ratio is always ipeedent of
the structural damping if the cavity is filled with heavy
fluid. To do that, we will consider the case shawnfigure 1
and composed of a rectangular flat plate coupled avparal-
lelepiped water-filled cavity. The plate is suppbsemply-
supported and excited by a normal point force. thsr aca-
demic case, the Dual Modal Formulation (DMF) [6lltbbe
used to describe the fluid-structure coupling friila modes
of each uncoupled subsystem. The energy of thenagso
modes and the non resonant modes of the two selsyst
could be estimated without a weak coupling assumpti
DMF will permit to compare the energy ratio withffdient
structural damping in the case of a heavy fluid.

This paper is organized as follows. We proposetoember
some classical SEA results before to describe ted Blodal
Formulation for the structure-cavity coupling. Sonesults
are then presented in term of modal energy digidha. The
fluid added mass effect and the non resonant trizsgm are
identified. The results are then compared for diffe damp-
ing.
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2 TEST CASE DESCRIPTION

Figure 1. A rectangular simply-supported plate excited by a
point force and coupled to a parallelepiped waithzef
cavity.

We consider the plate-cavity system described gurdi 1. It

is composed of a rectangular simply-supported patepled
with a parallelepiped cavity. The cavity is filledth water
(mass density,=1000 kg/m, celerityc,=1500 m/s, damping
loss factor,=0.01). The plate is made of steel (mass density
p=7800 kg/m, Young modulus=2.10"Pa). It is supposed
to be excited by a random point force with a wisppectrum

in the frequency band of central frequeneyand of band-
width 4w. The behaviour of the plate will be described by
Kirchhoff equation whereas the Helmholtz equatisrsiip-
posed to be respected into the fluid domain.

Two different test cases will be considered in ffaper. The
parameter values describing them are given on thbléhey
have been chosen in order to have enough resoratgsin
the frequency bands of interest (i.e. third octbmeds cen-
tred on 1000 Hz, 2000 Hz and 3150 Hz). One carcadtiat
the frequencies of interest are well below theiaait fre-
quency of the 8mm thick plate immerged in wateo\jad
28kHz).

Geometric parameters  Test casel  Test case2
Plate length a=2m =12 m

Plate width £=1.8m £=1m

Plate thickness =8 mm =8 mm

Cavity depth F=14m F=lm

Force coordinates  (0.3m,0.5m)  (0.3m,0.5m)

Table 1. Geometric parameters of the two test cases.

3 STATISTICAL ENERGY ANALYSIS

P 1
inj
})192
Subsystem 1 > Subsystem 2
Plate " Cavity
1 2
P diss £ diss

Figure 2. SEA model of the plate coupled with theity.

The basic SEA schema of the plate coupled wittctwity is
given on figure 2. It indicates that the injectexiver by the
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external forceF’”fj is either dissipated by the plaf@;_ or
exchanged with the cavifyj_,. The cavity being not directly
excited(ﬂrfj :o), it dissipates the energy received from the

plate.

The energy conservation for the plate and the gawittes

(I5D):

{Fz:j =Ris*R.a "
0 = sziss - I:>142'
The injected power by the external force is givgri3):
pL=0 <p2s, )
2M

wheren and M are respectively the modal density and the

mass of the plate, and F2 > is the time averaged of the
quadratic force in the frequency band of interest.

One can naotice that this quantity is independerthefplate
damping factor.

Using simplifying assumptions (weak coupling, resan
transmission,...), the classical SEA model links poaver
exchanged by two subsystems to their total energies

P2=a (’712E1 _’721E2)' @)
whreyy,,and/y,, are the coupling loss factor akg, E, , the
total energy of the plate and the cavity, respebfiv

The dissipated powers in the frequency baadare:
Pi.. = aw/,E, . for the plate, and,

diss

2

I:)diss

wheres), and 77, are the damping loss factors of the plate

and the cavity.

~ _ (4)
= wi,E, , for the cavity,

Injecting (3) and (4) in (1), and assuming that >> B,

inj
one can write:
Pt
E = n_, and,E2 =
W

,721Pir%j _
w17, +11.,)

®)

The ratio of the two energies is then independéttteplate
damping factory;:

E: 721

: (6)
E m+n,

Moreover, in the classical SEA process [5], thaltehergy
of the plate and the cavity are deduced from aiphygquan-
tity:

E=M<V?>, (7
E2 ~ abl—i < p2 S, (8)
OCO

where <V ? >is the space averaged of the quadratic plate
velocity and < p2 > is the space averaged of the quadratic

pressure in the cavity. These relations are estaddi on the
assumption that the kinetic energy and the potestiergy of
each subsystem have almost the same magnitude.

Introducing (7), (8) in (5), (6), one can write:
2
<V?2>= w, 9)
2M
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2 o mp0002 <F?> M . (20)
(7, +mm,

The space average quadratic velocity of the plaid the
space average quadratic pressure of the cavityhare in-

versely proportional to the damping loss factottted plate.
Then if the damping of the plate is multiplied by, the vi-

bratory level and the pressure level should deere&40dB.
This result has been obtained by using the cldsSIEa

assumption. We will verify, with the Dual Modal Foula-

tion described in the next section, if its resulldhin the case
of a heavy fluid.

4 DUAL MODAL FORMULATION (DMF)

DMF permits to calculate the force response of twapled
subsystem from the knowledge of the modes of eaclowt
pled subsystem. A modal schema is obtained whichn is
accordance with the schema assumed in the SEA fatiow
[5]. This approach is then well adapted to invesggthe
effect of a heavy fluid on the SEA developmenttaf previ-
ous section. DMF has been described in [6] forgheeral
case of the coupling of two elastic continuous raeah sys-
tem. The application to the plate-cavity systenstimight-
forward. The DMF for this particular case is wallow in the
literature (see [1-2]).

4.1 Calculation of the forced response

As the cavity-plate system is excited by a randoned of
white spectrung, in the frequency bafice, the time aver-

age of the respongeat a receiving point< ¢>, = is given
by:
_ 2
<9>,,=S; [H,(e) de, (11)
Aw

where H f<l,(a,) is the frequency transfer function between

the excited point and the receiving point. It cepends to
the frequency response at the receiving point wthensys-
tem is excited by a unit harmonic force. It will bstimated
in this section with the dual modal formulation.

DMF is based on modal expansions with the modesaoh
uncoupled subsystem [6]. The plate is describeda ljis-
placement field (i.e. normal displacement) andiitsoupled-
free modes (i.e. modes in-vacuo of the simply-sutgoo
plate) whereas the cavity is described by a stiefs (i.e.
acoustic pressure) and its uncoupled-blocked mddes
modes of the parallelepiped cavity with rigid boarids on
the 6 faces). The uncoupled modes of the plateddritie
cavity can be easily calculated on this academge qaee

[2]).

The modal expansions of the plate displacemé&¥itnd the
acoustic pressure,may be written:

W(x, y,t)= 2)& (tW, (x y), (12)

p(x.y.zt)=> &, (t)p,(x v, 2). (13)

g=1
where: -V\~/p and )(p, are, respectively, the displacement

shape and the amplitude of & mode of the plate;
- ﬁq and {q, are, respectively, the pressure shape

and the amplitude of thg" mode of the cavity;
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Thereafter, the space and time dependencies apressed
of the notation whereas they are always considdbddE
establishes the response of the plate coupled tivithcavity
from a weak formulation of the problem and usingax
sions (12-13). With the change of variable,

Eq = Zq’ (14)
the following modal equation system is finally dbtd [6]:
.. . 2 = > _
M p(/Yp + WX T W, Xp)+z_wpng - Fp’
= (15)
Kq(Zq + quZZq + quzq)_ Zqu/Yp =0,
p=1

where: - |\/|p,|<q,Fp are the generalised masses, stiff-
nesses and forces given by:
_ ~ 2 _ 1 ~ 2
M, =pe [WdS, K,=—— [Bdv @9
SP\ale pOCO VCavlty
- qu are the modal interaction works:
W, = J'Wp'ﬁqu 17

%ouphng

One can notice that the equation system (15) camtee

preted as the coupling between a set of oscillaessciated
to the plate with another set of oscillators as#ec to cav-
ity. It corresponds to the modal coupling shemagssted in
the classical SEA formulation ([5-6]).

Now, considering the time-harmonic depender&&?‘ and

normalising the generalised mass and stiffnessnig the
system can be rewritten on a matrix form:

Y11 _jaM/u X1 — Fl (18)
+jon, Y, |Z,] 0]

with the matrixes:

X, =€,

L] Zzz Zq 1F1: Fp 1 (19)
Px1 : Q * lpa
Y, = diag(— W+ jwwy, + wpz)Pxp : (20)
Y,, = diag(— W+ jaw, + qu)QxQ , (21)
Vvlz = |.vaqJPxQ’ (22)
and T indicates the transpose of the matrix.
The solution of this system is given by;
4., TV
X, = (Yll_a)zVV12Y22 ]VV12 ) F,. and, (23)
Z,= —J'sz_Wszl- (24)

As the matrixY,,is diagonal, it is easy to calculate its in-

verse. The relation (23) requires to inverse a I=jumAa-
trix Px P (i.e. matrix of dimensions equal to the number of
the plate modes). The time necessaries for th@ulzion do
not depend of the number of mod@sconsidered for the
cavity. Then, we could consider a large numberesbnant
and non-resonant modes for the cavity. In contridugy,com-
puting time increases highly when the number of esodf
the plate increases. It is, however, not an obstéml the
considered cases.

With the modal amplitudes obtained with Eq. (23);ddis
easy to obtain the harmonic response at any pébittteosys-
tem using the modal expansions (12,13). The regpionthe
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frequency band is then obtained discretizing thegiral in
(12).

4.2 Modal energy and total energy

As we have notice previously, Eq. (15) can be prited as
the coupling of two oscillators sets. Each set sfilators
represents the set of the uncoupled modes of ysigs. A
kinetic and a potential energy can be estimate@dgh oscil-
lator (i.e. mode). The sum of these two energieggithe
total energy of the mode, which is called herertiaglal en-

ergy.

In this section, we will establish the relationgvieen the
modal energies and the total energy of each sidraystor
the sake of clarity, we consider the case of a barmforce
at the angular frequency.

The time averaged of the kinetic energy of theeplatgiven
by:

1
<Ef >== ped? IWZdS (25)
4 SP\ate
Introducing the modal expansion of the plate disphaent
and taking the modal orthogonality property intcamt,
one obtains:

P
<Ef >=1 07 Moy, (26)
4 p:]_
which can be rewritten:
P
<Ef >=Z< E; >. (27)
p=1

with the kinetic energy of the@™ oscillator (i.e. mode),
< EpK >

<Ej >= %sz KXo (28)

By the same way, the potential energy of the phaty be
expressed as:

P
<Ef>=)'<E] >, (29)
p=1

with the potential energy of tip¥" oscillator:

1 2

1
<EE >=pr2Mpo2=ZKpo : (30)

The total energy of the plate which is defined fes gum of
the kinetic energy and the potential energy mawiigen:

P P

T — K P — T

<E] >_Z“(<Ep>+<Ep >)_Z<Ep > (31)
p=l p=1

where < E; > represents the total energy of ffeoscillator

and it is called the modal energy.

For the cavity, the potential energy is given by:
1

2
40:Co" s,

<Ef>= p’dV. (32)

e

Introducing the modal expansion of the acousticgues and
taking the modal orthogonality property into accpumne
obtains:

Q
<E}>= Z< Ey >, (33)
q=1
where
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<E >=%a)2Kqu2 (34)

represents the kinetic energy of th8 oscillator (of mass
Kq)

The potential energy of the cavity is then relatedhe ki-
netic energy of the modes. This result which cdaddsurpris-

ing at first sight is due to the fact that the Batir displace-
ment is the modal pressure.

Similarly, the kinetic energy of the cavity is redd to the
potential energy of the oscillators:

Q
<ES >:Z< Er >, (35)
g=1
with
<EP>:1w2KZZ:1M ' (36)
q 4 q q>q 4 q>q -

The total energy of the cavity is given by:

Q Q

<E] >:Z(<E[:<>+<E§>):Z<Eg > (37)
g=1 g=1

where < Eg > represents the total energy of @& oscilla-

tor.

One can notice that for a resonant mode @L)qez w), one

has:
< E; >=< EqS >. (39)

This equivalence between the kinetic energy angdtential
energy for a resonant mode is used in the clasSieal for-
mulation to estimate the total energy of a subsysteom
twice its kinetic energy (for example to obtain E(. This
statement holds as long as the response of thensyst
dominated by the resonant modes. We will see innte
section that this equivalent between the kinetid potential
energies do not hold when the non resonant cotititisi are
significant.

5 ANALYSIS OF RESULTS

The calculations developed in the previous sective
achieved on the two test cases described in se2tidiree
third octave bands are considered: 1000Hz, 2008Ha0Hz.
In order to study the convergence of DMF, differealcula-
tions had been made with different numbers of mdtlaad
Q taken into account in the modal expansions. THeyws
that it is not necessary to take modes of the pagz 4500
Hz to have converge results until the third octa¥80 Hz. In
contrary, for the cavity, the convergence is slow aecessi-
tates taking a large number of non resonant mottes.mo-
dal parameters taken into account for the reshtis/a in this
section and the numbers of resonant modes for gaah
octave are given on table 2.

Subsystem Modal parameters  1/3 Octave Test case 1l Test case2
Plate  Maximum eigenfrequency All 4500 Hz 4500 Hz
Total number of modes All P=618 P=200

Number of resonant modes 1000 Hz 36 11

Number of resonant modes 2000 Hz 68 20

Number of resonant modes 3150 Hz 95 33

Cavity Max. eigenfrequency All 14000 Hz 20000 Hz
Number of modes All Q=18409 Q=25427

Number of resonant modes 1000 Hz 8 5

Number of resonant modes 2000 Hz 30 23

Number of resonant modes 3150 Hz 168 81

Table 2. Modal parameters of the DMF calculation.
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5.1 Fluid added mass effect and non resonant
modes

Figure 2 shows the modal energy distribution (m@dal
energy versus eigenfrequency) of the plate forthia oc-
tave 1000 Hz. The limits of the frequency band hbeen
symbolised with vertical dash line. It can be obedrthat the
modes having highest energy levels are not cordaimehe
excited third octave band. Their natural frequen@ee just
above this band. This could be explained by thecefbf the
heavy fluid of the cavity as it will be shown inigtsection.
Indeed, the modal energy distribution of the castipwn on
figure 3 indicates that a great number of non rasbmodes
(having natural frequencies above 5000 Hz) haveyifis
cant energy level. These non resonant modes areonuti-
dence in frequency with the resonant modes of tate fut
are coincidence in space with these modes.

hodal energy - Plate
20 T T T

i —6— Total
S0k —— Kinetic energy [

Level (dB, ref 1)

L : 1 i
1000 1500 2000 2500 3000 3500
Eigenfrequency (Hz)

Figure 2. Modal energy distribution of the plate. Excitation
of the plate in the third octave band 1000 Hz (biémids
symbolised with dashed lines). Test case 1

Modal energy - Cavity
=20 T T

i —&— Tatal
30b ik —& — Kinstic energy |

Aotk i

Level (dB, ref. 1.J)

TEO00 8OO0
Eigenfrequency (Hz)

Figure 3. Modal energy distribution of the cavity. Same case
than figure 2.

These space coincidences are illustrated on figusg plot-
ting the modal interaction workél,, (see Eq. (17)) between
the resonant modes of the plate and the modesafahity.
We can observe that the modal interaction worksl@aser
for the resonant modes of the cavity than for the resonant
modes of the cavity having natural frequencies abov
5000Hz. The resonant modes of the cavity are notcto
dence in space because the frequencies of interesivell
below the critical frequency of the plate. The modé the
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cavity which are coincidence in space with the mesb
modes of the plate have higher natural frequer(ciesabove
5000 Hz).

Madal Interaction Work

5000 o o

qmon -

[ [5]
] fos]
= o]
=] =

2

Magnitude ()

aoan

Flate eigenfrequency (Hz) 0o Cavity eigenfrequency [Hz)

Figure 4. Modal interaction worksi\,, for the resonant
modes of the plate in the frequency band [950 185061Hz].

To analyse the effect of the non resonant modéseo€avity
on the resonant modes of the plate, we can suppose:

o <<, 0q0[Q,. Q). (39)

whenQ,, is the modal order of the first non resonant mode
which is considered (for example, the first modéréguency
above 1800 Hz).

If one breaks down the{22 matrix with the set of the non

resonant modedsq [ [Qm,Q] and the set of the other modes
DgD[1Q, -1,
Y,, O
Y, =| # , 40
22 |: 0 Y2r12r:| ( )
one can approximaty,) by:
er; = dlag( )(Q Qe HX(Q-Q 1) (41)
wherea as
), = dlag( o + jowy, + w, ) o, 0, )" (42)

Eq. (23) is given by:
X, = [Yll - a)z(\/\/;;Y;;”\/\/1“2rT +vv1f2Y2f2”vv;2T) ' F,43)
This equation may be rewritten on the form:

X =l wo R @
with Y, = diag(M p'(— W+ jww), + cT)pz)) (45)

PxP
where M p represents the modified generalised mass,

2
Q
|\/|'p =1+ Z [\Nqu , (46)

G=Qnr
and a_)p the modified eigenvalue.

D =w |—- @7)

Then, the non resonant modes of the cavity whigttridmute
significantly at the cavity response have an addads effect
on the modes of the plate. This effect is quamtifiy Eq.
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(46,47). An illustration of the added mass conttitou of the
cavity non resonant modes on the Lédodes of the plate is
given on figure 5. This contribution correspondshe square
term in the summation of Eq. 46 and can be compiareide
unit value of the generalised mass. One can seehbaav-
ity modes around 6000 Hz add the highest massismplite
mode. The eigenfrequency of this mode is around 123
By taking into account the added mass effect wigh @7),
one obtains a modified eigenfrequency of 1001 HzfiQure
6, one proposes to observe the modal energiesddl#te in
function of the modified eigenfrequencies. The niasfeer-
gies of highest values are then contained in tequiency
band of excitation (contrary to the figure 2). Thisows that
the added mass on the plate modes is well dueetadm
resonant modes of the cavity which are coincidenapace.
This added mass can be easily estimated with &. (4

Added masgs by the non resonant cavity mode on the 164th mode of the plate
0.m T T T T T T

0.008 - % i
o.oost ¢ g
0.007 |
0,006 |

0.005

0.004

0003

Modal added mass contnbution

0.002

0.001

i

Cawty eigenfrequency (Hz)

Figure 5. Added mass contribution of the non resonant
modes of the cavity on the IB#node of the plate.
Test case 1.

Modal energy distribution with fluid added mass correction - Plate
=20 T T T T T

H —6— Total
30k —C— Kinetic energy |
P Strain enargy

ank

A0

B0

Level (dB, ref. 1.J)

-0
K b . 4

50

_1DD[ 1 I Il - F [ A b )
0 500 1000 1500 2000 2500 3000 4500
Modified eigenfrequency (Hz)

Figure 6. Modal energy distribution of the plate with correc
tion on the plate eigenfrequency. Excitation of pkege in the
third octave band 1000 Hz. Test case 1.

On another point, one can notice on figure 3 thatdquiva-
lence between the kinetic energy and the poteeti@rgy
does not hold for the non resonant oscillator. pbeential
energies of the non resonant modes in space ceimmédwith
the plate modes are very higher than their kinetiergies.
By consequence, the kinetic energy of the cavitywall
higher than its potential energy as shown on t&bl&his
focus on a matter in a SEA context when the tatergy of
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the cavity should be estimated from the space geeraf the
quadratic pressure of the cavity (see Eq. (8))eéual to illus-
trate this matter, one has given in table 1 thal energies of
the plate and the cavity estimate with Eq. (7-8) #re point
responses at 100 positions in each subsystensjiaee aver-
age estimate from 100 points results). The totatgnof the
plate is correctly estimated by this approach e total
energy of the cavity is underestimated about 10E¥res-
sions (7-8) make the assumption that the kinetit@otential
energies are equivalent whereas it is not the ftaghe cav-
ity due to the significant non resonant mode cbntion.

Kinetic Strain Total Estimated
Energy  Energy  Energy Total Energy

Ejp Plate -381dB -363dB -34.1dB -358dB
Ey Cavity -40.5dB -50.6dB -40.1 dB -49.1 dB
EyE; -6.0 dB -13.4 dB

Table 3. Values of the kinectic, potential and total enesgi
of the two subsystems. Excitation of the platehim third
octave band 1000 Hz. Test case 1.

5.2 Energy ratio versus damping loss factor

We are now interesting on the effect of the stmattdamp-
ing on the energy levels. This is of practical iagt for noise
control in the cavity.

On figure 7, one compares, for two plate dampintyes

(1,=0.01,#,=0.1), the spectrum of the space average of the

quadratic velocity of the plate and the spectrunthefspace
average of the quadratic pressure of the cavitgsé&lspace

averages have been estimated from the mean abdut 10

points inside each subsystem. One can observehtaahul-
tiplication by 10 of the damping lead to a divisibp 10 of
the quadratic velocity as it could be expectedeiienence to
Eq. (9). On another hand, the quadratic pressuretsdi-
vided by 10; this is in contradiction with Eq. (10)

Wlean square velocity <%2> - Plate

_ — 1%
w® b P H
—— = 10%

\/\/WW‘\

10 3

Magnitude (m2/(s2*Hz))

1 1 1 1 1 1 1 1 1
1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 2250
Freguency (Hz)
Mean square pressure <P2> - Cavity

_Tlp:1%

—— 0= 10%
o 1

1 1 1 1 1 1 1 1
1750 1800 1850 1800 1950 2000 2050 2100 2150 2200 2280
Fragquency (Hz)

Magnitude (Pa2/Hz)
=]

Figure 7. Comparison for two plate damping values
(7:=0.01,4#,=0.1) of the space averaged of the quadratic ve-
locity of the plate (upper) and the quadratic pues®f the

cavity (lower). Excitation of the plate in therthioctave
band 2000 Hz. Test case 1.

To study this point, one proposes for the same, cheemo-
dal energy distributions of the plate and the gawit figure 8
and 9, respectively. The energy of the resonantesiad the
plate decreases of 10 dB when the plate dampingevialu
multiplied by 10 whereas the energy of the non masb
modes of the plate is practically unaffected by dlaenping
changes. For the cavity, the energy of the nom@somodes
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which are coincidence in space with the resonatephodes
decreases of 10 dB whereas the energy of the otbhdesn
(resonant or non resonant) decreases only of 5 d810 dB
energy decrease of the resonant modes of the lpkads to
the 10 dB energy decrease of the non resonant noddbs
cavity which are in space coincidence but it doasslead to
the 10 dB energy decrease of the modes of theycaritch
are in frequency coincidence. The consequenceas ttte
total energy of the cavity does not decrease oflB@s it is
emphasized on table 1 and 2 for the two test cagbatever
the frequency band and the test case, a decreadmoof 10
dB can be observed for the plate. For the cavigy dixcrease
varies between 6.5 dB and 10 dB. The variations aea e
more important if one considers the “pseudo” eresrgasti-
mated from the space average of the sound prefseirbe-
tween 5 dB and 10 dB). The role of the plate damrgen
more or less important in function of the frequebeynd and
the test case. The parameters which control theiefty of
the plate damping on the cavity response fillechwitheavy
fluid have not yet be identified. It is an importgoint if we
would like to maximaze the damping effect on théseaaoe-
duction inside the cavity.
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Figure 8. Comparison for two plate damping values
(7:=0.01,4#,=0.1) of the modal energy distribution of the
plate. Excitation of the plate in the third octda:nd 2000 Hz
(band limits symbolised with dashed lines). Tesech
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Figure 9. Comparison for two plate damping values
(7:=0.01,#,=0.1) of the modal energy distribution of the
cavity. Excitation of the plate in the third octavaend 2000
Hz (band limits symbolised with dashed lines). Teeste 1.
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Central M Ey EE; E; EE; | E+/E; EE,EE;
frequency (dB) (dB) (dB) (dB)| (dB) (dB)
1000 Hz 0.01 | 341 338 -40.1 -49.1 -6.0 -13.4
01| -43.6 -43.6 -49.5 -38.6 -3.8 -13.1

2000H=z 0.01 | -34.0 -386 -38.6 -44.9 -4.6 -6.3
01| 433 4835 -451 -49.9 -6.3 -1.4

3150H=z 0.01 | -34.4 -40.2 -38.7 -46.0 -4.3 -3.8
0.1 ] -43.8 -50.2 -44.8 -51.7 -1.0 -1.5

Table 4. Comparison for different plate damping values and

different third octave band of the total energytef two sub-

system: (a)E;, total energy calculated with the modal energy

of subsysten (see Eq. 31,37); (bEE, total energy esti-

mated from the space averaged of the physical éittlib-
systemi (see Eq. 7,8). Test case 1.

Central ?I’,'p E] EE1 Eg EE2 ngEl EEQ;"‘EE]
frequency dB) (dB) (dB) (dB)| (dB) (dB)
1000 Hz 0.01 | 35.7 372 386 -43.1 2.9 -3.9
01| 442 463 473 -518 3.1 -5.5

2000 Hz 0.01 | -34.7 394 384 447 | 36 -5.3
0.1 | -43.4 -48.2 -449 -50.5 -1.5 -2.3

3150 Hz 0.01 | 349 -40.8 376 -44.0 2.7 3.2
0.1 | -43.9 -49.9 -441 -50.2 -0.2 -0.3

Table 5. Idem than table 4 for test case 2.

6 CONCLUSIONS

The vibro-acoustic behaviour of an excited struettwupled
with a receiving acoustic cavity filled with a hgafluid has
been studied using the Dual Modal Formulation. Bglys:
ing the modal energy distributions of the plate Hralcavity,
one has observed that the fluid added mass anddhe
resonant coupling have a strong effect on the enélogv
between the structure and the cavity for frequenbielow
the critical frequency. The presence of a heavig finduces
interaction between the plate and the cavity whgimore
difficult to analyse than for a light fluid. Compsons with
different plate damping values have shown than pilate
damping is less efficient on the cavity responsntbn the
plate one. This is in violation of the classical ASEodel
which can be explained by the non respect of thekvesu-
pling assumption for a cavity filled with a heauwid. The
role of the plate damping is then more or less irtgm in
function of the frequency band and the considees® cThe
parameters which control the damping efficiencyttom cav-
ity response have not been identified. It is andrtgnt point
which should be addressed in the future in ordenagimaze
the damping effect on the noise reduction insigecthvity.
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