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ABSTRACT

Intrinsic variability due to micrometeorological effects and/or ground effects, measurement uncertainty and model un-
certainty are the main sources of spreading of the parameters influencing outdoor sound propagation. Thus spreading
associated to outdoor SPL is a complex combination of deterministic, stochastic and epistemic uncertainties, and can be
quantified thanks to a probabilistic process. This statistical process is presented in this paper and is called Calibration
Under Uncertainty (CUU). Quantitative uncertainty assessment involvesa pre-existing physical system to be studied,
input data which can be measured or derived from measurements, and a sufficient amount of available (experimental
and/or numerical) data with an eventual human expertise. CUU couples information from experimental and modelled
data taking into account their own uncertainties (measurements errors, lack of knowledge on physical behavior, etc.)
under specific assumptions. Quantify the global uncertainty on SPL, rank or apportion the contributions of influent
parameters to a given output quantity of interest, compare experimentaland effective parameters, and more generally
understand the whole input-output structure are the main tasks of such a statistical method. CUU process has been
applied to more or less complex cases using a large experimental set of data (Lannemezan 2005 (F)). An application to
near ground sound propagation has been first led to understand the relative influence of ground parameters. A more com-
plex case considering large distances and including micrometeorologicaleffects has also been fulfilled with promising
results which are presented in this paper.

INTRODUCTION

Transportation or industrial noise is known as a source of peo-
ple annoyance. As noise regulations are more and more de-
manding, threshold values are harder and harder to be mea-
sured or calculated with the required accuracy. Moreover, us-
ing a single deterministic value is not sufficient to fully de-
scribe fluctuating acoustic levels for outdoor sound propaga-
tion. These levels mainly depend on variable micrometeoro-
logical and ground effects described by specific calculated or
measured parameters. In a complete outdoor sound propaga-
tion study, these uncertain parameters constitute a set of in-
put data for propagation models characterizing boundaries and
medium characteristics. Uncertainty linked to output data is
then a combination of input data uncertainty and model uncer-
tainty.

In recent years, some methods have been developed to take into
account variability in time and space. Fuzzy logic theory and
multidimensional analysis have been applied to derive a clas-
sification of meteorological data regarding the effect on acous-
tic propagation (Zouboff et al. 1994). Geostatistical methods
have been used to interpolate a set of experimental data, con-
sidering spatial coherence (Baume et al. 2006; 2009). Proper
orthogonal decomposition has been applied to numerical re-
sults in order to develop compact representation of the sound
field (Pettit and Wilson 2007). But a key issue is also to esti-
mate the combined uncertainty that is to say a combination of
model uncertainty, measurement uncertainty and physical vari-
ability in order to increase control of the prediction accuracy.

A probabilistic method called Calibration Under Uncertainty
(CUU) has been proposed to estimate the combination of un-
certainties (Leroy et al. 2008). This method is based on max-

imum likelihood estimation and integrates both experimental
and numerical data and is a possible way to characterize and
also quantify the combined uncertainty. It requires various and
robust statistical tools such as metamodeling method (to re-
place numerical model during optimization process) or geosta-
tistical tools. In this paper CUU is applied to data from the
experimental campaign of Lannemezan 2005 (F) (Junker et al.
2006) and to a numerical propagation model (Parabolic Equa-
tion (Lihoreau et al. 2006)). The aim is to predict sound pres-
sure level spectra and associated uncertainties for specific prop-
agation conditions. Epistemic and stochastic uncertainties are
estimated at two different distances from the source in order to
show the effects of spatial variability.

DATASET

Preliminary

The dataset is constituted by numerical and experimental data.
A response surface of the model (Kleijnen et al. 1997; 2005) is
built in order to minimize CPU time during minimization pro-
cess. This response surface also called metamodel is based on
a specific design of numerical experiments. The robustness of
CUU is better considering a set of data than considering a sin-
gle data. Consideration of groups of data increases the rate of
information and enhances the calibration process. A variance
can be calculated for each estimated parameter (this variance
is proportional ton− 1, wheren is the number of samples).
It is then possible to describe global propagation conditions
in terms of uncertainty. Experimental spectra representative of
specific propagation conditions have then to be grouped.
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Experimental data

Experimental campaign

Experimental data come from an experimental campaign
which has been carried out in 2005 in Lannemezan (France)
during three months. The experimental site has been chosen
according to numerous considerations such as the quietness
of the area, the ground flatness, the absence of obstacles be-
tween source and receivers, the soil type (grass land cover),
etc. Experimental protocol is represented Figure1 (Junker et al.
2006).

• A sound source is located far enough from the trees to
avoid interactions with unwanted turbulent flows. The
source height is fixed at 2m above the ground. The
source is omnidirectionnal (12 loudspeakers) and is fed
with a stationary pink noise (Lw = 108dB(A)). Refer-
ence microphones were located at 10m from the source
and at 2m above the ground. A total of about 50 mi-
crophones have been settled along four propagation di-
rections (DP). The distance between the microphones
is 25m long from 50m to 200m from the source. Each
third octave band in the range [50Hz-4kHz] has been
stored as continuous equivalent sound pressure levels
with a one second integration time.

• Regarding micrometeorological devices, three dimen-
sional ultrasonic anemometers and 10m high meteoro-
logical towers were placed respectively at 75m, 125m
and 175m from the source in each propagation direc-
tion. An additional 60m high meteorological tower has
been located at 200m northbound from the source and
has been running during the 3 months.

• The ground impedance was monitored every four hours,
on one fixed point during the whole campaign, using
two microphones placed at 20m from the source (2m
and 0.3m high). The effective airflow resistivity was de-
termined by fitting the difference of the levels measured
between the two microphones with a theoretical curve
calculated using Delany-Bazley impedance model and
an analytical propagation model (Piercy et al. 1977).

These experimental data have been filtered and validated with
care before any analysis (Junker et al. 2005).

Figure 1: Experimental protocol for acoustical and microme-
teorological devices. The black circled symbols indicate the
devices which were let on site during the three months. Other
devices were removed after three weeks of intensive measure-
ments.

Characteristic groups of data constitution

Groups of data are selected thanks to analysis of variance, from
the spreading and the shape of spectra, and also from values of
the measured parameters. Spreading of spectra has to be mini-
mum and the corresponding (micrometeorological and ground)
measured parameters have to present a low variability. Selected
experimental spectra for homogeneous propagation conditions
and corresponding parameters are respectively represented in
Figures2 and3. Normalized turbulence index varies from 0 to
1 and is calculated as a ratio of the turbulence indexµ2 and the
maximum value of the turbulence index (µ2

max= 1.10−5). Even
if homogeneous propagation conditions are selected, the uncer-
tainty associated to influential micrometeorological parameters
lead to a larger spreading at 150m from the source. These un-
certainties at 150m from the source can be compared with the
results obtained at 50m and then be interpreted as the spatial
variability of the data.
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Figure 2: Experimental attenuation spectra measured at 50m
and 150m relative to a microphone located at 10m from the
source for homogeneous propagation conditions.
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Figure 3: Histograms of measured vertical effective celerity
gradients, turbulence index and effective airflow resistivity.

Numerical data

The sound propagation model used to apply the CUU is the
Parabolic Equation model (PE model) (Lihoreau et al. 2006).
This model enables to take into account micrometeorological
phenomena and ground effects considering large distances of
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propagation. CUU requires numerous iterations and by the way
numerous calculations with PE model. In order to minimize
computer time during calibration process and to enable the ap-
plication of CUU process with a numerical model such as PE
model, interpolation between the discretization points of a cal-
culation design is required. A solution is to create ametamodel,
also called a response surface, auxiliary model, emulator, etc.
Defined metamodels depend on the studied configuration; spe-
cific metamodels cannot be used in another configuration.

Metamodel: basis

Kleijnen et al. (Kleijnen et al. 2005) define a metamodel as an
approximation of the true input/output function implicitly de-
fined by the given simulation model. Obviously, a metamodel
has to be simpler and faster than a numerical model. A meta-
model treats the simulation model as a black box. It uses the
input/output data without knowledge of the way the simulation
model processes these inputs to get the outputs. Metamodeling
is used for:

1. sensitivity analysis,
2. optimization,
3. prediction,
4. validation and verification.

There are many types of metamodels such as low-order
polynomial regression models (the most popular) or exact
interpolation by kriging (Den Hertog and Stehouwer 2002)
(Simpson et al. 1998). The kriging method was developed in
the field of geostatistics by Matheron in the 60’s and has been
used in numerical design of experiments by Sacks (Sacks et al.
1989). Kriging has the advantage of being an interpolating
method leading to the construction of a probabilistic model.
This method will therefore depend on experimental points.
Kriging is used to build an interpolator which is a linear func-
tion of the observations taking into account the spatial structure
of data. It provides a prediction as a linear combination of the
observed values. The weights depend on the distance between
the prediction point and the design of experiments through the
chosen covariance function. In this paper,kriging metamodel
is used. The study has been done thanks to the DACE toolbox
(Lophaven et al. 2002).

Application to Parabolic Equation model

The predictive metamodel is based on a numerical design built
from experimental parameters. The parameters are representa-
tive of the whole Lannemezan 2005 experimental campaign.
A first design of experiments is built without turbulence and is
based on effective airflow resistivityσ and on refraction param-
etersalog andblin . These last parameters are calculated from
Monin-Obukhov scales and depend on stability conditions
(Heimann et al. 2007, Stull 1988). Their combination allows
to calculate vertical effective celerity such as∂c

∂z =
alog

z + blin .
The design of experiments is a “full factorial design” such as:

• alog = [−0.80 : 0.20 : 0.80] m.s−1,
• blin = [−0.12 : 0.02 : 0.12] s−1,
• andσ = [50 : 20 : 290] kN.s.m−4.

Calculations taking into account turbulence being time con-
suming, it is necessary to reduce the numerical design. An-
other type of numerical design is defined: the Doehlert design
(Sacks et al. 1989). Doehlert design is a rhombic network gen-
erated from a simplex and is based on a criterion of uniform
distribution. The design in Table1 is built to cover all the field
of study. Calculations are made with a maximum value of tur-
bulence. Kriging metamodels are then built for each frequency
(from 100Hz to 2kHz) from the Doehlert design to reproduce
the same datagrid as the numerical design without turbulence.
A linear interpolation between the numerical designs with and

without turbulence allows to access to results with intermediate
values of turbulence. Examples of response surfaces at 500Hz
with a maximum turbulence effect are represented Figures4
and5 at 50 and 150m from the source (two meters high). Re-
sponse surfaces show interferential phenomena which are char-
acteristic of this situation.

N σ (kN.s.m−4) alog (m.s−1) blin (s−1)

1 170 0 0
2 290 0 0
3 230 0.8 0
4 230 0.2 0.12
5 50 0 0
6 110 -0.8 0
7 110 -0.2 -0.12
8 230 -0.8 0
9 230 -0.2 -0.12
10 170 0.4 -0.12
11 110 0.8 0
12 110 0.2. 0.12
13 170 -0.4 0.12

Table 1: Doehlert design for PE calculations with turbulence.

Figure 4: Response surface by kriging metamodeling at 500Hz
with maximum value of turbulence at 50m from the source
(Mean Squared Error = 0.04 dB2).

alog andblin parameters led to an overparametrization of the
system. In fact a preliminary application of CUU showed that
one of the parameter allowed to calibrate the model while the
other one reached the boundary values of parameters which
are set for the optimization process. This strong dependence
between the two parameters led to the overparametrization and
the metamodel finally uses normalized turbulence index, verti-
cal effective celerity gradients and effective airflow resistivity
as physical input parameters. The final kriging models for each
frequencies are based on exponential models of the variogram.
Finally the calculation of a third octave spectrum (from 100 to
2000Hz) at 150m from a sound source taking into account tur-
bulence with the surrogate model lasts 0.1second (with a stan-
dard PC). For comparison a PE model calculation time with
the same configuration can reach several hours.
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Figure 5: Response surface by kriging metamodeling at 500Hz
with maximum value of turbulence at 150m from the source
(Mean Squared Error = 1.7 dB2).

UNCERTAINTY ASSESSMENT WITH WELL
KNOWN INPUTS

Preliminary

A first approach consists in considering measured parameters
as well-known (i.e. fixed) and to model covariance matrix of
residues between measured and modeled data. This modeling
is made thanks to variogram analysis.

Variogram analysis: basis

In classical geostatistics, the standard summary of the second-
moment structure of a spatial stochastic process is its vari-
ogram (Chilès and Delfiner 1999). Thevariogramof a stochas-
tic processU(.) is the function

γ
(

f , f ′
)

=
1
2

var
[

U( f )−U( f ′)
]

. (1)

This function enables to obtain an experimental variogram; it
depends on the frequential distance between two samples and
also on the chosen direction (if the field has at least two di-
mensions). Fitting a parametric function to an empirical var-
iogram provides one possible way to estimate covariance pa-
rameters. Frequently in practice this is done “by eye”, with-
out a formal criterion. Alternatively, ordinary or weighted least
mean squares methods for curve fitting are sometimes used.
This model enables to transform discontinuous variograms in
continuous variograms valid throughout the field of study. It
is essential to understand the behavior of the variogram near
the origin; it is linked to the continuity of variablesU . Typical
behaviors are:

• A parabolic behavior which characterizes a highly regu-
lar variable usually differentiable.

• A linear behaviori.e. the variable is continuous but no
longer differentiable.

• A discontinuity at the origin which characterizes a
nugget effect. The variable is not continuous and very
irregular

• A flat curve i.e. a pure nugget effect or a white noise
(total absence of spatial structure).

These behaviors enable to explain and understand the spatial
structure of the residueU .

Application to ground and medium characteristics

Measured parameters are applied as input parameters of the
surrogate model. Modeled and measured spectra are sub-
stracted to constitute residues. Covariance structure of the
residues is studied thanks to variogram analysis for data lo-
cated at 50 and 150m from the source.

From a sample to another, experimental variograms present
a strong variability. In order to be representative of an aver-
age and characteristic situation, mean residues are considered.
The experimental variogram is calculated from these residual
values. At 50 and 150m from the sound source (Figure6),
the most suitable variogram model is a gaussian model. This
model is defined by equation2:

γ(d f) = C

[

1−exp

(

−

(

d f
a

)2
)]

, (2)

wherea is the sill i.e. the distance from which two observa-
tions are distinct on average; no linear link and null covariance.
At this distance, variogram value corresponds to the variance
of the stochastic variable.C = s2

−C0. s2 corresponds to the
range i.e.the variance of the stochastic variable andC0 corre-
sponds thenugget variance.

• At 50m from the source,C0 = 4.9 dB2, s2 = 4930.
• At 150m from the source,C0 = 5.4 dB2, s2 = 830.

Regarding the values of variogram parameters and the bad re-
sults of the fitting, the model obviously need to be calibrated.
Residual variances have to be reduced.
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Figure 6: Experimental variograms (circles) and gaussian fitted
variograms (dotted lines) of residues at 50m and 150m from
the source.

UNCERTAINTY ASSESSMENT WITH UN-
KNOWN INPUTS

Preliminary

Physical input parameters are now considered to be unknown
i.e. to be calibrated. The goal of this step is to estimate the best
parameters to calibrate the model. This calibration process is
applied to:

• Single spectra. It consists in calibrating spectrum one
by one and estimate a set of parameters for each spectra.
The covariance structure of residues can be modeled by
a variogram and compared to the covariance structure
obtained in the previous section.

• A set of spectra. Calibration process implies a multidi-
mensional cost function (log-likelihood function) and
consists in estimating physical input parameters and
also the covariance matrix parameters and the variances
associated to each parameters (physical input parame-
ters and cost function parameters).
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In order to avoid mathematical singularities and dis-
ease, the dimensionality of the cost function is reduced:
Functional Principal Components Analysis (PCA) is used
(Ramsay and Silverman 1997). Calculations are made on co-
efficients of functional PCA, explaining at least 95% of the
variability of experimental spectra.

CUU applied to single spectra

Estimation of parameters

Estimated parameters after the calibration process are summa-
rized in Table2. These values are representative of the spatial
variability and also of uncertainty on input parameters. Sig-
nificant differences between estimated parameters at 50m and
150m appear. Estimated parameters can also be compared to
measured parameters (Figure3) usually applied as input pa-
rameters (cf. previous section).

measured 50m 150m
parameters

<x> std(x) <x> std(x) <x> std(x)

∂c/∂z 0 0.01 −0.08 0.12 0.07 0.06
σ 137 10 91 10 113 14

µ2
norm 0.37 0.2 0 10−4 0.2 0.3

Table 2: Measured and estimated physical parameters at 50
and 150m considering independent spectra (mean and standard
deviation).

• Regardingestimated vertical effective celerity gradi-
ents, opposite mean trends (downward and upward re-
fraction conditions) are observed. However these values
are comparable if standard deviations values are con-
sidered: including standard deviations leads to consider
relative homogeneous propagation conditions for both
distances of measurements (i.e.with large uncertainty).

• Spatial variability can also be explained byeffective air-
flow resistivityvalues. Estimation leads to distinct val-
ues ofσ which could mean that the ground is different
from an acoustical point of view. Standard deviations
are consistent with measurement errors magnitudes.

• Normalized turbulence indexis almost null at 50m
and comparable to measured turbulence index at 150m.
Moreover micrometeorological effects at 50m are lower
than effects at 150m which can be traduced by the tur-
bulence index. Possible combination with vertical effec-
tive celerity gradients can appear which could also ex-
plain these differences.

Calibration enables a minimization of residual values but es-
timations do not lead to the same micrometeorological and
ground conditions. Differences between parameters are not
considerable but well traduce the presence of uncertainties.

Covariance matrices modeling

The differences between experimental and numerical spectra
are modeled by the covariance matrices at 50m and 150m or
variograms. The experimental variograms (Figure7) do not
present any structure and can be modeled by a pure nugget
effect. This model is defined as:

γ(d f) =

{

0 if d f = 0
C if d f > 0.

(3)

However the semivariance magnitudes has decreased from 4.9
to 2 dB2 at 50m and from 5.4 to 1 dB2 at 150m, compared to
variograms calculated from experimental parameters (Figure
6). Calibration minimized residual variances which traduces a
positive contribution of the calibration process: Reduction of
unexplained variability.
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Figure 7: Experimental variograms (circles) and pure nugget
effect variograms (dotted lines) of residues at 50m and 150m
from the source.

CUU applied to a set of spectra

Estimation of parameters

When CUU is applied to a set of spectra, estimated parameters
are representative of average propagation conditions; these pa-
rameters are summarized in Table3. The use of an average
parameter and of well-known parameters as inputs of the nu-
merical model gives access to theepistemic uncertainty. Well
known parameters such as temperature and relative humidity
vary in time and this variability allows to explain a part of
the epistemic uncertainty. A ratio between simulated and mea-
sured spectra is then calculated. Finally 30% (at 50m) and 25%
(at 150m) of the spectra variability is explained thanks to esti-
mated and well-known parameters.

50m 150m
x sx x sx

∂c/∂z 7.10−3 10−4 0.05 0.01
σ 103 1 111 1

µ2
norm 0.01 0.06 0.003 0.108

Table 3: Estimated physical parameters at 50 and 150m con-
sidering a set of spectra.

Moreover estimated parameters do not report a strong spatial
variability:

• homogeneous propagation conditions are well esti-
mated at 50m and 150m,

• effective airflow resistivity values are similar. The dif-
ference between estimated parameters correspond to un-
certainties of measurements (about 10kN.s.m−4),

• normalized turbulence indices are similar regarding es-
timated standard deviations.

For vertical effective celerity gradients and turbulence indices,
estimated standard deviations (sx) are larger at 150m than at
50m; it traduces a larger estimation uncertainty and a stronger
effect of micrometeorological phenomena at 150m.

Estimation uncertainty and combined uncertainty

Estimation variances can be calculated generating a set of pa-
rameters thanks to Monte-Carlo runs and applying this set
of parameters in the numerical model. Monte-Carlo runs are
generated from a mean parameter and a standard deviation of
this parameter; these values are respectivelyx andsx. Estima-
tion uncertainty allows to explain 38% (at 50m) and 34% (at
150m) of the spectra variability. Combined uncertainty is cal-
culated from residual covariance matrices and from estimation
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variances. The covariance matrices of residues are estimated
during the calibration process. This combined uncertainty is
shown Figures8 and9 in comparison with experimental spec-
tra.
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Figure 8: Estimation and combined uncertainties associated to
experimental spectra at 50m.
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Figure 9: Estimation and combined uncertainties associated to
experimental spectra at 150m.

For these specific propagation conditions, CUU process allows
to determine a combined uncertainty representative of:

• physical variability,
• measurement uncertainties,
• modeling uncertainties,
• estimation uncertainty (calculated independently).

The major part of these uncertainties are stochastic and can-
not be explained by the variance of the input parameters val-
ues. Moreover a skew is observed at 50m from the source at
some frequencies. This is clearly an illustration of the limits
of the model. A confident interval (95%) is calculated for each
distances of propagation. This confident interval gives the un-
certainty relative to a numerical simulation for these specific
propagation conditions in this specific experimental configura-
tion. In a predictive point of view, the combined uncertainty
constitutes the uncertainty of prediction, possible skews could
also be corrected centering residues.

The covariance matrix could also be modeled thanks to a model

of variogram. However the covariance matrices are calculated
on observables defined by Principal Component Analysis and
not on spectra. The transposition of the covariance matrix cal-
culated on the coefficients of PCAf to the spectral domain is
delicate and further developments have to be made.

CONCLUSION

The proposed methodology for uncertainty assessment re-
quires the constitution of sets of spectra and a metamodel if
a time consuming model is used. Different approaches have
been developed.

The first one consisted in calculating the residual uncertainty
using measured parameters as well-known input parameters of
the surrogate model. This uncertainty is modeled thanks to a
fitted model of variogram. Measured parameters and numeri-
cal model do not allow to explain the variability of experimen-
tal spectra which questions on the reliability of the parameters
and/or on the efficiency of the numerical model.

The second one consisted in considering input parameters as
unknown and in estimating a set of input parameters for each
single spectrum. This estimation is made by calibrating the nu-
merical model on measured spectra. The modeling of the co-
variance matrix of residues has shown a major decrease of the
variance which traduces a positive contribution of the calibra-
tion process with an obvious decrease of the uncertainties. Mo-
rover this decrease is more noticeable at 150m which could
mean that the numerical model is more robust at 150m than
50m.

The last approach considers one set of average paramerers for
a given group of spectra. Estimated parameters are representa-
tive of average conditions of propagation and allow to explain
a part of combined uncertainty: epistemic uncertainty and un-
certainty of estimation are clearly separated but unfortunately
do not explain the major part of uncertainty. A part of his un-
explained uncertainty is rejected into residual uncertainties.

This study traduces the limitations of numerical models in
specific propagation conditions to reproduce the variability
(model seems to be more robust at 150m from the source) and
is a first approach to improve its predictive content by using
experimental data. Such an application will be applied in fur-
ther works to a site with a complex topography and with a road
traffic noise.
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