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ABSTRACT

This paper examines a linear propagation of thermoacoustic waves in a gas enclosed in a narrow channel subject to
temperature gradient axially and extending infinitely. An analysis is made to derive a wave equation by assuming that a
typical axial length is much longer than the channel width but a thickness of thermoviscous diffusion layer is arbitrary
relative to the width. It is shown that the system of equations is reduced to a spatially one-dimensional wave equation for
a pressure in the form of an integro-differential equation due to memory by the thermoviscous effects. Approximations
of the wave equation are discussed based on a Deborah number. For a short time after a disturbance is given, i.e. a large
Deborah number, the equation is shown to be simply the one derived by the boundary-layer theory, while for a long time,
i.e. small Deborah number, it is reduced to a diffusion-wave equation. It is unveiled from this that the thermoviscous
effects combined with the temperature gradient give rise to wave propagation in the positive direction of the gradient. If
the gradient is steep, they give rise to negative diffusion so that the convective instability will occur.

INTRODUCTION

Acoustic waves propagating in a gas enclosed in a channel
(or in a tube) are subject to damping due to thermoviscous
diffusive effects. But when an appropriate temperature gradient
is imposed along the channel wall, it is known that the acoustic
waves become unstable by those diffusive effects. Then the
waves grow by gaining energy from heat flux flowing in the
background through the wall and the gas. To exploit such an
instability, it is desired to specify marginal conditions for it.

It was Rott [1,2] that derived first marginal conditions of a col-
umn of helium gas in a tube, i.e. the onset of Taconis oscillations
in cryogenics. But analyses are usually very complicated and
difficult. The author has been concerned with simple derivation
of the conditions in a framework of a boundary-layer theory
[3]. It turns out that the theory is applicable not only to derive
the conditions but also to describe ensuing self-excited, Taconis
oscillations, when it is extended to a weakly nonlinear case
[4,5]. The theory will also be applicable to another classically
known example of thermoacoustic oscillations in resonators
like a Sondhauss tube [6].

But modern thermoacoustic devices use a so-called stack com-
prising of narrow channels, in which a typical thickness of
diffusion layer is comparable with the span length [7]. To this
case, the boundary-layer theory will be inapplicable and a new
theory is required. The purpose of this paper is to examine a lin-
ear propagation of thermoacoustic waves in a gas enclosed in a
channel subject to temperature gradient axially and without any
restriction on the thickness of the diffusion layer in comparison
with the channel width.

But use is made of a ‘narrow-tube approximation’, which stip-
ulates that the ratio of a typical axial length of a temperature
gradient and a wavelength is much longer than the channel
width. It is demonstrated that the system of equations is reduced
to a spatially one-dimensional wave equation for a pressure. Ap-
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Figure 1: Illustration of a two-dimensional, gas-filled channel
subject to temperature gradient axially. The curves labeled (a)
and (b) show profiles of the axial velocity u′ in cases of a very
thin thermoviscous diffusion layer, i.e. boundary layer, and of a
very thick one, respectively.

proximations of this equation for a short and long time after a
disturbance is given are discussed based on a Deborah number.

BASIC EQUATIONS

Let us consider a two-dimensional wave propagation in a gas
enclosed in a channel of two parallel plates extending infinitely,
as shown in Figure 1. Take the x-axis along the direction of
propagation and the y-axis normal to it with the origin of the
coordinates at a midpoint of the two plates, separated by 2H.
Suppose that the temperature of the plates varies along the x-
axis and that the plates have large heat capacity. The temperature
of the upper and lower plates at a position x is equal with each
other, and is denoted by Tw(x). No gravity is assumed.

In a quiescent equilibrium state, the pressure in the gas takes a
uniform value p0, while the temperature of the gas Te may be set
equal to that of the plates, if the channel width is narrow enough
in comparison with a typical axial length of the temperature
variation of Tw. The subscript e implies a value in the quiescent
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state, which is a function of Te. For an ideal gas, the density of
the gas ρe is proportional to 1/Te.

Letting a typical axial length be L, the ratio H/L is assumed to
be much smaller than unity. A reduction of equations based on
this assumption is called a narrow-tube approximation. But no
restrictions on a typical thickness of a viscous diffusion layer√

νe/ω are made, νe being a local kinematic viscosity and
ω a typical angular frequency. Although a thermal diffusion
layer

√
κe/ω may be taken, κe being a thermal diffusivity, its

thickness is comparable with that of the viscous one as long as
the Prandtl number Pr (= νe/κe) is of order unity. Therefore
the thermal diffusion layer is represented by the viscous one.

Linearizing equation of continuity, Navier-Stokes equation,
equations of energy and of state for the ideal gas around the
quiescent state, and exploiting the narrow-tube approximation
(H/L� 1), it follows that

∂ρ ′

∂ t
+

∂

∂x
(ρeu′)+

∂

∂y
(ρev′) = 0, (1)

ρe
∂u′

∂ t
=−∂ p′

∂x
+ µe

∂ 2u′

∂y2 , (2)

0 =−∂ p′

∂y
, (3)

ρecp

(
∂T ′

∂ t
+u′

dTe

dx

)
=

∂ p′

∂ t
+ ke

∂ 2T ′

∂y2 , (4)

p′

p0
=

ρ ′

ρ0
+

T ′

Te
, (5)

in −∞ < x < ∞, −H < y < H and −∞ < t, where ρ ′, p′ and
T ′ denote, respectively, disturbance in density, pressure and
temperature, while u′ and v′ denote, respectively, x- and y-
components of the velocity, the prime implying disturbance; µe
and ke denote, respectively, the shear viscosity and the thermal
conductivity; cp denotes a heat capacity at constant pressure.
For (1)-(5), the boundary conditions at the plate surfaces require
that

u′ = v′ = T ′ = 0 at y =±H. (6)

Here it is pointed out that temperature dependence of µe and
ke is taken into account through the power laws: µe/µ0 =
(Te/T0)β and ke/k0 = (Te/T0)β , β being a constant between
0.5 and 0.6, and the subscript 0 implying a reference state.

DERIVATION OF WAVE EQUATION

It is found immediately from (3) that the excess pressure p′

is uniform over a cross-section of the channel so that p′ is a
function of x and t, i.e. p′(x, t). This is the key point of the
narrow-tube approximation. Exploiting this, we consider to
express the other quantities in terms of p′. Use of the Fourier
transform with respect to t enables us to solve (1), (2), (4) and
(5) to obtain u′, T ′, ρ ′ and v′. For the details, see the paper [7].

Averaging (1), (2) and (4) over the width, i.e. integrating each
equation over y from −H to H with (6), and dividing it by 2H,
it follows that

∂ ρ̄ ′

∂ t
+

∂

∂x

(
ρeū′

)
= 0, (7)

ρe
∂ ū′

∂ t
=−∂ p′

∂x
+

s
2H

, (8)

ρecp

(
∂ T̄ ′

∂ t
+ ū′

dTe

dx

)
=

∂ p′

∂ t
+

q
2H

, (9)

where quantities with over-bar designate the mean values over
the width, and s and q denote, respectively, shear stress acting

on the gas at the plate surfaces and heat flux flowing into the
gas through them, which are given respectively by

s = µe
∂u′

∂y

∣∣∣∣∣
y=+H

−µe
∂u′

∂y

∣∣∣∣∣
y=−H

, (10)

and

q = ke
∂T ′

∂y

∣∣∣∣∣
y=+H

− ke
∂T ′

∂y

∣∣∣∣∣
y=−H

. (11)

Equations (7) to (9) are combined to eliminate ρ̄ ′, ū′, and T̄ ′

into a single equation for p′:

∂ 2 p′

∂ t2 −
∂

∂x

(
a2

e
∂ p′

∂x

)
=

a2
e

cpTe

∂

∂ t

( q
2H

)
− ∂

∂x

(
a2

e
s

2H

)
.

(12)
While the left-hand side represents a wave equation for a loss-
less propagation in the gas non-uniform in temperature, the first
and second terms on the right-hand side represent, respectively,
the effects due to the heat flux in the form of a monopole and
the shear stress in the form of a dipole. They are expressed by
the solutions in terms of p′.

Using the expressions of u′ and T ′ obtained to calculate s and
q, it follows from (12) that

∂ 2 p′

∂ t2 −
∂

∂x

(
a2

e
∂ p′

∂x

)
+

∂

∂x

[
a2

e
√

νe

H
M

(
∂ p′

∂x

)]

+
γ−1√

Pr

√
νe

H
MP

(
∂ 2 p′

∂ t2

)
− a2

e
Te

dTe

dx

√
νe

H
(13)

×
[

1
1−Pr

M

(
∂ p′

∂x

)
− 1

(1−Pr)
√

Pr
MP

(
∂ p′

∂x

)]
= 0,

where ae(x) denotes the adiabatic sound speed given by
√

γ p0/ρe,
γ being the ratio of the specific heats, and MP(φ) denotes a
functional of a function φ(x, t) defined by

MP [φ(x, t)]≡ 1√
π

∫ t

−∞

G[νe(t− τ)/PrH2]√
t− τ

φ(x,τ)dτ, (14)

with

G(t) = 1+2
∞

∑
n=1

(−1)n exp
(
−n2

t

)
. (15)

The functional M (φ) denotes MP(φ) with Pr set equal to unity
formally.

PROPERTIES OF RELAXATION FUNCTIONS

It is found in (13) that p′ is no longer governed by a differential
equation but an integro-differential equation. The time-integral
in (14) represents a memory by the diffusion effects. The func-
tion G/

√
πt may be called a relaxation function, which mea-

sures a weight of dependence of MP(φ) at t on a past value of
φ(τ) tracked back by τ from the present time t.

For M (φ), νet/H2 appears in the argument of G. This dimen-
sionless quantity is the inverse of a Deborah number De defined
by

De≡ H2

νet
. (16)

This quantity measures a ratio of a viscous relaxation time
H2/νe to a time t concerned. Of course, a thermal relaxation
time H2/κe (= PrH2/νe) may also be concerned but it is rep-
resented by the viscous one from the reason mentioned before.
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To examine a behavior of the relaxation function, the following
formula is used:

1+2
∞

∑
n=1

(−1)nzn2

=
∞

Π
n=1

(1− z2n)
∞

Π
n=1

(1− z2n−1)2 =

√
2
π

k′K(k), (17)

where z = exp(−1/t), log(1/z) = πK(k′)/K(k), k and k′ being
the modulus of the complete elliptic integral K(k) and its com-
plementary modulus k′2 = 1− k2. Using this, G is expressed
as

G(t) =

∞

Π
n=1

[
1− exp

(
−2n

t

)]
∞

Π
n=1

{
1− exp

[
− (2n−1)

t

]}2
. (18)

If t� 1, then G may be approximated as

1√
πt

G(t)≈ 1√
πt

, (19)

while for t� 1, G may be approximated as

1√
πt

G(t)≈ 2exp
(
−π2

4
t
)

, (20)

where the last expression of (17) has been used [7].

Figure 2(a) plots G(t)/
√

πt numerically calculated as a func-
tion of t but it lie on either one of the asymptotic expressions
(19) for t � 1 or (20) for t � 1 too closely to be visible. The
function tends to diverge as t → 0, whereas it tends to van-
ish exponentially as t → ∞. Figure 2(b) blows up an interval
0.1≤ t ≤ 0.4, where the dots represent G(t)/

√
πt numerically

calculated. For t < 0.15, they lie on the curve (19), while for
t > 0.30, they lie on the curve (20). The transition between
the two asymptotic expressions occurs over a narrow interval
0.15 < t < 0.30 centered around t ≈ 0.2. This suggests that
G(t)/

√
πt may be approximated substantially by either one of

the two asymptotic expressions.

APPROXIMATIONS OF THE WAVE EQUATION

Thanks to such an amazing behavior of the relaxation function,
(13), called a thermoacoustic-wave equation, may be simplified.
For De > 0.2, G(νet/H2)/

√
πt may be set to be 1/

√
πt. It then

follows that

∂ 2 p′

∂ t2 −
∂

∂x

(
a2

e
∂ p′

∂x

)
+

a2
e
√

νe

H

[
C

∂
− 1

2

∂ t−
1
2

(
∂ 2 p′

∂x2

)

+
(C +CT )

Te

dTe

dx
∂
− 1

2

∂ t−
1
2

(
∂ p′

∂x

)]
= 0, (21)

where C and CT are defined as

C = 1+
γ−1√

Pr
and CT =

1
2

+
β

2
+

1√
Pr+Pr

, (22)

and the derivative of minus half-order is defined by

∂
− 1

2 φ

∂ t−
1
2
≡ 1√

π

∫ t

−∞

φ(x,τ)√
t− τ

dτ. (23)

For a circular tube of radius R, H should be replaced by a
hydraulic radius R/2, R being a tube radius. This equation is
simply the one derived by the boundary-layer theory [3]. It
should be remarked, however, that this equation is applicable
to any situation for a short time after a disturbance is given at
t = 0, but it tends to be invalid as De becomes less than 0.2.
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Figure 2: Graph of G(t)/
√

πt by dots together with the two
asymptotic expressions (19) and (20) by solid curves.

For a long time, on the other hand, since G(t)/
√

πt diverges as
t→ 0 and decays exponentially as t→ ∞, it may be regarded
roughly as a delta function as t→ ∞. It is verified indeed that
G(t)/

√
πt satisfies ∫

∞

0

1√
πt

G(t)dt = 1, (24)

where G vanishes for t < 0. The long-time behavior corresponds
formally to a case of an extremely narrow tube as H→ 0. For
a long but finite value of time, a higher-order correction than
the delta function is necessary. Such a correction is systemati-
cally obtained by expanding the thermoacoustic-wave equation
transformed in terms of H [7].

Doing so, the lowest asymptotic equation is obtained as follows:

∂ p′

∂ t
− ∂

∂x

(
α

∂ p′

∂x

)
+

α

Te

dTe

dx
∂ p′

∂x
= 0, (25)

where α denotes a new diffusivity defined by

α =
a2

eH2

3γνe
. (26)

For the circular tube, α is given by a2
eR2/8γνe. It is found that

(25) is a differential equation and the memory disappears. If
the temperature gradient is absent, the third term drops out so
that p′ is subject to diffusion simply. But when the gradient is
present, the third term can give rise to a wave propagation and
the coefficient

α

Te

dTe

dx
(27)

provides a propagation velocity V . If the temperature depen-
dence of µ , i.e. β vanishes, α is the constant independent of
the temperature. Supposing that a channel width 2H = 0.1 mm
filled with atmospheric air, V takes a value of about 50 m/s.
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Thus it is newly revealed that the diffusive effects under the
temperature gradient can give rise to a wave propagation in the
positive direction of the gradient.

A solution to the diffusion-wave equation (25) is easily expected.
If a moving frame with V is introduced, (25) is reduced to a
simple diffusion equation. Thus p′ is simply diffused in this
frame. So we are now interested in higher-order equation than
(25). It is obtained as follows:

∂ p′

∂ t
− ∂

∂x

(
α

∂ p′

∂x

)
+

α

Te

dTe

dx
∂ p′

∂x
+
[

6
5

γ− (γ−1)Pr
]

× α

a2
e

∂ 2 p′

∂ t2 −
2
5
(1+Pr)

αH2

νeTe

dTe

dx
∂ 2 p′

∂ t∂x
= 0. (28)

While (25) takes account of H up to its quadratic terms, the
quartic terms are taken in (28). Equation (28) may also be
regarded as an equation for a case of a thick diffusion layer
but of finite thickness. At the same time, it corresponds to the
equation for a long but finite value of t.

Effects of the higher-order terms are not readily seen. Suppose
a case where Te varies exponentially and β vanishes for sake
of simplicity. Then V takes a constant value. If the temperature
gradient is very large, the lowest balance in (28) takes place
between the first and third terms as ∂ p′/∂ t +V ∂ p′/∂x ≈ 0.
Using this relation, (28) may be expressed as

∂ p′

∂ t
+V

∂ p′

∂x
= D

∂ 2 p′

∂x2 , (29)

where D is given by

D = α

{
1−
[

6
5

γ(2+Pr)− (γ−1)Pr
]

V 2

a2
e

}
. (30)

For air with γ = 1.4 and Pr = 0.72, there may appear a region
in which D takes a negative value if V/ae is large. In this case,
it is anticipated that a negative diffusion will occur so that a
convective instability will appear.

Finally the diagram indicating spatial and temporal domains
for each approximate equation to be valid is shown in Figure 3.
Equation (13) is valid everywhere in this diagram. A state prior
to t = 0 is assumed to be quiescent so that the lower bound of the
integrals may be set equal to zero. The horizontal axis represents
a dimensional length measured by a typical diffusion length
ν/U , ν being a typical kinematic viscosity and U a typical
axial speed. This axis may be interpreted as an inverse of the
Reynolds number Re (≡UH/ν). The vertical axis represents a
dimensional time measured by a typical diffusion time H2/ν

and also corresponds to an inverse of the Deborah number De.

Equation (21) is valid as long as the Deborah number remains
less than about 0.2. Although (21) is the same as the one derived
by the boundary-layer theory for a thin diffusion layer Re−1�
1, it now turns out that it holds for any value of the horizontal
axis. On the other hand, (25) is valid for a domain Re−1→ ∞

and De−1 → ∞. In other words, it holds when the diffusion
layer is extremely thick. If finiteness of Re−1 and De−1 is taken
into account, then (28) is used. In an intermediate domain with
Re−1≈De−1≈ 1, (13) should be used. But it may be simplified
by approximating G/

√
πt as

1√
πt

G(t) =


1√
πt

for t < M,

2exp
(
−π2t

4

)
for t > M,

(31)

where M is chosen to satisfy (25), i.e. M ≈ 0.213. But note that
the small jump of 0.04 occurs at t = M.

Eq.(21) for short-time behaviour

Eq.(25) for extremely
long-time behaviour

Eq.(28) for long-time
behaviour

Thick diffusion layer

Extremely thick
diffusion layer

Modified version of Eq.(21) based on (14) approximated by
(31) for intermediate-time behaviour

Moderately thick diffusion layer

Thin diffusion layer

Figure 3: Diagram of spatial and temporal domains in which
each approximate equation of (13) is to be valid.

CONCLUSION

Thermoacoustic wave propagation in a two-dimensional, gas-
filled channel has been examined in the framework of the linear
theory and the narrow-tube approximation. The thermoacoustic-
wave equation for the excess pressure has been derived, and it
is applicable to any situations. Approximations of this equation
have been discussed for a short and long time.

It has been revealed that for the short time, the equation is re-
duced to the equation derived by the boundary-layer theory,
while for the long time, a new diffusion-wave equation is de-
rived. The former is a reason why the boundary-layer theory
can yield the marginal condition for initial instability. It has also
been unveiled that the diffusive effects can give rise to wave
propagation when the temperature gradient is present. If the
gradient is steep enough, a negative diffusion will occur and a
convective instability will occur.
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