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ABSTRACT 

The study of higher order elastic constants has gained new horizons with the development of material science as they play 

primary role for understanding the anharmonic and non linear properties of solids. The information about these constants is 

valuable in understanding nature of short range forces in crystals. The elastic energy density for a deformed crystal can be 

expanded as a power series of strains using Taylor’s series expansion. One can get this expansion starting from nearest 

neighbour distance and hardness parameter utilizing Coulomb and Born-Mayer type central force interactions for face 

centred cubic crystals. The coefficients of the quadratic, cubic and quartic terms are known as the second, third and fourth 

order elastic constants (SOECs, TOECs and FOECs) respectively. When the values of second and third order elastic 

constants and density for any material at a particular temperature are known; one may get ultrasonic velocities for 

longitudinal and shear waves in different crystallographic directions which give important information about its anharmonic 

properties. While obtaining higher order anharmonicities such as Grüneisen numbers, the first order pressure derivatives of 

second order elastic constants (FOPDs of SOECs), the first order pressure derivatives of third order elastic constants 

(FOPDs of TOECs), the second order pressure derivatives of second order elastic constants (SOPDs of SOECs), partial 

contractions and deformation of crystals under large forces, the third and fourth order elastic constants are considered 

extensively. A proper and systematic evaluation of the elastic constants of isostructural oxides, and their dependence on 

temperature provides the fundamental data for determining the characteristics of cation-oxygen bonding interactions which 

are pertinent to the understanding and theoretical modelling of more complicated oxide compounds. The Tellurium Oxide 

(TeO) is a divalent crystals and possess FCC crystal structure. In this work, an attempt has been made to evaluate higher 

order elastic constants for TeO at an elevated temperature starting from 50K to near its melting point. The melting point for 

TeO is 643 K. The data of SOECs, TOECs and FOECs are used to evaluate the FOPDs of SOECs and TOECs, SOPDs of 

SOECs and partial contractions. While evaluating these properties it is assumed that the crystal structure does not change 

during temperature variation. The data of these oxides obtained through different techniques also give important and 

valuable information about internal structure and inherent properties of materials and can be used in future for different 

industrial purposes and further investigations of divalent FCC structured solids. 

INTRODUCTION 

Rocks are complicated heterogeneous materials with microstructures that scatter acoustic or seismic waves. At the laboratory 

(ultrasonic) scale, these microstructures are primarily cracks and grain boundaries. The scattering of waves from these 

boundaries is generally considered noise in geophysical applications, but these scattered wave fields may give insight into 

how the rock formed, the environment in which it formed, its state of stress, fluid saturation, etc. The anharmonic properties 

play an important role in this type of studies. The efforts for evaluating anharmonic properties have been made for mono-

valent rock-salt structured materials discussed by some investigators. Elastic properties of divalent compounds are also 

equally important because they relate to the various fundamental solid state phenomena such as inter – atomic potentials, 

equation of state and phonon spectra. If the values of second order elastic constants and density at a particular temperature 

are known for any substance, one may obtain ultrasonic velocities for longitudinal and shear waves which give an important 

information about its anharmonic properties. Elastic properties are linked thermodynamically with specific heat, thermal 

expansion, and Debye temperature and Grüneisen parameters. 

The elastic constants play primary role for understanding the anharmonic and non linear properties of solids [1-3]. In the last 

few years studies of anharmonic properties of solids have attracted the attention of the physicists since they provide much 

valuable information regarding crystal dynamics [4-7]. A number of theoretical and experimental measurements have been 

made on the anharmonic properties, such as second, third and fourth order elastic constants (SOECs, TOECs and FOECs), 

first order pressure derivatives of (FOPDs) of SOECs and TOECs, second order pressure derivatives of second order elastic 

constants (SOPDs) of SOECs etc. of several ionic crystals [8]. No complete experimental or theoretical efforts have been 

made so for in obtaining the temperature variation of anharmonic properties of divalent crystals having various crystal 

structures. The elastic energy density for a deformed crystal can be expanded as a power series of strains using Taylor’s 

series expansion [9]. The coefficients of quadratic, cubic and quartic terms are known as SOECs, TOECs and FOECs 

respectively. Several physical properties and crystal anharmonicities such as thermal expansion, specific heat at higher 

temperature, temperature variation of acoustic velocity and attenuation, and the FOPDs of SOECs and Gruneisen numbers 

are directly related to SOECs and TOECs. While discussing higher order anharmonicities such as the FOPDs of TOECs, the 

SOPDs of SOECs, partial contractions and deformation of crystals under large forces, the FOECs are to be considered 

extensively. The present paper is mainly focussed on the study of temperature variation of higher order elastic constants and 



their pressure derivatives up to an elevated temperature up to near melting point for Tellurium oxide (TeO) crystals using 

Born-Mayer and Coulomb potential starting from the nearest neighbour distance and hardness parameter. 

FORMULATION  

The elastic energy density for a crystal of a cubic symmetry can be expanded up to quartic terms as shown below [10]; 
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Where Cijkl, Cijklmn and Cijklmnpq are the SOECs, TOECs and FOECs in tensorial form; αij are the Lagrangian strain 

components. The SOECs, TOECs and FOECs are as given below: 
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where CIJ, CIJK and CIJKL are the SOECs, TOECs and FOECs in Brügger’s definition  and Voigt notations [11]. The free 

energy density of a crystal at a finite temperature T is 

                   
vib

Total UUU += 0 ,   

Where    
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Where U0 is the internal energy per unit volume of the crystal when all ions are at rest on their lattice points, Uvib is the 

vibrational free energy, Vc is the volume of the primitive cell, N is the number of the primitive cells in the crystal and s is the 

number of ions in the elementary cell. Other notations used in this equation have their usual meanings. 

  An elastic constant consists of two parts as follows: 

vib
IJIJIJ CCC += 0

,  

vib
IJKIJKIJK CCC += 0

   

and 
vib
IJKLIJKLIJKL CCC += 0

                                          (4)                                                                 

 The first part is the strain derivative of the internal energy Uo and is known as static elastic constant and the second part is 

the strain derivative of the vibrational free energy Uvib and is called vibrational elastic constant. The superscript 0 has been 

introduced to emphasize that the static elastic constants correspond to absolute zero temperature. 

 The energy density of the non- deformed crystal is expressed as: 
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Where 

mo

uvR
 is the distance between the v-th ion in the o-th cell and the u-th ion in the m-th cell and Quv is the interaction 

potential between the ions. The indices (v, o) and (u, m) are sometimes dropped when no confusion occurs. One assumes 

that Quv is the sum of the long-range Coulomb and the short-range Börn-Mayer potentials. 
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 Where e is the electric charge, ±  sign apply to like and unlike ions respectively, r0 is the nearest-neighbor distance, η  is 

hardness parameter and A is given by 
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It is assumed that the crystal is deformed homogeneously. When the crystal is deformed homogeneously, the distance 

between (v, o) and (u, m) ion in the deformed and non- deformed states, 
mo
uvR  and

mo
uvr , are related to the Lagrangian strains 

αij as follows 
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Where mo
uviY  is the i-th Cartesian component of the vector mo

uvr  .The definition of the quantity mo
uvZ  is also expressed in 

Equation (8). The internal energy U0 given by equation (5) can be expanded in terms of
mo
uvZ , which will yield quadratic, 

cubic and quartic terms as given below: 
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Where      D = 
RdR

d
                        

 With reference to Equations (3) and (4) and comparison of Equations (1) and (9), one may obtain the static elastic constants 

which are presented in Table 2.1. For a central force model, there are only two independent SOECs, three independent 

TOECs and four independent FOECs at absolute zero temperature. As in the case of the internal energy U0, the vibrational 

free energy is also expanded in terms of strains, the quadratic, cubic and quartic terms are as below: 
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On comparison Equations (1) and (10); one determines the vibrational elastic constants. 

EVALUATION 

The theory for the calculation of different anharmonic properties of the substances possessing FCC crystal structures is given 

in the preceding section. The SOECs, TOECs and FOECs for TeO crystal are evaluated from 50K to an elevated temperature 

(near melting point). Selecting a few data obtained in this study, the values of SOECs, TOECs and FOECs at room 

temperature are given in Tables 1 - 3. The FOPDs of SOECs and TOECs, the SOPDs of SOECs and partial contractions are 

evaluated utilizing data of Tables 1 – 3 and the results are shown in Tables 4 and 5. All these results are presented 

graphically in Figures 1 – 12.  

RESULTS AND DISCUSSIONS 

The SOECs, TOECs and FOECs in 1010 N/m2 at room temperature for TeO are given in Tables 1 - 3. The FOPDs of the 

SOECs and TOECs are presented in Table 4. The SOPDs of the SOECs in 10-9 m2/N and Partial Contractions in 1012 N/m2 



are also shown in Table 5. The temperature variation of anharmonic properties SOECs, TOECs and FOECs, FOPDs of 

SOECs, the SOPDs of SOECs and partial contractions for CoO are represented graphically in Fig 1 – 6. The higher order 

elastic constants are strongly related to other anharmonic properties; such as thermal expansion, thermo elastic constants and 

thermal conductivity. The knowledge of SOECs and TOECs along with other physical properties may provide further critical 

data for testing the machines for non-destructive-testing. These elastic constants are used to compute ultrasonic parameters 

such as ultrasonic velocities, thermal relaxation time etc [12-14]. The variation of elastic constants [15-17] with respect to 

pressure can reveal many important features of the short range forces at high pressure. The ultrasonic studies [18] can 

provide interesting information on the specificities of ion-solvent interaction related to the structure of the solute and the 

reciprocal effects which arises in the solvent and the role of collinear and noncolinear phonons in anharmonic scattering 

processes and in ultrasonic attenuation for different structured solids [19]. 

It may state that all the SOECs are positive in nature.  For TeO crystals the value of C11 and C44 increases and the value of 

C12 decrease as temperature increases and are represented in Figure 1. For Tellurium oxides, the values of C111, C112 and C166 

are negative in nature, while C123, C144 and C456 are positive in nature. The values of C111, C123, C144 and C166 increases, the 

value of C112, decreases as temperature increases, C456 remaining constant. The variation of C111, C112 and C123 are given in 

Figure 2 and the variation of C144, C166 and C456 are given in Figure 3. There are eleven fourth order elastic constants. The 

value of C1111, C1112, C1122, C1144,C1155, C1255, C1266, C4444 and C4455 decreases as temperature increases, and the value of C1123 

increases as temperature increases. The value of C1456 remains constant. The graphical representations for all these are given 

in Figures 4 - 7. The value of dC11/dp and dC12/dp decreases and the value of dC44/dp increases as temperature increases. The 

value of dC111/dp, dC112/dp, dC144/dp, dC166/dp and dC456/dp increases as temperature increases, and the value of dC123/dp 

decrease as temperature increases. The variation of FOPDs of SOECs and TOECs are given in Figures 8 - 10. The value of 

d2C11/dp2 and d2C44/dp2 decreases and d2C12/dp2 increases as temperature increases and are presented in Figure 11. The value 

of all partial contractions W11, W12 and W44decreases as temperature increases but W11 decreases very sharply, which is 

presented in Figure 12. The data obtained in present investigation will be helpful to those workers who are engaged in 

studying the temperature variation of anharmonic properties [20 – 24] of solids at higher temperatures. 
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Table 1. The nearest neighbour distance (r0) and hardness parameter (q) in 10-10 m  

and SOECs in 1010 N/m2 for TeO crystal at room temperature. 

 

 
Table 2. The TOECs in 1010 N/m2 for TeO crystal at room temperature. 

 

  

 
Table 3. The FOECs in 1010 N/m2 for TeO crystal at room temperature. 

 

 

 
Table 4. The FOPDs of SOECs and TOECs for TeO crystal at room temperature. 

 

 

 

Table 5. The SOPDs of  SOECs  in 10-9 m2/N and partial contractions 

 in 1012 N/m2  for TeO crystal at room temperature. 

  

 

 

 

 

 

 

 

 

Melting Point (K) r0 q C11 C12 C44 Ref. 

643 2.7865 0.345 20.711 22.109 22.346 Present 

C111 C112 C123 C144 C166 C456 Ref. 

-234.110 -102.256 33.826 32.482 -88.531 31.679 Present 

C1111 C1112 C1122 C1123 C1144 C1155 C1255 C1266 C1456 C4444 C4455 
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            Figure 1 Temp. Variation of SOECs for TeO   Figure 2 Temp. Variation of TOECs for TeO 

 

 

 

 

 

 

 

 

 

 

            Figure 3 Temp. Variation of TOECs for TeO    Figure 4 Temp. Variation of FOECs for TeO 

 

                    Figure 5. Temp. Variation of FOECs for TeO    Figure 6 Temp. Variation of FOECs for TeO 
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Figure 7 Temp. Variation of FOECs for TeO   Figure 8 Temp. Variation of FOPDs of SOECs for TeO 

 

Figure 9 Temp. Variation of FOPDs of TOECs for TeO   Figure 10 Temp. Variation of FOPDs of TOECs for TeO 

 

 

 

 

 

 

 

 

 

Figure 11 Temp. Variation of SOPDs of SOECs for TeO  Figure 12 Temp. Variation of partial contractions for TeO 
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