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ABSTRACT 

The influence of temperature and the associated gradient on the acoustic attenuation performance of automotive dis-
sipative mufflers is studied in detail by a multidimensional analytical approach based on the mode matching method. 
To account for the variation of temperature within the absorbent material, a segmentation procedure is considered 
with a number of dissipative regions with different but axially uniform temperature. The technique is applied to dissi-
pative reversing chamber mufflers, including the presence of an absorbent material. For validation purposes, the ana-
lytical predictions are compared with numerical calculations based on the finite element method, showing a good 
agreement. While the temperature does not modify the transmission loss of reactive mufflers if the ratio of the fre-
quency to the speed of sound is considered as the abscissa, an influence is found for dissipative configurations, at 
least with the models of impedance and wavenumber currently available in the literature for absorbent materials. In 
addition, the effect of temperature gradients on the transmission loss of some selected configurations is studied. 

INTRODUCTION 

The presence of non-homogeneous properties in ducts and 
mufflers is known to modify their acoustic attenuation per-
formance. These spatial variations can arise, for example, 
from uneven filling processes in dissipative mufflers [1,2], 
non-uniform mean flow fields [3] and temperature gradients 
[4]. In the latter case, several works can be found, where the 
influence of temperature and the associated gradients has 
been modelled and analysed in reactive mufflers [5,6]. It 
appears, however, that temperature effects for dissipative 
mufflers containing an absorbent material remains to be in-
vestigated. The objective of the present work is then to ana-
lyse the sound propagation in dissipative configurations in-
cluding the presence of high temperature and associated gra-
dients. The technique considered focuses on the modelling of 
circular dissipative reversing chamber mufflers [7] by means 
of a three-dimensional closed-form analytical approach based 
on the mode matching method. Finite element predictions are 
also provided for validation purposes. The influence of a 
number of parameters on the acoustic attenuation perform-
ance is then analysed, including the effect of temperature and 
its gradient. 

MATHEMATICAL APPROACH 

Configuration under analysis. Acoustic fields 

Figure 1 shows the geometry of a circular dissipative revers-
ing chamber muffler. As can be seen, a temperature gradient 
exists. The total length L is divided into an entrance region 
(air) of length L0 and N dissipative regions with associated 
values L1, L2, …, LN and homogeneous and isotropic acoustic 

properties, evaluated at temperature iT�  = (Ti + Ti+1)/2, for 

 i = 1, 2, …N. 

The sound propagation is governed by the Helmholtz equa-
tion [8] 

2 2 0P Pκ∇ + =  (1) 

where P is the acoustic pressure, ∇2 the Laplacian operator 
and κ the wavenumber, given by 

0 0 ducts I, II, III

ducts =1, 2,..., i i
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k0 being the wavenumber for the air, ik�  the wavenumber 

associated with the absorbent material located in region i, ω 
the angular frequency, and c0 and ic�  the corresponding 

speeds of sound. For a circular duct, the pressure can be writ-
ten as [9] 
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where A and B are modal amplitudes associated with the 
incident and reflected waves, respectively, (r, φ, z) are cylin-
drical coordinates and the tranversal mode ψmn(r) is given by 
the Bessel function of the first kind and order m, Jm. 
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Figure 1. Geometry of a circular dissipative reversing cham-

ber muffler with temperature gradient. 

The axial wavenumber 

( )22
mn mnk Rκ α=± −  (4) 

is calculated from the root αmn satisfying the rigid wall 
boundary condition J’ m(αmn) = 0. 

The axial particle velocity U is obtained from the momentum 
equation [9] 

j
P

U
z

ρ ω ∂= −
∂

 (5) 

where the density ρ is provided by 

0 ducts I, II, III

ducts =1, 2,..., i i N

ρ
ρ

ρ
= �

 (6) 

The combination of Eqs. (3) and (5) yields 
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Pressure and velocity conditions 

These conditions can be written as follows. For the expansion 
and contraction, located at the left side of the muffler: 

( ) ( )I I I III I, , 0 , , 0 onP r z P r z Sϕ ϕ= = =  (8) 

( ) ( )II II II III II, , 0 , , 0 onP r z P r z Sϕ ϕ= = =  (9) 

( ) ( )I I I III I, , 0 , , 0 onU r z U r z Sϕ ϕ= = =  (10) 

( ) ( )II II II III II, , 0 , , 0 onU r z U r z Sϕ ϕ= = =  (11) 

For the rigid left plate the velocity condition is 

( )III III I II, , 0 0 onU r z S S Sϕ = = − −  (12) 

The pressure and velocity conditions at the perforated plate 
can be expressed as 

( ) ( )III 0 1 1 III, , , , 0 onU r z L U r z Sϕ ϕ= = =  (13) 
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At the interface between dissipative regions i and i + 1, con-
tinuity of acoustic pressure and axial velocity is given by 

( ) ( )+1 1 III, , , , 0 oni i i i iP r z L P r z Sϕ ϕ += = =  (15) 

( ) ( )+1 1 III, , , , 0 oni i i i iU r z L U r z Sϕ ϕ += = =  (16) 

for i = 1, 2, …, N − 1. 

Finally, at the right end plate 

( ) III, , 0 onN N NU r z L Sϕ = =  (17) 

Mode matching method 

The calculation of the modal amplitudes A±, B± for the ducts 
I, II, III, 1, 2, …, N requires the generation of a suitable alge-
braic system of equation. The mode matching technique [9] is 
then applied, considering first the continuity of pressure at 
the inlet, Eq. (8). This is multiplied by ( ) Ij

I, I e t
ts r ϕψ , t = 0, 1, 

2, …, tmax and s = 0, 1, 2, …, smax, and integrated over SI, 
giving 
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The same procedure is applied again to Eq. (8), with 

( ) Ij
I, I e t

ts r ϕψ − , t = 1, 2, …, tmax and s = 0, 1, 2, …, smax, yield-

ing 
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For the pressure at the outlet, Eq. (9) is multiplied by 

( ) IIj
II, II e t

ts r ϕψ , t = 0, 1, 2, …, tmax and s = 0, 1, 2, …, smax, 

and integrated over SII, providing 
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With ( ) IIj
II, II e t

ts r ϕψ −

, t = 1, 2, …, tmax and s = 0, 1, 2, …, 
smax, the expressions derived from Eq. (9) are 
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Eqs. (10), (11) and (12), associated with the velocity condi-
tions at the left side of the muffler, are multiplied by 

( ) j
III, e t

ts r ϕψ , t = 0, 1, 2, …, tmax and s = 0, 1, 2, …, smax, and 

integrated over SI, SII and SIII  − SII − SI, respectively. Then, 
the integrals are added, giving 
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The previous procedure, with ( ) j
III, e t

ts r ϕψ − , t = 1, 2, …, tmax 

and s = 0, 1, 2, …, smax, is applied again to Eqs. (10), (11) 
and (12), which yields 
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The integrals associated with Eqs. (18)-(23) can be evaluated 
analytically considering the properties of the Bessel functions 
in combination with Graf’s addition theorem [9,10]. 

For the perforated plate, and in view of the orthogonality 
properties of the Bessel functions [10], the continuity of ve-
locity expressed by Eq. (13) leads, for t = 0, 1, 2, …, tmax and 
s = 0, 1, 2, …, smax, to 
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and for t = 1, 2, …, tmax and s = 0, 1, 2, …, smax, 
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The pressure-velocity relationship given by Eq. (14) yields, 
for t = 0, 1, 2, …, tmax and s = 0, 1, 2, …, smax, 
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and for t = 1, 2, …, tmax and s = 0, 1, 2, …, smax, 
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At the interface between dissipative regions i and i + 1, for  
i  = 1, 2, …, N − 1, the continuity of pressure expressed by 
Eq. (15) yields, for t = 0, 1, 2, …, tmax and s = 0, 1, 2, …, 
smax, 
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and for t = 1, 2, …, tmax and s = 0, 1, 2, …, smax, 
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Considering again the interface between dissipative regions i 
and i + 1, for i  = 1, 2, …, N − 1, the continuity of velocity 
given by Eq. (16) yields, for t = 0, 1, 2, …, tmax and s = 0, 1, 
2, …, smax, 
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and for t = 1, 2, …, tmax and s = 0, 1, 2, …, smax, 
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Finally, the right end plate condition defined by Eq. (17) 
provides, for t = 0, 1, 2, …, tmax and s = 0, 1, 2, …, smax, 

j2
, , e ts Nk L

N ts N tsB A −+ +
=  (32) 

and for t = 1, 2, …, tmax and s = 0, 1, 2, …, smax, 

j2
, , e ts Nk L

N ts N tsB A −− −
=  (33) 

The system associated with Eqs. (18)-(33) is calculated with 
the truncation mmax = tmax and nmax = smax. Also, an incident 
plane wave is considered as acoustic excitation, I 00 1,A+ = , 

while an anechoic termination is imposed at the outlet,  
PAII = 0 ( II 0,mnA± =  for all m and n). A final system of  

2 (N + 2) (2 tmax + 1) (smax + 1) equations is then solved, pro-
viding the modal amplitudes in all the ducts shown in Figure 
1, 

I II III III 1 1 2 2, ,A , ,A , , A , ,...,A ,N NB B B B B B± ± ± ± ± ± ± ± ± ± . The attenuation, 

calculated via the transmission loss, is given by 

II
II 00

I

20log ,

R
TL B

R
+ =−   

 (34) 

RESULTS AND DISCUSSION 

Reactive mufflers 

First, a circular reactive reversing chamber muffler is consid-
ered for illustration purposes, with the absence of absorbent 
material and perforated plate. The relevant geometrical di-
mensions are detailed in Table 1. The calculations are carried 
out with tmax = smax = 5 modes, which guarantee an accurate 
prediction of the acoustic behaviour [9]. 
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To obtain a good attenuation performance, the inlet is centred 
and the outlet is offset and located on the nodal line of the 
mode (0,1), at a distance δII = 0.6276 RII = 0.05648 m from 
the centre [9]. This “optimum” offset extends the acoustic 
performance beyond the asymmetric higher order modes 
(1,0) and (2,0) (with associated frequencies 1107 Hz and 
1836 Hz, respectively, for 15ºC) and also the axisymmetric 
mode (0,1), with 2304 Hz. 

Table 1. Geometry of reactive muffler 
Geom. RI, RII (m) RIII (m) L0 (m) δI (m) δII (m) 

1 0.02 0.09 0.25 0.0 0.056 

Figure 2 shows the transmission loss curves depicted as a 
function of frequency. The expected shift towards high fre-
quencies is found as the temperature increases. 
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Figure 2. TL of circular reactive reversing chamber muffler, 

geometry 1: ────, T = 15 ºC; ────, T = 300 ºC. 

Figure 3 shows the same attenuations, now plotted as a func-
tion of the normalized frequency f /c0(T ). Both curves appear 
overlapped, as expected. Thus, with a single calculation at a 
known temperature, the acoustic attenuation performance can 
be evaluated for a wide temperature range. 

0 2.35 4.7 7.05 9.4
0

20

40

60

Frequency/c (1/m)

T
L

 (
dB

)

 
Figure 3. TL of circular reactive reversing chamber muffler, 

geometry 1, considering f /c0(T ) as the abscissa: 
 ────, T = 15 ºC; + + + +, T = 300 ºC. 

Influence of temperature in dissipative configura-
tions 

A circular dissipative reversing chamber muffler [7] is now 
considered (see Figure 1 for details), with N = 1 and uniform 
temperature in all the regions involved (I, II, III and 1). For 
the absorbent material (Owens Corning’s texturized fibre 
glass roving), a modified version of the model presented by 
Delany and Bazley [11] is used, where the characteristic im-
pedance Z cρ=� � �  and the wavenumber k cω=� �  are expressed 
as [12] 

6 8
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Z0 = ρ0 c0 being the characteristic impedance of the air and R 
the steady airflow resistivity, with the values R = 4896 rayl/m 
and R = 1000 rayl/m at room temperature for packing densi-
ties of 100 kg/m3 and 42 kg/m3, respectively [7,13]. The co-
efficients ai, i = 1, 2, …, 8, are given in Table 2. 

Table 2. Coefficients for Owens Corning’s fibre 
a1 a2 a3 a4 a5 a6 a7 a8 

0.18897 0.595 0.16 0.577 0.09534 0.754 0.08504 0.732 

The acoustic impedance of the perforated plate is calculated 
by [12] 

( )0
0 0

0

0 006 j 0 425 1p h
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Z k
. k t . d F
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Z Z
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   + + +        =
��

�  (37) 

where dh denotes the hole diameter, tp the thickness, σ the 
porosity and F(σ) accounts for the interaction between perfo-
rations. Here the following expression is considered [12] 

( ) ( ) ( )3 5

1 1 055 0 17 0 035F . . .σ σ σ σ= − + +  (38) 

Table 3 provides the details of the dissipative configuration 
under consideration. The geometry is basically similar to the 
reversing chamber of Table 1, now including a region with 
absorbent material of length L1 = 0.25 m and a perforated 
plate characterised by the values dh = 0.0035 m, tp = 0.001 m 
and σ = 0.25. 

Table 3. Geometry of dissipative muffler 
Geom. RI, RII (m) RIII (m) L0 (m) L1 (m) δI (m) δII (m) 

2 0.02 0.09 0.25 0.25 0.0 0.056 

Figure 4 shows the transmission loss curves depicted as a 
function of frequency. Calculations have been carried out for 
15 ºC and 300 ºC (uniform temperature in all the regions 
involved I, II, III and 1). In the latter case (300 ºC), two situa-
tions are analysed. On one hand, Eqs. (35)-(37) include the 
effect of temperature via the values of Z0, ρ0 and k0 evaluated 
at T = 300 ºC, but neither ai nor R are modified (and the 
value R = 1000 is used). On the other hand, the influence of 
temperature is taken into account for Z0, ρ0 and k0 and it is 
also extended to the resistivity R by the expression [14] 

( ) ( ) ( )
( )0

0

T
R T R T

T

µ
µ

=
 (39) 

where µ is the dynamic viscosity of the air and the tempera-
tures T, T0 are in Kelvin. The approximate value R = 1636 
rayl/m is obtained for T = 300 ºC if the value R = 1000 rayl/m 
is associated with T = 15 ºC. As can be seen in the figure, 
both calculations at T = 300 ºC exhibit the expected shift 
towards high frequencies in comparison with the transmis-
sion loss at room temperature (blue line). Comparing the 
attenuations at T = 300 ºC (red and black lines), this associ-
ated with the adapted resistivity (black line) provides higher 
relative minima and lower relative maxima, as expected [7]. 
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Figure 4 also includes a validation of the analytical results 
(for the configuration with T = 300 ºC and R = 1636 rayl/m), 
obtained by a numerical calculation based on the finite ele-
ment method (FEM), considering 10-noded tetrahedral ele-
ments with an approximate element size of 0.01 m. Analyti-
cal and FEM results are essentially identical, with overlapped 
curves throughout the entire frequency range of interest, thus 
providing a validation for the analytical procedure. 
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Figure 4. TL of circular dissipative reversing chamber muf-

fler, geometry 2: ────, T = 15 ºC, R = 1000 rayl/m; ────, 
T = 300 ºC, R = 1000 rayl/m; ────, T = 300 ºC, R = 1636 

rayl/m; + + + +, T = 300 ºC, R = 1636 rayl/m, FEM. 

Figure 5 depicts the transmission loss shown in Figure 4, now 
plotted as a function of the normalized frequency f /c0(T ). 
The behaviour observed in Figure 3 for a reactive configura-
tion is not present for the dissipative configurations, since the 
overlapping does not longer hold, mainly in the low and mid 
frequency range. Therefore, a specific calculation is required 
for each temperature, at least under the hypotheses estab-
lished in the current investigation and with the models of 
impedance and wavenumber currently available in the litera-
ture for the absorbent material. More experimentation is re-
quired to provide further information related to possible 
variations of coefficients ai as the temperature increases. 
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Figure 5. TL of circular dissipative reversing chamber muf-
fler, geometry 2, considering f /c0(T ) as the abscissa: ────, 

T = 15 ºC, R = 1000 rayl/m; ────, T = 300 ºC, R = 1000 
rayl/m; ────, T = 300 ºC, R = 1636 rayl/m. 

Temperature gradients 

Tables 4 and 5 show the details for the consideration of tem-
perature gradients within the absorbent material. The left side 
of the absorbent material is at temperature T1 = 300 ºC, while 
the value associated with the right side is TN+1 = 100 ºC. This 
temperature gradient, higher than the values found in auto-
motive applications, is used for illustration purposes. For 
geometries 3 and 4, the number of segments with uniform 
temperature is N = 2 and N = 3, respectively. For comparison, 
geometry 2 (see Tables 3 and 5) is also included in the results 
shown in Figure 6 for two cases: (1) with uniform tempera-
ture (300 ºC) in the absorbent material and (2) with a single 
segment at temperature 1T�  = 200 ºC. 

 

In all the cases, uniform temperature is assumed for regions I, 
II and III (air), with an associated value T = 300 ºC. In each 
segment i, the absorbent material is characterised by Eqs. 
(35) and (36), with the values Z0, ρ0, k0 and R at temperature 

iT� , the resistivity being calculated via Eq. (39). The perfo-

rated plate is not included in this section, that is, 0pZ =� . 

Table 4. Geometry of dissipative mufflers 
Geom. RI, RII (m) RIII (m) L0 (m) L1 (m) L2 (m) L3 (m) 

3 0.02 0.09 0.25 0.25/2 0.25/2 0.0 
4 0.02 0.09 0.25 0.25/3 0.25/3 0.25/3 

Table 5. Temperatures associated with the regions (ºC) 
Geom. 

 

T1 
 

T2 
 

T3 
 

T4 1T�  
2T�  

3T�  

2 300 100 -- -- 200 -- -- 
3 300 200 100 -- 250 150 -- 
4 300 233.3 166.7 100 266.7 200 133.3 

As can be observed in Figure 6, the presence of a temperature 
gradient slightly modifies the acoustic performance in com-
parison with the case of uniform temperature. The effect of 
this gradient, however, is accurately predicted with a single 
segment, N = 1, since the use of N = 2 and N = 3 produces 
nearly overlapped curves, with only very slight variations in 
the attenuation. Therefore, if the temperature field is not uni-
form within the dissipative region, the use of an average tem-
perature is accurate enough for calculating the acoustic at-
tenuation performance, at least for the values and spatial 
distribution assumed in the current work. 
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Figure 6. TL of circular dissipative reversing chamber muf-
fler, TI = TII = TIII  = 300 ºC: + + + +, geometry 2, uniform 

temperature; ────, geometry 2, N = 1, 1T�  = 200 ºC; ────, 

geometry 3, N = 2, 1T�  = 250 ºC, 2T�  = 150 ºC; ────, geome-

try 4, N = 3, 1T�  = 266.7 ºC, 2T�  = 200 ºC, 3T�  = 133.3 ºC . 

CONCLUSIONS 

A multidimensional analytical approach based on the mode 
matching method has been presented for the acoustic analysis 
of circular dissipative reversing chamber mufflers with tem-
perature gradients. To account for the variation of tempera-
ture within the absorbent material, a segmentation procedure 
has been considered with a number of dissipative regions 
with different but axially uniform temperature. The results 
provided by the analytical technique have been compared 
with numerical calculations based on the finite element 
method, showing a good agreement. 
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For reactive mufflers, the acoustic attenuation is not influ-
enced by the temperature if a representation as a function of 
the normalized frequency f /c0(T ) is carried out, with all the 
transmission loss curves being overlapped, as expected. 
Therefore, a single calculation at a known temperature allows 
the calculation of the acoustic attenuation performance for a 
wide temperature range. 

The previous comments cannot be applied, in general, to 
dissipative mufflers, at least with the models of impedance 
and wavenumber currently available in the literature for ab-
sorbent materials. In this case, and with the hypotheses estab-
lished in the current investigation, a specific calculation is 
required for each temperature. Further experimentation is 
needed to provide additional information related to the influ-
ence of temperature in the properties of absorbent materials 
used in the exhaust system of internal combustion engines. 

Concerning the influence of temperature gradients, these 
have been shown to slightly modify the attenuation in com-
parison with the case of uniform temperature field for the 
configuration under analysis (circular dissipative reversing 
chamber mufflers) and for the gradient values assumed 
within the absorbent material. To provide an accurate predic-
tion of the gradient influence, a single segment with the aver-
age temperature between both sides of the absorbent material 
has been found to be enough, even for the high value as-
sumed for the temperature gradient. 
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