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ABSTRACT 

The meaning of the experimentally measured nonlinear parameters of a medium is discussed. The difference in mean-
ing between the local nonlinearity, which is measured in the vicinity of a single defect and depends on the size of the 
region of averaging, and the effective volume nonlinearity of the medium containing numerous defects is empha-
sized. The local nonlinearity arising at the tip of a crack is calculated; this nonlinearity decreases with an increase in 
the region of second harmonic generation. The volume nonlinearity is calculated for a solid containing spherical cavi-
ties. The volume nonlinearity is also calculated for a medium containing infinitely thin cracks in the form of circular 
disks, which assume the shape of ellipsoids in the course of the crack opening. 

One of the interesting and perspective trends if modern 
acoustics is research of nonlinear processes caused with pres-
ence of mesoscale inhomogenuities and material defect struc-
ture. Presence of mesoscale inhomogenuities in solids leads 
to appearance of some new physical properties not presented 
in homogeneous solids. The example for that are such quan-
tum phenomena as negative magnetoresistance, quantum 
galvanomagnetic effect, etc. The experiments conducted by 
number of authors have shown the defects of supramolecular 
structure of solids give rise to the so-called structure nonlin-
earity, which has local behavior and may exceed the physical 
nonlinearities due two lattice anharmonicity by two or three 
orders of magnitude [1-5]. However, there still is no univer-
sally accepted definition of the quantitative characteristics of 
structure nonlinearity, such as, e.g., the nonlinear acoustic 
parameter is for traveling waves [6, 7]. 

Experimental data allow estimating nonlinearity of only defi-
nite mediums or objects. Measurements of high local nonlin-
earity in the vicinity of a single crack are described in [8, 9]. 
In [9] estimation of spatial distribution of nonlinear parame-
ters in thin cylindrical plate with defects has been made bas-
ing on measured Lamb wave magnitudes on one of the reso-
nant frequencies and its harmonics (Figure 1). 

Anomalously large nonlinear acoustic parameters were found 
in several local regions, including the artificial defect region. 
These results of acoustic measurements and the results of the 
X-ray diffraction analysis allow for the conclusion that the 
spatial distribution of the nonlinear parameter is identical to 
the distribution of defects in the tested sample. It is important 
to note that the spatial distribution of the nonlinear acoustic 
parameter makes it possible to obtain more significant infor-
mation on defects in a tested material proceeding, than visu-
alization of the shape of acoustic harmonic amplitudes. Nev-
ertheless, the quantitative values of obtained nonlinear pa-
rameters are based on experimental data and only allow com-
paring the parameters value in the investigated sample and 

give no information if it is the same in case an object with the 
same defects would have another shape. 

 
Figure 1. Spatial Distribution of the (a) quadratic and (b) 

cubic nonlinearity parameters calculated from the vibration’s 
shape of the sample with defects for the fundamental fre-

quency of 2.5 kHz [9]. 

Thus, numerous experiments only reveal the tendency and 
allow no quantitative comparison of the results. At the same 
time, understanding the meaning of the results of measure-
ments may provide the basis for interpreting quantitative 
experimental data, which are primarily necessary for nonlin-
ear acoustic diagnostics. Below, we state our views on how to 
solve this problem. 
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Descriptions of supramolecular objects characterized by 
nonlinear behavior can be found in many papers and reviews 
(see, e.g., [1-5, 10]). For definiteness, we consider a solid 
medium containing defects in the form of cracks. It is well 
known that the sharp edge of a crack is a region of high stress 
concentration [11]. If we assume that, away from the crack, 
the stress is τ , near the edge of the crack it is estimated as 
[12] 

( ) 0/2,1 rlGG =+=∗ ττ . (1) 

where  is the length of the crack and r0 is the curvature 
radius of its edge. For a crack with a length of 1 mm and a 
curvature radius of 1 nm (several interatomic distances), the 
amplification coefficient is 3 . This means that relatively 

weak acoustic vibrations 

l2

10~G

( )tσ can be amplified in the vicin-
ity of the crack to such an extent that nonlinear effects de-
scribed by the function ( )t∗τ (and primarily represented by 
higher harmonic generation) become noticeable. Since, with 
distance from the crack tip, the stress decreases from ( )t∗τ  

to ( )tτ  corresponding to a homogeneous medium, i.e., the 
coefficient G decreases, the manifestations of nonlinear prop-
erties should also decrease. Hence, in the presence of a single 
crack, the quantitative characteristic of nonlinearity should 
depend on the coordinates. However, local measurements on 
the nanometric scale can only be performed on the surface by 
using tunnel or atomic-force microscopes. In the volume of 
the medium where the crack is located, such measurements 
present considerable difficulties. Therefore, it is necessary to 
understand what kind of macroscopic manifestations observ-
able in ultrasonic experiments can be caused by the nonlin-
earity that is generated by nano- and micro-inhomogeneities 
of the medium. 

Let the dependence of stress τ  on strain e be described by 
the function 
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which, in the region of small values of 0ee  , has a linear 
segment corresponding to the Hooke law. For actual media, 
one usually has to take into account hereditary properties, 
relaxation, and hysteresis [1, 2], but, for simplicity, we as-
sume that dependence (2) is algebraic. 

The constants 0τ  and  correspond to the characteristic 
values of stress and strain in dependence (2) and serve for 
normalization. From Eq. (2), we obtain 
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Assuming that, away from the crack, the stress is small and 
lies on the linear part of curve (2), we arrive at the formula 
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Where E is Young’s modulus. Formula (3) gives a nonlinear 
dependence of the strain  near the crack on e the strain 
away from the crack. 

∗e

To perform calculations and to obtain some estimates, we 
specify dependence (2) by the function 

1)exp()(,)1ln()( 1 −=Φ+=Φ − xxxx , 

which approximately describes the tendencies in the behavior 
of nonlinear properties. In this case, Eq. (3) takes the form 
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Let the strain caused by an acoustic wave away from the 
crack be a harmonic function of time:  

)cos(1 tAe ω= .   

Then, Eq. (4) can be expanded in harmonics: 
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Here, In are modified Bessel functions. The second harmonic 
amplitude, which is most often measured in the experiments, 
is 
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For a weak nonlinearity, when the argument of the Bessel 
function in Eq. (5) is small, the following approximate for-
mula is valid: 
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It is possible to determine the nonlinear parameter 0ε  of 
local nonlinearity by considering dependence (6) away from 
the crack, i.e., in the region where G=0. In this case, 
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The stress concentration coefficient depends on the coordi-
nates. We assume that the axis of a cylindrical coordinate 
system coincides with the crack front line and ignore the 
dependence on the polar angle in our qualitative analysis. 
Then [12], we have 

rlG /2= ,   (8) 
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where  is the radial coordinate. Since the harmonic is 
measured by a sensor that has a finite size, the measurement 
data represent averaged quantities: 
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Let us calculate the average denoted by the overbar in Eq. (9) 
and assume that the averaging is performed over a certain 
volume with the characteristic size R: 
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Substituting Eq. (10) in Eq. (9), we obtain the expression for 
the nonlinear parameter defined by Eq. (7): 
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One can see that the magnitude of nonlinearity depends on 
the size of the region of averaging that is performed in meas-
uring the second harmonic amplitude. If this size is minimal, 
i.e., , from Eq. (11) we obtain the maximal value 0rR =

Away from the crack tip, at , the magnitude of the 
nonlinear parameter given by Eq. (11) decreases with in-
creasing distance R and tends to 

0rR >>

0ε given by Eq. (7).  

Another situation takes place when the sample contains many 
cracks and it is necessary to estimate their total contribution 
to the increase in the nonlinearity of the medium. Evidently, 
in this case, it is necessary to determine the second harmonic 
amplitude generated by all of the cracks in a unit volume of 
the medium. In other words, it is necessary to integrate Eq. 
(9) over a volume that is small compared to the wavelength 
and divide the integral by the value of this volume: 
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When no cracks are present and G=0, from Eq. (12) we ob-
tain previous expression (7) for the nonlinear parameter of 
the homogeneous medium. In the presence of an ensemble of 
cracks, we have 
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Here, n is the number of cracks per unit volume and the inte-
gration is performed over the spatial region where the stress 
is caused by a single crack. We assume that the number of 
cracks is not too large and that the cracks little affect each 
other.  

The proposed approach encounters a difficulty related to the 
fact that dependence (8) of the stress concentration coeffi-
cient on the coordinates is valid only in the vicinity of the 
crack. Substitution of such dependences in Eq. (13) yields 

diverging integrals. Still, there is one case for which the 
aforementioned computational scheme can be successfully 
implemented. This case corresponds to spherical cavities. 
Evidently, the stress concentration near a spherical cavity is 
much smaller than the stress concentration near a crack with 
a sharp edge. However, the result obtained for the spheres 
illustrates the idea and may serve as the basis for qualitative 
generalizations.  

Thus, our subsequent calculations are based on the solution to 
the problem of stresses arising in a solid that contains a 
spherical cavity (Figure 2). We assume that, away from the 

cavity, the stress is , while the total stress in the presence 

of the cavity is 

0
ikτ

ikτ . The vector n
r

 is directed from the cen-

ter of the sphere to the point of observation,  is the radius 

of the sphere, and 
0r

σ  is the Poisson’s ratio of the surround-
ing medium. The solution obtained to this problem by 
R. Southwell and J. Goodier is rather cumbersome (it is par-
tially represented in [13, 14]): 
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Let the medium be subjected to uniform deformation, as is 
shown in Figure 2, and let only one strain tensor component 

 be nonzero away from the cavity. Then, setting 
0
zzτ

θcosand, === znzki , at the surface of the sphere 

0rr = we obtain 
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One can see that the stress at the sphere surface is zero along 
the direction of force application, i.e., along the z-axis, which 
corresponds to 0=θ . At the same time, the stress is maxi-
mal in the transverse direction: at 2/πθ = , it is 
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Formula (16) coincides with the result given in [14] (see the 
last formula of problem 12, item 7 of [14]). Stress distribu-
tion (15) in the azimuth angle is shown in Figure 2, where the 
higher stress region corresponds to the lighter area of the 
contour pattern. According to Eq. (16), for the spherical cav-
ity, the stress amplification is relatively small; for example, 
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for copper ( 35.0=σ ) . This value is much 
smaller than that for a crack with a sharp edge (Eq. (1)). 

1.2/ ≈zzzz ττ 0

For arbitrary distances from the center of the sphere, from 
solution (14), we obtain 
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Calculation of the volume integral 
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of the function G given by Eq. (18) yields zero. Thus, only 
the integral of type (19) of the function G2 contributes to the 
increase in nonlinearity (13). Calculations yield the following 
result: 
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Figure 2. (a) Cavity and the related spherical coordinates. (b) 

The contour pattern of stress distribution in the YZ plane. 
The sampling interval is 0.074; lighter areas represent the 

distribution of increased stress at the sphere surface. (c) The 
3D pattern of stress distribution in the YZ plane. 

 

Here, 3/4 3
00 rπν =  is the volume of one spherical cav-

ity and 0νn  is the portion occupied by spherical cavities in 
the volume of the medium. For example, for copper, the coef-

ficient in the term proportional to 0νn  is about 0.6, which 
testifies to a small increase in the nonlinearity of the medium 
with spherical cavities, as compared to the homogeneous 
medium. 

We also know another, less general, result of the theory of 
elasticity, which can be used to calculate the acoustic nonlin-
earity in the case of cracks with sharp edges. In [15], the 
problem of stress distribution around an infinitely thin disk-
shaped crack of radius a was solved. In this problem, the 
origin of cylindrical coordinates is at the center of the disk. 
The z-axis is normal to the disk plane. The solution is ob-
tained for the tensor component zzτ  and for the case when 

the stress away from the crack has the component ; i.e., 
the tensile force acts along the z-axis. Under tension, the 
crack opens and its axial section takes the form of an ellipse 
with its major axis in the direction of the r-coordinate. Ac-
cording to [15], for , the stress amplification coeffi-
cient G (see Eq. (17)) in the vicinity of this crack is expressed 
as 
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Here, J0 is the zero-order Bessel function. 

Integral (21) can be calculated: 
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In the plane z=0 (for 1>β ), in which the crack lies, from 

solution (22) we obtain the simple expression given in [14]: 
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According to this formula, at the point 0, == zar , the 
stress goes to infinity. Setting  (r0 is the minimal 
curvature radius of the crack edge) in Eq. (24), we obtain the 
formula for the maximal stress amplification near the edge: 

0rar +=
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This formula coincides with general formula (1) correct to 
notations and numerical factor. 

The constant-level lines corresponding to constant values of 

stress amplification G
zz

zz +=10τ
τ

 were calculated using 

solution (22)–(24); these lines are shown in Figure 3.  

 
Figure 3. Stress amplification around an infinitely thin 

disk_shaped crack of radius . (a) The contour pattern of stress 
distribution in the YZ plane. The sampling interval is 0.086. 

(b) The 3D pattern of stress distribution in the YZ plane. 

Now, let us calculate the acoustic nonlinearity by using Eq. 
(13). First, we calculate the volume integral of G using solu-
tion (21). We note that the integral over the radial cylindrical 
coordinate diverges at the upper limit (at infinity). Therefore, 
to calculate this integral, it is necessary to change to the 
spherical coordinate system, where the exponential factor in 
Eq. (21) eliminates the aforementioned divergence. Calculat-
ing the integral over the polar angle, we obtain that the vol-
ume integral of G is zero, as in the case of a spherical cavity 
(Eqs. (18), (19)). Hence, to calculate the acoustic nonlinear-
ity, it is necessary to perform integration over the volume for 
the function G2: 
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In Eq. (26), the integrand involves the product of two Bessel 
functions and, therefore, the change to the spherical coordi-
nate system is not necessary. Using the formulas 
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we calculate the volume integral of Eq. (26) and obtain a 
simple expression for the effective nonlinear parameter: 

32

0 3
1011 andVGn +=+= ∫ε

ε
. (27) 

Comparing Eq. (27) with Eq. (20) derived earlier, we see 
that, in the presence of an ensemble of disk shaped cracks 
(the disks are parallel to each other), the amplification of 
nonlinearity does not depend on Poisson’s ratio and linear 
elastic moduli of the medium. In addition, expression (27) 
does not depend on the relative volume occupied by the 
cracks in the solid. Hence, in the case described by Eq. (27), 
the increase in nonlinearity in the presence of cracks can be 
greater than the nonlinearity increase in the presence of 
spherical cavities (i.e., in the case described byEq. (20)). 

In closing, we note that solutions (14) and (21) to the prob-
lems of the theory of elasticity, which were used by us for 
calculating the nonlinear acoustic parameter of the medium, 
are in fact unique results obtained by the classics of mechan-
ics. One can hardly expect that, in the future, it will be possi-
ble to obtain exact results for cracks of some other types. 
Therefore, the approach developed in this paper can be 
mainly used for approximate calculations to obtain qualita-
tive estimates of the acoustic nonlinearity of solid media with 
defects. 
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