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ABSTRACT 

Vibroacoustic coupling phenomena occur in a variety of different situations and are generally studied with the goal of 

controlling noise. However, we also expect that they are applied to new technologies based on energy stored in each 

system. In this study, we investigate vibroacoustic coupling between structural vibrations and the internal sound 

fields of thin structures. We consider a cylindrical structure with thin plates at both ends and investigate the coupling 

between the plate vibrations and the internal sound field when external periodic forces are applied to respective end 

plates. This coupling is theoretically and experimentally investigated by considering the behavior of the both plates 

and the acoustic characteristics of the internal sound field with variations in the periodic forces. In the analytical 

model, the end plates are supported by springs in circumference to make those support conditions close to actual con-

ditions in the experiment due to adjustments of spring stiffnesses, and then the cylinder is assumed to be structurally 

and acoustically rigid at the lateral wall between the structure and the sound field to simplify this problem. The 

acoustic characteristics are evaluated by the sound pressure level, which is maximized with changing the phase dif-

ference between the both plate vibrations, when the phase difference and relative amplitude between both periodic 

forces are varied. The behavior of the plate vibration is studied from changing the phase difference with the cylinder 

length. In comparison between characteristics of the both systems, it is clarified that vibroacoustic coupling is effec-

tive in increasing acoustic energy and the phase difference depends greatly on the acoustic mode, which contributes 

the formation of the sound field. 

 

INTRODUCTION 

 When structures constructed of plural members vibrate due 

to an external excitation and so on, neighboring members 

almost invariably interact with each other, having respective 

natural modes. Such interactions are caused by energy being 

transferred between vibration systems. Transfer of vibrational 

energy occurs not only between vibration systems but also 

between vibration and acoustic systems; this latter phenome-

non is known as vibroacoustic coupling. If a thin structure 

that encloses a space is excited by an external periodic force, 

vibroacoustic coupling readily occurs between the structural 

vibrations and the internal sound field. Pan and Bies investi-

gated a coupled panelcavity system consisting of a rectan-

gular box with slightly absorbing walls and a simply sup-

ported panel as an architectural acoustic problem. They stud-

ied the effect of the panel characteristics on the decay behav-

ior of a sound field in the cavity both theoretically and ex-

perimentally [1,2]. They concluded that the modal decay 

times of the system were related to the coupling coefficients, 

the resonance frequency distribution, the panel modal density, 

the panel damping and the radiation loss from the panel to the 

external space. In an attempt to control noise in an airplane, 

Cheng and Nicolas investigated coupling between the sound 

field in an aircraft cabin and the vibrations of the rear pres-

sure bulkhead [3,4]. They adopted a cylindrical structure as 

the analytical model, in which the rear pressure bulkhead at 

one end of the cylinder was assumed to be a circular plate. 

This analytical model was examined under a variety of condi-

tions; the plate was supported at its edges by springs, the 

stiffnesses of which could be adjusted to simulate various 

support conditions. Their investigations clarified the influ-

ence of the support conditions on the sound pressure of an 

internal sound field coupled with the vibration of the end 

plate. They also found a frequency range that generates in-

tense sound pressure level.  

The results described above are regarded as being important 

for noise control so that results obtained will be useful for 

suppressing coupling. On the other hand, such a wave motion 

into enclosures is also applied to unique technologies, for 

example a Variable Resonance Induction System (VRIS) is 

utilized to obtain high torque in all engine speeds [5]. In the 

VRIS, intake manifolds, which are mounted in each bank of a 

V-type engine, are connected by resonance tubes. Pressure 

waves at each cylinder are superposed on each other and 

cause the resonance corresponding to the dimensions of the 

manifolds and tubes. The resonance generates high torque 

characteristics around the resonance frequency, making the 
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pressure in the vicinities of the intake valves and improving 

the induction process. Since the resonance frequency depends 

on the dimension of the sound field, the tube’s length is var-

ied according to the engine speed. Although the VRIS func-

tions based on the resonance, better improvement is antici-

pated in induction efficiency on the present VRIS if coupling 

with the vibrations of the manifolds is taken into considera-

tion. 

In the present investigation, we adopt an analytical model 

similar to the above-mentioned cylindrical structure with 

plates at both ends, which are excited by point forces. The 

dimensions of both the plate thickness and the cylinder length 

are varied because vibroacoustic coupling was estimated by 

assuming that the plate and cavity dimensions and the phase 

difference between the vibrations of the two plates were fixed 

in almost all related investigations. Vibroacoustic coupling is 

theoretically and experimentally investigated in terms of the 

vibration and acoustic characteristics. In particular, the phase 

difference is considered to be a significant characteristic of 

the vibrations when the sound pressure level and the flexural 

displacements of the plates are maximized at each cylinder 

length. 

ANALYTICAL METHOD 

Equation of plate motion 

The analytical model considered herein consists of a cavity 

with two circular end plates, as shown in Figure 1. The plates 

are supported by translational and rotational springs distrib-

uted at constant intervals and the support conditions are de-

termined by their respective spring stiffnesses T1 and T2 and 

R1 and R2, where the suffixes 1 and 2 indicate plates 1 and 2, 

respectively. The plates having a Young’s modulus E and a 

Poisson’s ratio  change dimensions (i.e., the radius a and the 

thickness h). The sound field can be assumed to be cylindri-

cal with the same radius as that of the plates and changes the 

length. The boundary conditions are considered to be struc-

turally and acoustically rigid at the lateral wall between the 

structure and the sound field. The coordinates used are the 

radius r, the angle  between the planes of the plates and the 

cross-sectional plane of the cavity, and the distance z along 

the cylinder axis. The periodic point forces F1 and F2 are 

applied to the respective plates at r1 = r2 and 1 = 2 = 0deg. 

The flexural displacements w1 and w2 on the plates 1 and 2 

are expressed by substituting Eq. (2) below for the plate 

mode shape into Eq. (1) below, and they are expanded over 

two sets of suitable trial functions: 
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Figure 1. Configuration of the analytical model 

where n, m and s are respectively the circumferential order, 

the radial order and the symmetry index with respect to the 

plate vibration. B s
1nm and B s

2nm are the coefficients to be 

determined,  is the angular frequency of the periodic point 

force on the plate and t is the elapsed time. 1 and2 are the 

phases of the respective plate vibrations; in this analysis, 1 is 

set to 0 deg and 2 varies in the range 0 to 180 deg. The equa-

tions of plate motion are obtained by finding the extremum of 

Hamilton’s function in terms of Eq. (1), as follows [3,4]: 
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where Ks
1 n m m ' , K s

2 n m m '  and M s
1 n m m ' , M s

2 n m m '  are 

components of the symmetrical stiffness and mass matrices 

respectively, because the index m’ is the radial order (m = 

m’). ηp is the structural damping factor of the plate and Fsn is 

a coefficient that is determined by the indices n and s [3]. 

The first terms on the right-hand sides of Eqs. (3) and (4) 

give the point force and the second terms give the acoustic 

excitation. that also functions as the coupling term between 

each plate vibration and the sound field. These point force 

and acoustic excitation terms are, respectively, 
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Here, δ is the delta function that represents a point force on 

the plate, A1 and A2 are the areas of both plates and Pc is the 

sound pressure at an arbitrary position on the boundary sur-

face with the plates. 

Coupling equation between plate vibrations and 
internal sound field 

For simplicity, we assume that the cavity walls are rigid, so 

that the sound field in the cavity is governed by the wave 

equation consisting of the eigenfunction YN and the eigen-

value kN corresponding to a cavity mode of order N: 

022  NNN YkY                                                                  (7) 

If u is the unit normal to the boundary surface S (positive 

toward the outside), the boundary condition satisfies ∂YN/∂u 

when S is rigid. However, if S is not rigid but has a specific 

acoustic admittance that may vary from point to point on the 

surface, we choose to use a Green’s function G to obtain a set 

of solutions for a non-uniform cavity with non-rigid walls, 

for a frequency /2 = Kc/2 where K is an eigenvalue of 

the non-uniform cavity and c is the speed of sound in the 

cavity. The equation for G is thus given by 
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The right-hand side is a delta function, where the measure-

ment point is p = (r,z) if the source point is p0 = (r0,z0). 

Expressing G with respect to YN of Eq. (7) that satisfies the 

same boundary conditions, we find that 
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The complex dimensionless factor MN is the mean value of 

YN
2 averaged over the cavity volume Vc and NM is the 

Kronecker delta. Because there is no source and ∂G/∂u = 0 

on S, the spatial factor Pc(p) of the sound pressure within and 

on the surface bounding the medium can be obtained from 

just one of the surface integral terms as follows: 
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where the zero subscripts indicate differentiation and integra-

tion with respect to the (r0,z0) coordinates. A detailed 

procedure for obtaining these equations is given in Ref. 6. Pc 

can also be expressed as [3,4] 
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where c is the fluid density in the cavity and PN is the pres-

sure coefficient, which is to be determined. 

In this investigation, the acoustic modal shape Ys
npq and an-

gular resonance frequency npq in the cavity (where the in-

dexes n, p and q indicate the circumferential, radial and lon-

gitudinal orders, respectively) are defined as 
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where Jn is the nth-order Bessel function and λnp is the pth 

solution of an eigenvalue function for a circular sound field 

having modes (n,p) divided by the radius. The boundary con-

ditions between the plate vibrations and the sound field on 

the respective plate surfaces are found by assuming continu-

ity of velocities on the plates:  
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where  Pc/  u is 0 on the lateral wall of the cylinder since 

the wall remains rigid. Applying Eq. (15) to Eq. (11), since 

the analytical mode has two boundary surfaces, Pc becomes 
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On the other hand, by substituting acoustic modes of three 

orders, n, p and q, instead of the order N of the cavity mode 

into Eq. (12), Pc can also be expressed as 
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The equation that relates Eqs. (16) and (17) is obtained by 

applying the Green’s function of Eq. (9) to an arbitrary 

acoustic mode (n,p,q). 
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where A is the total surface area of the plates. Substituting Eq. 

(1) for w1 and w2 and considering a modal damping factor ηc, 

Eq. (18) can be rewritten as 
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where I1 and I2 are the spatial coupling coefficients. More-

over, substituting Eq. (17) for Pc and applying I1 and I2 to the 

integrals in Eq. (6), the acoustic excitation terms Ps
1nm and 

Ps
2nm can be expressed with respect to an arbitrary vibration 

mode (n,m) as 
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Finally, replacing Ps
npq in Eq. (21) with those in Eq. (19), and 

then inserting them in Eqs. (3) and (4), we can complete the 

coupling equations, whose right-hand sides are as follows: 
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On the right sides, the second term of Eq. (22) and Eq. (23) 

show the acoustic excitation for the plates 1 and 2, respec-

tively. The acoustic excitation terms have both I1 and I2 since 

the acoustic mode of the sound field is coupled to the vibra-

tion modes of the respective plates. Before the actual calcula-

tion, the natural frequency of the plate is always considered 

in viewpoint of convergence for the plate vibration mode 

(n,m). In this case, the natural frequency is solved as the ei-

genvalue of Eq. (3) or (4), whose the right side is set to be 0 

due to the assumption of the free vibration. The actual calcu-

lation is performed by taking 15 terms for n, while m is set to 

be greater than 12 to ensure convergence to the natural fre-

quency and to the modal shape of the plate vibration. Em-

ploying the same truncation for p as for m, the order accounts 

for acoustic modes greater than q = 15, so that the resonance 

frequency containing. q includes the excitation frequency. 

The plate and cavity loss factors are assumed to be constant: 

ηp = ηc = 0.01 [3,4]. Since Bs
1nm'  and Bs

2nm'  can be obtained 

from the simultaneous equations in Eqs. (3) and (4), which 

respectively have Eqs. (22) and (23) as excitation terms, the 

behavior of the plate vibrations and the sound field under 

vibroacoustic coupling can be determined. 
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Figure 2. Changes in Lpv corresponding to max with L when  

    one end plate and both end plates of h = 3 mm are  

    excited, respectively 

 

Figure 3. Variation in Lpv with  when h = 3 mm, FR changes  
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The sound pressure Pc is obtained from Eq. (17), for which 

Ps
npq is substituted, induced from Eq. (19) employing Bs

1nm'  

and Bs
2nm'  determined above. The square sound pressure Pv

2 

averaged over the entire sound field is defined and the sound 

pressure level Lpv expressed logarithmically relative to P0 = 

2×105 Pa as follows: 
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where Pc* is the conjugate component. 

THEORETICAL RESULTS AND DISCUSSION 

In this investigation, the plates are assumed to be aluminum 

having a Young’s modulus E of 71 GPa and a Poisson’s ratio 

 of 0.33 and have a radius a of 150 mm and a thickness h of 

2, 3 and 4 mm. The cylindrical sound field having the same 

radius as that of the plates changes the length in the range 

100 to 2000 mm. The support conditions of the plates, which 

have a flexural rigidity D [= Eh3/{12(12)}], are expressed 

by the non-dimensional stiffness parameters Tn (= T1a
3/D = 

T2a
3/D) and Rn (= R1a/D = R2a/D); in the present study, these 

are identical for both plates. Rn and Tn is 108, and hence the 

support condition is regarded as a clamped support. The natu-

ral frequency of the plate corresponding to the (n,m) mode is 

expressed as fnm and is regarded as the excitation frequency. 

The only (0,0) mode is employed to simplify this vibroacous-

tic problem. The point forces F1 and F2 are applied to the 

respective plates at r1/a = r2/a = 0.4 and their magnitude is 

represented by the excitation ratio FR = F2/F1 due to varying 

F2 when F1 is set to 1 N.The resonance frequency of the cy-

lindrical sound field is represented by fnpq (i.e., the natural 

frequency corresponding to the (n,p,q) mode). 

Since acoustic characteristics of the sound field depend on 

not only FR but also the respective phases 1and 2, these 

phases are related by the phase difference :  

12                                                                             (25) 

Figure 2 shows changes in the sound pressure level Lpv aver-

aged over the entire sound field when the plate of a = 150 

mm and h = 3mm is excited by the natural frequency f00  = 

340 Hz and the cylinder length L is varied between 100 and 

2000 mm. The maximized Lpv is chosen when  is varied 

between 0 and 180 deg and is contracted between two ways 

of the excitation, in which cases exciting one plate and both 

plates are taken. Lpv varies substantially and exhibits peaks in 

the vicinities of L = 510, 1010 and 1520 mm in both cases. 

Lpv at the excitations of both plates is larger than that at the 

excitation of one plate in the entire range of L. 

 

 

 

 

 

 

 

 

 

The acoustic mode (0,0,q) causes Lpv to have peaks at L = 

510, 1010 and 1520 mm, having similar modal shapes to the 

(0,0) mode of the plate vibrations. These peaks occur at inte-

ger q starting from q = 1 with increasing L.  

Figures 3(a) and (b) show the variations in Lpv when  ranges 

from 0 to 180 deg; the variations are contrasted in changing 

FR and the peaks of Lpv, respectively. In Figure 3(a), the 

variation in Lpv is indicated with changing FR at the principal 

peak that appeared at L = 510 mm in Figure 2. Lpv increases 

with  and reaches the maximum, which is plotted with cir-

cles and occurs in the vicinity of 90 deg when FR = 0. Here, 

the values of  at which Lpv is a maximum are denoted by 

max. Although Lpv decreases with increasing  beyond max 

and changes similarly despite changing FR, max shifts to a 

lower  and Lpv increases gradually with increasing FR. Fig-

ure 3(b) shows the variations in Lpv when  not only about the 

principal peak but also about the second and third peaks that 

appear L = 1010 and 1520 mm, respectively, when FR = 1. 

max shifts to a lager  than 90 deg at the second peak, shift-

ing to a smaller  than 90 deg at the third peak as well as at 

the principal peak. As described above, since the order of Lpv 

peaks is identical to the longitudinal order q of the (0,0,q) 

mode, so that even and odd q makes max increase and de-

crease, respectively. In general resonance tube having both 

closed ends, because the sound pressure at the ends has the 

opposite signs each other at odd orders, having the same 

signs each other at even orders, such a shift of max contrib-

utes to intensify the sound field; i.e., it makes Lpv peak at L = 

510, 1010 and 1520 mm. 

The effect of FR on acoustic characteristics has not been clari-

fied yet, having been estimated from fragmentary results, and 

so is studied with continuous changes in FR in Figures 4(a) and 

(b). Figure 4(a) shows changes in max with FR; max of L = 510 

and 1010 mm (i.e., q = 1 and 2) is chosen because max of q = 1 

and 3 almost overlaps each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              (a)  When FR changes 

 

 

 

 

 

 

 

            (b) When Lpv peak shifts 
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max of q = 1 decreases with increasing FR, being 90 deg at FR 

= 0, whereas the decrease is suppressed with increasing FR and 

makes max of q = 1 asymptotic in the proximity of 70 deg. max 

of q = 2 has the opposite tendency to that of q = 1 in the in-

crease and decrease and is almost symmetric for that of q = 1 

about 90 deg. Figure 4(b) shows changes in Lpv with FR; Lpv of 

L = 510 , 1010 and 1520 mm (i.e., q = 1, 2 and 3) is chosen. Lpv 

increases with FR in the whole range FR; the increase becomes 

proportional over around FR = 0.4, below which it is sup-

pressed. The range of FR suppressing changes in Lpv reverses as 

contrasted with that of max. The value of Lpv increases by 3 dB 

due to applying twice F1 to the plate, depending also on the 

magnitude of F1 according to acoustics. However, Lpv of FR = 1 

becomes around 3.7 dB larger than that of FR = 0. This increase 

is causes by efficiencies of the energy transfer between the 

vibration and acoustic systems because of both plate excita-

tions. 

Figure 5 shows the changes in max for both FR = 0 and 1 to 

clarify the difference between the one plate excitation and the 

excitations of both plates. For FR = 0, max is about 83 deg at L 

= 100 mm and it decreases gradually with increasing L up to 

about L = 380 mm, where it suddenly increases to over 90 deg 

and subsequently decreases with increasing L.  

This behavior of max is repeated in a similar manner as L in-

creases to L = 2000 mm. The abrupt changes in max are ap-

proximately centered on 90 deg. Such a repeat takes place from 

shifting the acoustic mode that contributes greatly to the forma-

tion of the sound field; the (0,0,1) mode affects the sound field 

between L = 390 and 740 mm and the nest repeats, which take 

place between L = 750 and 1290mm and between L = 1300 

and1770 mm, are mainly caused by the (0,0,2) and (0,0,3) 

modes, respectively. max of FR = 1 does not change in the 

regular manner such as that of FR = 0, whereas it almost 

changes on 
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the side of in phase in the range of L where the (0,0,1) and 

(0,0,3) modes affect the sound field at FR = 0, changing almost 

on the side of out of phase in the range of L where the (0,0,2) 

mode affects the sound field at FR = 0. max corresponding to 

the peaks of Lpv in Figure 2 is plotted by circles and is close to 

90 deg at FR = 1, being 90 deg at FR = 0. 

EXPERIMENT 

Experimental apparatus and method 

Figure 6 shows the experimental apparatus used in this investiga-

tion. The cylindrical structure consists of a steel cylinder with 

circular aluminum end plates that are 2, 3 and 4 mm thick. The 

cylinder has inner diameter of 153 mm and that lengths can be 

varied from 200 mm to 2000 mm to emulate the analytical 

model. The periodic point forces excite the end plates of both 

sides. These forces are applied to the respective plates by small 

vibrators, the amplitudes of which are controlled to be 1 N. The 

positions of the point forces r1 and r2 are normalized by radius a 

and they are set to r1/a = r2/a = 0.4. In this investigation, the main 

characteristic of the plate vibration under consideration is the 

phase difference between the plate vibrations. Therefore, accel-

eration sensors are installed on both plates to measure this phase 

difference. In order to estimate the internal acoustic characteris-

tics, the sound pressure level in the cavity is measured using a 

condenser microphone with a probe tube whose tip is located in 

the vicinity of the plate 2 and the cylinder wall, which is the 

approximate location of the maximum sound pressure level. 

Before conducting the excitation experiment, the natural fre-

quency of the plate is measured by experimental modal analysis 

using an impulse hammer. It confirmed that the theoretical and 

experimental natural frequencies are closest when rotational 

stiffness Rn = 101; therefore, we can take the experimental sup-

port conditions to be translational stiffnesses Tn = 108 and Rn = 

101. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Changes in max with L when one end plate and  

                 both end plates of h = 3 mm are excited, respectively 

 

0 400 800 1200 1600 2000

0

30

60

90

120

150

180

φ
m

a
x
[d

e
g
]

L[mm]

FR=1

FR=0

(b) Changes in Lpv 

(a) Changes in max 

Figure 4. Changes in max and Lpv with FR in each Lpv peak 

                when h = 3 mm 

Figure 6. Configuration of the experimental apparatus 

1:Vibration generator     5:Amplifier 
2:Load cell                     6:FFT analyzer 
3:Acceleration sensor    7: Multifunction generator 
4:Condenser microphone 
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Experimental results and discussion 

Figure 7 shows changes in the sound pressure level Lpv averaged 

over the entire sound field, corresponding to max in the analysis, 

and in the sound pressure level Lp that is measured in the ex-

periment and is maximized when the phase difference between 

both point forces ranges from 0 deg to 180 deg. Peaks in Lpv 

appear at L = 610, 1230 and 1840 mm; these peaks are known to 

be caused by the (0,0,1), (0,0,2) and (0,0,3) modes, respectively. 

Lp increases greatly at 625, 1250 and 1850 mm and peaks at 

similar values of L to Lpv. Figures 8(a) and (b) show changes in 

Lpv and Lp with ; Lpv and Lp of the principal and second peaks 

and in the middle range of their peaks are employed and are the 

sound pressure level at L = 610, 810, 1230 mm and L = 625, 950, 

1250 mm, respectively. In the theoretical results of Figure 8(a), 

Lpv of L = 610 and 1230 mm is maximized in the vicinities of  = 

70 and 110 deg; i.e., max of the principal and second peaks shifts 

to the sides of in phase and out of phase, respectively, as well as 

Figure 3(b). Because the acoustic modes dominating over the 

sound fieldshift with changing L and do not exist in the vicinity 

of L = 810 mm, Lpv remains almost constant for all values of . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8(b) shows the experimental results Lp corresponding to the 

above Lpv. The appearance of max is distinguished by shifts to the 

sides of in phase and out of phase at L = 625 and 1250 mm and Lp 

is almost constant for all values of  at L = 950 mm. The behavior 

of Lp supports the justness of the theoretical results, differing from 

that of Lpv near  = 0 and 180 deg.  

Since FR affected greatly the values of Lpv, as shown in Figure 4(b), 

the magnitude of the point forces should be concerned with the 

flexural displacements w1 and w2, and so it is also significant to 

study the effect of w1 and w2 on Lpv. In Figure 9, the phase differ-

ences are considered when w1 and w2 are maximized and are de-

noted by w1 and w2, and then the experimental phase difference 

exp when Lp is maximized and max are also indicated when FR= 0. 

w1 is constant by 180 deg between L = 100 and 480 mm and de-

creases abruptly up to 0 deg at L = 490 mm. Remaining constant 

by 0 deg up to L = 620 mm, w1 increases gradually with L and 

reaches 180 deg at L = 1240 mm with an increase somewhat pro-

moted in the vicinity of L = 1080 mm. Beyond L = 1240 mm, w1 

is constant by 180 deg up to L = 1690 mm again and this behavior 

is repeated in the same manner as L increases to L = 2000 mm. On 

the other hand, w2 has gradual and abrupt changes and they are 

similar to changes in w1. However, they occur in the alternate 

range of those of w1 and change the opposite direction to those of 

w1; for instance, the gradual decrease occurs between L = 100 and 

620 mm and the abrupt increase occurs in the vicinity of L = 1080 

mm. w1 and w2 shift between 0 and 180 deg with changing L 

together and intersect around 90 deg and near the length that Lpv 

peaked in Figure 7. exp also shift between 0 and 180 deg with 

changing L and almost corresponds with w1 and w2, but they are 

different between L = 900 and 1100 mm and between L = 1550 

and 1700 mm. As contrasted with max of FR = 0 that changes peri-

odically with shifting the (0,0,q) modes, exp and max have good 

correspondence between the abrupt changes and the shifts of the 

(0,0,q) modes. Moreover, when Lp peaks at L = 650 and 1850 mm 

in Figure 7, exp deviates somewhat from the side of in phase. The 

small deviations reflect the theoretical results in Figure 5, in which 

max was close to 90 deg when Lpv peaked at FR = 1. 

In order to justify the above estimation for the vibroacoustic phe-

nomena, the theoretical and experimental results for the plates of h 

= 2 and 4 mm, whose the natural frequencies are different form 

that of h = 3 mm, are estimated such as those of h = 3 mm.Figures 

10(a) and (b) show changes in the sound pressure levels Lpv and Lp 

and the phase differences w1 ,w2, exp and max with L when h = 4 

mm and the theoretical and experimental f00 is 375 and 388 Hz, 

respectively, as well as Figures 7 and 9. Lpv and Lp have four peaks 

between the first and the forth in the vicinities of L = 460, 920, 

1370 and 1830 mm caused by the (0,0,1), (0,0,2), (0,0,3) and 

(0,0,4) modes, respectively.w1 and w2 shift between 0 and 180 

deg with changing L and exp corresponds to them. 
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Figure 9. Comparison between w1 ,w2 and exp for excitations 

                of both ends and max for one end excitation when 

                h = 3 mm 

 

Figure 8. Variations in Lpv and Lp with  when h = 3 mm and 

                 L changes 

 

Figure 7. Changes in Lpv corresponding to max and Lp with L  

                when h = 3 mm 
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max also repeats increase and decrease with changing L up to L = 

2000 mm and its abrupt changes are almost identical to those of 

exp. The natural frequency f00 of h = 4 mm is higher than that of 

h = 3 mm, so that the intervals of L, at which Lpv peaks and the 

dominant acoustic modes shift, are shortened. However, w1 and 

w2 shift also intersect around 90 deg and near the length that Lpv 

peaks. In case of h = 2 mm, the sound pressure level and the 

phase difference behave as the similar manner to those of h = 3 

and 4 mm, as shown in Figures 11(a) and (b). Since the theoreti-

cal and experimental f00 of h = 2 mm are, respectively, 190 and 

203 Hz and are the lowest in these natural frequencies, so that the 

interval of L at which Lpv peaks is expanded and the dominant 

acoustic modes shift at the longer L in comparison with the other 

cases. In particular, exp at L = 850 mm at which Lp peaks devi-

ates greatly from the side of in phase. If it is considered to de-

crease the flexural rigidity with h, the flexural displacements of h 

= 2 mm are larger than those of h = 3 and 4 mm, so that it is 

thought that the deviation reflects more greatly the theoretical 

results in Figure 5. 

CONCLUSIONS 

Vibroacoustic coupling between plate vibrations and a sound 

field is investigated for a cylindrical structure with circular end 

plates. Both end plates are excited by periodic point forces, the 

frequency of which is the natural frequency of the plate. This 

study focuses on the excitation ratio between both point forces and 

the phase difference between the vibrations of the two plates in 

terms of the effect of coupling on the vibration characteristics of 

the plate. 

the theoretical study found that if the excitation ratio ranges from 

one end excitation to the excitations of both ends by the same point 

forces, the phase difference shifts from 90 deg to the side of in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

phase or out of phase when the dominant acoustic mode has the 

odd or even longitudinal order.The excitations of both ends make 

the acoustic energy increase efficiently, activating the energy trans-

fer between the vibration and acoustic systems in comparison with 

one end excitation. If the effect of the phase difference is focused 

on the flexural displacements of both plates, the respective phase 

differences that maximize the flexural displacements shift between 

in phase and out of phase with changing the cylinder length. The 

experimental phase difference almost corresponds to the theoreti-

cal results, being somewhat different from them at shifting the 

phase difference between in phase and out of phase, and shifts with 

the dominant acoustic mode. 
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Figure 10. Changes in Lpv corresponding to max and Lp with 

                   L and comparison between w1 ,w2 and exp for  

       excitations of both ends and max for one end 

                   exctation when h = 4 mm 

 

Figure 11. Changes in Lpv corresponding to max and Lp with  

       L and comparison between w1 ,w2 and exp for  

       excitations of both ends and max for one end  

       excitation when h = 2 mm 

 

0 400 800 1200 1600 2000

0

30

60

90

120

150

180

L[mm]

φ
[d

e
g
]

φw1

φw2

φmax

φEXP

0 400 800 1200 1600 2000

0

30

60

90

120

150

180

L[mm]

φ
[d

e
g
]

φmax

φw2

φw1

φEXP

0 400 800 1200 1600 2000
80

90

100

110

120

130

140

150
L

p
v
,L

p
[d

B
]

L[mm]

Lpv
Lp

0 400 800 1200 1600 2000
80

90

100

110

120

130

140

150

L
p

v
,L

p
[d

B
]

L[mm]

Lpv

Lp

(a) Sound pressure leval 

 

(b) Phase difference 

 

(a) Sound pressure leval 

(b) Phase difference 


