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ABSTRACT

In this paper we investigate the feasibility of using the ultra weak variational formulation (UWVF) to solve the time-
harmonic 3D elastic wave propagation problem. The UWVF is a non-polynomial volume based method that uses plane
waves as basis functions which reduces the computational burden. More general, the UWVF is a special form of the
discontinuous Galerkin method. As a model problem we consider plane wave propagation in a cubic domain. We shall
show numerical results for the accuracy, conditioning andp-convergence of the UWVF. In addition, we shall investigate
the effect of different ratios of theP- andS-wave basis functions.

INTRODUCTION

Elastic wave problems, in common with acoustic and electro-
magnetic problems, are usually challenging and computation-
ally demanding due to the need approximate wavelike solu-
tions. An added difficulty for elastic waves is that the solutions
consist of two components, S and P-waves, with different wave
numbers. Therefore it is useful to develop numerical methods
that reduces the computational time, and also which can ap-
proximate the S and P waves separately.

The approach we follow is to use non-polynomial basis func-
tions that are appropriate solutions of the underlying equation
(for other applications of non-polynomial basis functions see
(Barnett and Betcke 2010, Cessenat and Després 1998, Gabard
2007, Farhat et al. 2001, Huttunen et al. 2002, Perrey-Debain
2006)). The analysis and implementation of methods based on
non-polynomial bases is an active area of research and these
methods have been compared to each other recently, see, for
example, references (Gabard et al. 2010, Gamallo and Astley
2007, Huttunen et al. 2009). However, the 3D elasticity prob-
lem has not been considered to date, and we shall focus on the
ultra weak variational formulation (UWVF) for the 3D elastic
wave problems.

The UWVF was first developed for the Helmholtz and Maxwell
equations by Cessenat and Després, see references (Cessenat
1996, Cessenat and Després 1998). Further development, and
particularly computational aspects of the UWVF for acoustics
and electromagnetism, can be found in (Huttunen et al. 2007a;b,
Loeser and Witzigmann 2009). Relevant to this paper is the
study of the UWVF for the 2D elastic wave problems inves-
tigated in reference (Huttunen et al. 2004).

The UWVF is a volume based method that uses plane wave
basis functions which are efficient to compute. However, if
too many plane wave basis functions are used on an element
the results may become inaccurate due to the ill-conditioning.
Therefore, in this paper we study the behavior of the 3D elastic
UWVF with different numbers of basis functions, and different
ratios between S and P-wave components. The UWVF is a spe-
cial form of the discontinuous Galerkin method, shown inde-

pendently in references (Huttunen et al. 2007a, Gabard 2007).
Thus the UWVF shares similar properties with the DGM and
similar finite element meshes are used in the UWVF. In addi-
tion, convergence analysis of the non-polynomial DGM, shown
in references (Hiptmair et al. 2009, Gittelson et al. 2009), are
then applicable for the UWVF. The error estimates for the
UWVF has been studied in reference (Buffa and Monk 2008).
No estimates are specifically available for 3D elasticity. In this
paper we aim to show preliminary numerical results for accu-
racy,p-convergence and conditioning of the 3D elastic UWVF.

This paper is organized as follows: First we give a short in-
troduction of the UWVF for the Navier equation of elastic-
ity with discretization. A detailed derivation of the 2D elas-
tic UWVF, which is similar to 3D, can be found in reference
(Huttunen et al. 2004). In the second section we show the nu-
merical results for the model problem which is plane wave
propagation in a cubic domain. Finally we draw conclusions
from the preliminary numerical experiments.

THE ULTRA WEAK VARIATIONAL
FORMULATION

In this section we consider the ultra weak variational formu-
lation for the Navier equation, and its discretization by plane
waves.

The UWVF for the Navier equation

Let K be a computational domain with the boundaryΓ = ∂K
and let us assume thatK consists of non-overlapping elements,
i.e. K = ∪N

k=1Kk whereN is the number of elements (a finite
element grid). We consider the Navier equation

µ∆u+(λ + µ)∇(∇ ·u)+ω2ρu = 0 in Kk (1)

whereω is the angular frequency of the field,u is the time-
harmonic displacement vector,λ andµ are the Lamé constants
andρ is the density of the medium. Later we use the following
notation∆e = µ∆u+(λ +µ)∇(∇ ·u). The Lamé constants can
be expressed as

µ =
E

2(1−ν)
and λ =

Eν
(1+ν)(1−2ν)

, (2)
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whereE is the Young’s modulus andν is the Poisson ratio.

Next we define the traction operatorT(n)(u) on any closed sur-
faceC so that

T(n)(u) = 2µ
∂u
∂n

+λn∇ ·u+ µn×∇×u. (3)

wheren is an outward unit normal to the surfaceC, see
(Huttunen et al. 2004).

The complex conjugate (denoted by overline) of the traction
operatorT is defined as follows

T(n)(u) = 2µ
∂u
∂n

+λn∇ ·u+ µn×∇×u. (4)

In addition we note that

T(n)(u) = 2µ
∂u
∂n

+λn∇ ·u+ µn×∇×u. (5)

The boundary condition on the exterior boundaryΓ can be writ-
ten as

T(n)(u)− iσu = Q(−T(n)(u)− iσu)+g on Γ (6)

whereg is the source term,n is an outward unit normal,σ
is a coupling parameter (flux parameter) andQ ∈ C, |Q| ≤ 1
defines the type of the boundary conditions.

A time-harmonic elastic plane wave (solution of the Navier
equation) moving in a directiond in free space can be ex-
pressed as

u =A1dexp(iκPd ·x)+A2dSHexp(iκSd ·x)

+A3dSVexp(iκSd ·x) (7)

wheredSH = d⊥, dSV = d⊥ × d, wave numbersκP = ω/cP
andκS = ω/cS (wave speedscP andcS will be specified later)
andA1,A2 andA3 are amplitudes. In the equation (7) the first
component is called a P-wave and denoteduP, and the second
two components are S-waves (SH-waveuSH and SV-waveuSV,
respectively). In addition, the following conditions hold∇×
uP = 0 and∇ ·uSH = ∇ ·uSV = 0.

The wave speedcP for the P-wave is

cP =

√

λ +2µ
ρ

(8)

and the wave speedcS for S-waves (SH- and SV-waves) is

cS =

√

µ
ρ

. (9)

Therefore waves can propagate with different speeds. Fortu-
nately, in the UWVF we can define the number of basis func-
tions separately for P-waves and S-waves which balances the
method (limiting the growth of ill-conditioning). Now we give
a short introduction to the derivation of the UWVF for the
Navier equation. However, the detailed derivation of the UWVF
can be found in (Huttunen et al. 2004). Let us denoteuk :=
u|Kk and let the solutionuk of Navier equation satisfy

∆euk +ω2ρuk = 0 in Kk (10)

where∆e represents the differential operator in (1) such that

T(n)(uk)− iσuk ∈ (L2(∂Kk))
3. (11)

Similarly let ek be a test function that satisfies

∆eek +ω2ρek = 0 in Kk (12)

such that

T(n)(ek)− iσek ∈ (L2(∂Kk))
3. (13)

Using a straightforward extension of the “Isometry Lemma”,
the UWVF for the Navier equation in 2D proved in reference
(Huttunen et al. 2004) , the UWVF for the 3D Navier equation
can now be written as

∑
k

∫

∂Kk

σ−1
Xk · (−T(nk)(ek)− iσek)

−∑
k

∑
j

∫

∑k j

σ−1
X j · (T(nk)(ek)− iσek)

−∑
k

∫

Γk

Qσ−1
Xk · (T(nk)(ek)− iσek)

= ∑
k

∫

Γk

σ−1g· (T(nk)(ek)− iσek) (14)

whereXk = T(nk)(uk)− iσuk on ∂Kk. Here we shall consider
the following flux parameterσ by defining

σ = ωρR{cP}I (15)

whereR{cP} indicates the real part ofcP andI is the unit ma-
trix (other choices ofσ are possible, seeHuttunen et al.(2004)).
Flux parameter in equation (15) is an ad hoc choice and the op-
timal flux parameter will be investigated later.

Discretization

We use the Helmholtz decomposition for the solution of the
adjoint Navier equation by separating it into three components:
P-wave, SH-wave and SV-wave (see also above). Therefore

ek = ek,P + ek,SH+ ek,SV (16)

in which the following conditions hold∇ × eP = 0 and∇ ·
eSH = ∇ · eSV = 0.

Using the same decomposition as in equation (16) we can write
the approximation forXk as follows

Xk ≈
pk

P

∑
ℓ=1

[

xP
k,ℓ

(

−T(nk)(eP
k,ℓ)− iσeP

k,ℓ

)]

+
pk

S

∑
ℓ=1

[

xSH
k,ℓ

(

−T(nk)(eSH
k,ℓ )− iσeSH

k,ℓ

)]

+
pk

S

∑
ℓ=1

[

xSV
k,ℓ

(

−T(nk)(eSV
k,ℓ)− iσeSV

k,ℓ

)]

(17)

wherepk
P is the number of basis functions forP-wave, pk

S re-
spectively forSH- andSV-waves and

eP
k,ℓ =

{

ak,ℓ exp(iκPak,ℓ ·x) in Kk
0 elsewhere

eSH
k,ℓ =

{

a⊥k,ℓ exp(iκSHak,ℓ ·x) in Kk

0 elsewhere

eSV
k,ℓ =

{

a⊥k,ℓ ×ak,ℓ exp(iκSVak,ℓ ·x) in Kk

0 elsewhere

whereak,ℓ is the direction of propagation. This defines a dis-
crete space of traces on the skeleton of the mesh that we denote
Vh,k.

Now we can write the discrete UWVF by findingXh,k ∈Vh,k,
k = 1,2, . . . ,N such that

∑
k

∫

∂Kk

σ−1
Xh,k ·Yh,k−∑

k
∑

j

∫

∑k j

σ−1
Xh, j ·Fk(Yh,k)

−∑
k

∫

Γk

Qσ−1
Xh,k ·Fk(Yh,k) = ∑

k

∫

Γk

σ−1g·Fk(Yh,k) (18)
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for all Yh,k ∈Vh,k,k = 1,2, . . . ,N. Where the operatorF is de-
fined element by element by

Fk(Yh,k) ≈
pk

P

∑
ℓ=1

[

yP
k,ℓ

(

T(nk)(eP
k,ℓ)− iσeP

k,ℓ

)]

+
pk

S

∑
ℓ=1

[

ySH
k,ℓ

(

T(nk)(eSH
k,ℓ )− iσeSH

k,ℓ

)]

+
pk

S

∑
ℓ=1

[

ySV
k,ℓ

(

T(nk)(eSV
k,ℓ)− iσeSV

k,ℓ

)]

. (19)

The discrete elastic UWVF can be written in a matrix form as
follows

(D−C)X = b (20)

whereD corresponds to the first sesquilinear form on the left
hand side of (18) andC to the second term. We shall see shortly
that D is block diagonal, so we actually use the numerically
more stable form

(I −D−1C)X = D−1b (21)

whereD andC are sparse block matrices and
X = (xP

11, . . . ,x
P
1p1

,xSH
11 , . . . ,xSH

1s1
,xSV

11 , . . . ,xSV
1s1

, . . .)T . The block
matrix D may become ill-conditioned if too many basis func-
tions are used in small elements. Therefore it is essential to
examine the conditioning of the UWVF problem.

The matrixD is a Hermitian diagonal block matrix as

D =































D1 0 . . . . . . . . . . . . 0
0 D2 0 . . . . . . . . . 0
... 0

... 0 . . . . . . 0
...

... 0 Dk 0 . . . 0
...

...
... 0

... 0 0
...

...
...

... 0
... 0

0 0 0 0 0 0 DN































, (22)

where

Dk =







Dk
P,P,ℓ,m Dk

SH,P,ℓ,m Dk
SV,P,ℓ,m

Dk
P,SH,ℓ,m Dk

SH,SH,ℓ,m Dk
SV,SH,ℓ,m

Dk
P,SV,ℓ,m Dk

SH,SV,ℓ,m Dk
SV,SV,ℓ,m






. (23)

For example,Dk
P,SH,ℓ,m in (23) is of the form

Dk
P,SH,ℓ,m =

∫

∂Kk

σ−1
(

−T(nk)(eP
k,m)− iσeP

k,m

)

·
(

−T(nk)(eSH
k,ℓ )− iσeSH

k,ℓ

)

,

(24)

with similar expressions for other blocks of the matrix.

Matrix C consists of blocksCk andCk, j (will be given shortly).
Matrix blocksCk are on the diagonal andCk, j are on the off-
diagonal of matrixC. Matrix blockCk can be written as follows

Ck =







Ck
P,P,ℓ,m Ck

SH,P,ℓ,m Ck
SV,P,ℓ,m

Ck
P,SH,ℓ,m Ck

SH,SH,ℓ,m Ck
SV,SH,ℓ,m

Ck
P,SV,ℓ,m Ck

SH,SV,ℓ,m Ck
SV,SV,ℓ,m






(25)

where, for example,Ck
P,SH,ℓ,m is of the form

Ck
P,SH,ℓ,m =

∫

Γk

Qσ−1
(

−T(nk)(eP
k,m)− iσeP

k,m

)

·
(

T(nk)(eSH
k,ℓ )− iσeSH

k,ℓ

)

,

(26)

similarly others. The off-diagonal block matrixCk, j is as fol-
lows

Ck, j =







Ck, j
P,P,ℓ,m Ck, j

SH,P,ℓ,m Ck, j
SV,P,ℓ,m

Ck, j
P,SH,ℓ,m Ck, j

SH,SH,ℓ,m Ck, j
SV,SH,ℓ,m

Ck, j
P,SV,ℓ,m Ck, j

SH,SV,ℓ,m Ck, j
SV,SV,ℓ,m






(27)

where, for example,Ck, j
P,SH,ℓ,m is of the form

Ck, j
P,SH,ℓ,m =

∫

∑k j

σ−1
(

T(nk)(eP
j,m)− iσeP

j,m

)

·
(

T(nk)(eSH
k,ℓ )− iσeSH

k,ℓ

)

,

(28)

others can be derived in a similar manner.

NUMERICAL RESULTS FOR THE 3D ELASTIC
WAVE PROBLEM

We investigate the UWVF for the 3D elastic wave problem. We
consider a simple 3D model problem, plane wave propagation
in a unit cube. The exact solution is of the form

u =A1dexp(iκPx ·d)+A2dSHexp(iκSx ·d)

+A3dSVexp(iκSx ·d) (29)

where the direction of plane wave propagation is chosen in our
simulations asd ≈ [−0.73 0.45 0.51], |d| = 1, dSH = d⊥,
dSV = d⊥×d and the amplitudesA1 = A2 = A3 = 1. We em-
phasize that the incident directiond is not equal of any direc-
tions used in the basis functions. As a boundary condition we
choose an impedance type boundary condition, i.e.Q = 0 in
equation (6). In the following simulations uniform/structured
meshes are used because we want to investigate the conver-
gence of the method. However, it is, of course, possible to
use unstructured/non-uniform meshes where the element sizes
vary and in the UWVF the number of basis functions can vary
from element to element as well.

In the first numerical study we investigate the elastic UWVF
with different wave numbers. The mesh size and the number
of basis functions are fixed and the wave numbers vary. The
mesh is shown in Figure1 and the number of basis functions
per element for the P-wave ispP = 37 and for the S-waves
pS = 43 (the total number of basis functions per element is
ptot = pP + 2pS because there are horizontal and vertical S-
waves (i.e. SH- and SV-waves)). As physical material parame-
ters we have Young’s modulusE = 70·109, Poisson ratioν =
0.33, the densityρ = 2700 and the wave speedscP=6.1978e3
andcS = 3.1220e3.

Results are shown in Table1. There relative errors are com-
puted as discrete L2-error such as

error(%)=
||uex−uUWVF||ℓ2

||uex||ℓ2
×100% (30)

where the exact solutionuex and the UWVF solutionuUWVF
are computed in a dense set of uniformly distributed points
(number of points is 40401).

These results show that when the wave numbers increase the er-
rors increase as expected. In addition, when the wave numbers
increase, the maximum of the element-wise condition number
of the matrixD decreases when the number of basis functions
is fixed. This is also observed in other problems.

In practice, there are three possibilities to enhance the accuracy,
one is to refine the mesh size and the second is to increase the
number of basis functions and the third is to proceed changing
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Figure 1: The mesh used in the first numerical model problem.
The computational domain consists of 24 tetrahedra and 14 ver-
tices.

Table 1: Behavior of the UWVF when the wave number varies
and the mesh size and the number of basis functions are fixed.
The number of basis functions for P-wavepP = 37 and for S-
wave pS = 43 (total number of basis functions per element is
ptot = pP +2pS). The maximum of the elementwise condition
number ofD matrix is denoted by max(cond(Dk)).

κP κS error(%) max(cond(Dk))
5.0689 10.0629 0.2125 7.5017e7
7.0964 14.0881 1.2807 1.4313e6
8.1102 16.1007 2.8948 2.9047e5

both, i.e. refine the mesh size and increase the number of basis
functions.

Next we shall study numerically the effects of changing the
number of basis function and the ratio of basis functions be-
tween P- and S-waves. The aim of this study is to find the opti-
mal ratio between the basis functions. We note that theoretical
and numerical studies of optimal ratios of the basis function ra-
tios in the plane wave based methods can be found in reference
(Perrey-Debain 2006). Five cases are herein considered when
the wave numbers areκP = 4.0551 andκSH = κSV = 8.0503,
the angular frequencyω = 0.8π ·104, Young’s modulusE =
70·109, Poisson ratioν = 0.33 and the densityρ = 2700, the
wave speedscP=6.1978e3 andcS = 3.1220e3, the number of
basis function ratios arepP = 0.25pS, pP = 1

3 pS, pP = 0.5pS,
pP = 2

3 pS andpP = pS wherepP is the number of basis func-
tions for the P-wave andpS is the number of basis functions
for the S-wave. Notice that the total number of basis functions
per element isptot = pP +2pS because there are SH- and SV-
waves. The mesh used in this simulation is shown in Figure
1. The mesh consists of 24 tetrahedra elements. Results of the
p-convergence and the conditioning are shown in Figure2.

The results show that there is an impact of using different ra-
tios between the number of basis functions for P- and S-waves.
However, the slopes does not differ much with different basis
function ratios. Results suggest that when the number of basis
functions (pP) for P-wave approaches to the number of S-wave
basis functions (pS) the condition number forD grows which
is plausible since the wave number for P-wave is smaller that
the wave number for S-wave. The best conditioning is obtained
by choicepP = pS/3. Taking pP/pS ≈ κP/κSH gives similar
conditioning as choicepP = pS/3 but the error is less effected
by this choice.
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Figure 2: Convergence figure for the 3D-elastic-UWVF when
κP = 4.0551 andκSH = κSV = 8.0503, the mesh size is fixed
and the number of basis functions varies. Left panel: the rela-
tive error (%) versus the number of basis functions per element,
i.e. pP + 2pS. Right panel: the maximum of the element-wise
condition number of theD matrix, i.e. max(cond(Dk)) versus
the number of basis functions per element.

CONCLUSIONS

We have shown the feasibility of the UWVF for the 3D Navier
equation. In the simulations shown in this paper we used a uni-
form mesh with the same number of basis functions on each
element. In the first test simulation the results show that the
mesh size and the number of basis functions have an impact to
the accuracy as well as the conditioning. In the second simu-
lation the convergence of the method as the number of basis
functions, and the ratio between basis function components,
is investigated. The results show that the curves have similar
slopes but depending on the basis function ratio the conidition-
ing varied. However, more tests are needed to obtain an opti-
mal ratio between the basis functions which ensures accurate
results with low cost and small condition number. In addition
testing on more complex problems, including those involving
surface waves, is needed.
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