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ABSTRACT 

In this paper, a review of several features of the acoustic vector field will be presented. The theoretical foundation for 

the acoustic energy flow will be used to describe the concepts of the active and reactive components of the complex 

acoustic intensity field. Recently established phenomenology associated with the flow of acoustic intensity near pla-

nar boundaries via the visualization of streamlines will also be discussed. Features of the complex field scattered 

from simple objects will be presented, along with phenomenology found in multipath environments such as channels 

and waveguides.  Methods for validating vector field extensions of existing numerical models in the field of underwa-

ter acoustics are defined, and some specific examples of the properties of the complex field in ocean environments is 

provided.  Methods for extracting information about the seafloor (e.g., geoacoustic inversion) are also described. Fi-

nally, a brief overview of common beamforming techniques is presented. [Work supported by the US Office of Naval 

Research, Code 322OA.] 

BACKGROUND 

For many years, the acoustics community has relied solely 

upon measurements of the pressure field to determine acous-

tic intensity, i.e. the acoustic energy flux density.  In the 

presence of plane waves, such knowledge of the pressure 

field was sufficient to determine the magnitude of the acous-

tic intensity.  However, in many cases, additional information 

is required to formally define the total acoustic intensity.  

Furthermore, acoustic intensity is fundamentally a vector 

quantity, providing information on the directional flow of 

acoustic energy.  Studies of the full vector acoustic field then 

require the use of directional sensors. 

Some of the earliest work in the field of underwater acoustics 

to study vector intensity was performed by D’Spain,[1, 2] who 

utilized directional Swallow floats to investigate the direc-

tional nature of ultra-low frequency (infrasonic) noise in the 

Pacific Ocean, just west of San Diego.  This also helped es-

tablish the formal description of the complex vector intensity.   

Specifically, we apply a conservation of energy argument to 

the linear acoustic equation in a lossless fluid medium to 

obtain 
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where the velocity associated wth the displacement of the 

fluid medium is related to the pressure by 

1
u p

i
  .                                                                         (2) 

The first quantity in Eq. (1) is the time rate of change of the 

acoustic energy density, while the second quantity represents 

the divergence of acoustic intensity, which represents the 

amount of acoustic energy flowing through a unit of area per 

unit time. 

In practice, the quantity being measured is the real, instanta-

neous intensity, 

       Re ReiJ t p t u t .                                                 (3) 

Of more general interest, however, is the complex intensity, 

defined by 
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Note that one can easily prove that  
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D’Spain notes[1] that a volumetric array of pressure sensors 

may be utilized to measure the vector intensity field through 

estimates of the gradient in Eq. (2).  This can be further illus-

trated by expanding the pressure field in a Taylor series in the 

vicinity of the observation point, i.e. 

       0 0 0p x p x i x x u x   .                                    (6) 

Thus, complete knowledge of the volumetric pressure field is 

sufficient to determine the acoustic vector intensity. 
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A seminal paper on the theoretical foundation of the acoustic 

vector intensity was provided by Mann, et al.[3]  In that work, 

they showed that a simple description of the pressure field in 

terms of an amplitude and phase, i.e. 
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results in the definition of the intensity in terms of a real part 

and a complex part,  
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referred to as the active and reactive intensity, respectively.  

Further, they showed that the reactive part is a physically 

realizable quantity that cannot be neglected, and is required 

to properly describe the total acoustic field.  They note that 

“the active intensity is perpendicular to the resultant wave 

fronts, showing the direction of the resultant wave front 

propagation,” whereas “the reactive intensity … characterizes 

the spatial pressure magnitude distribution,”[3] as depicted in 

Fig. 1.  

 
Source: (Mann, et al, 1987)[4] 

Figure 1. A general radiated field characterized by surfaces 

of constant pressure and surfaces of constant phase. 

The acoustic vector intensity is the acoustic analog of the 

Poynting vector in electromagnetic.  In part, this motivated 

Chapman[5] to consider the structure of acoustic intensity 

streamlines, i.e., those curves whose tangent at every point is 

parallel to the local average acoustic intensity vector.  At any 

point in space, the tangent to the acoustic intensity streamline 

may be defined by 

 1tan /z rJ J   .                                                       (9) 

Chapman developed a basic iteration scheme to map the 

streamlines in a simple environment composed of two semi-

infinite half-spaces separated by a planar boundary.  His re-

sults, displayed in Fig. 2, revealed some fundamental differ-

ences between the actual flow of acoustic energy and our pre-

conceived views based on ray theory. 

Specifically, he noted at low frequency that the acoustic in-

tensity streamlines were barely affected by the presence of 

the boundary, and energy easily flowed into the lower me-

dium at angles beyond the traditional ray critical angle.  At 

higher frequencies, the streamline behavior below the inter-

face was more consistent with traditional rays, but above the 

interface the streamline structure became perturbed due to the 

interference between direct and reflected ray paths. 

 
Source: (Chapman, 2008)[6] 

Figure 2. Streamlines of energy flow for water-to-sediment 

transmission: (a) 150 Hz, (b) 500 Hz, (c) 1500 Hz, and (d) 

the corresponding ray paths. Solid lines: streamline [(a)–(c)] 

of incident, transmitted, and totally reflected rays (d). Dashed 

lines: partially reflected rays. Heavy dashed line: critical ray. 

Associated acoustic wavelengths in water: (a) 10.2 m, (b) 3.1 

m, (c) 1.0 m. 

Chapman also developed a new plane boundary refraction 

law for streamlines.  Specifically, by noting that both the 

pressure and vertical velocity components must be continu-

ous across the boundary, then 

1 2z zJ J   .                                                                    (10) 

However, the horizontal component of velocity exhibits a 

discontinuity, 



23-27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010 

ICA 2010 3 

 

 

 

 
1 2

1

2 1

1r

r

u R
g

u g T

  

  


     ,                                           (11) 

and so then does the horizontal component of intensity, 

1 2r rJ g J   .                                                                 (12) 

Therefore, the incident and transmitted angle satisfy a refrac-

tion law, illustrated in Fig. 3 and defined by 

2 1tan tang    .                                                               (13) 

 
Source: (Chapman, 2008)[7] 

Figure 3. Acoustic streamline refraction by a density discon-

tinuity, for the case 
2 1  . 

SOME VECTOR FIELD PHENOMENOLOGY 

Multipath/multisource interference 

Many traditional references on acoustic vector sensors as-

sume simple, plane-wave propagation of the field.  This leads 

to a simplified expectation that a single vector sensor can 

determine direction to a source.  While this is true in the 

presence of single arrivals and/or large signal-to-noise condi-

tions, the influence of multipath, multiple in-band sources, or 

in-band noise complicates the processing on a single sensor. 

In the presence of a plane-wave, the pressure and vector ve-

locity may be defined simply by  

ik rp p e  and ˆp
u k

c
  ,                                                (14) 

where ˆ k
k

k
  is the direction of propagation.  As suggested, 

the response of a single vector sensor provides enough in-

formation to determine the direction of propagation of the 

field. 

In contrast, let us consider another highly simplified view of 

propagation, specifically the field produced by a single nor-

mal mode in an isospeed waveguide.  In this environment, the 

vertical mode structures will be sinusoidal, e.g. 

 sinM M z , where 
M  is the quantized vertical 

wavenumber component of mode M, and will have horizontal 

phase factors of MiK re , where
MK  is the quantized horizontal 

wavenumber component.  Then 
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We note that the resulting ratio of velocity components satis-

fies 
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which indicates that the velocity field response of a single 

mode is elliptical in nature.  Figure 4 depicts a snapshot of 

the velocity field in a waveguide with a single mode excited.  

Averaging of the velocity field would reduce to zero, while 

an average of the vector acoustic intensity field would reduce 

to a single, downrange vector indicating the average energy 

flow down the waveguide.  But the direction of the underly-

ing plane waves propagating at 
M , which create the struc-

ture of the mode, is lost in the interference.   

Similar vector field complexity would be exist in the pres-

ence of multiple sources or a random noise field, assuming 

the signals occur within the same frequency band.  Therefore, 

in order to uniquely observe angles of interest, coherent proc-

essing across an aperture of sensors is still required. 

 
Figure 4. Instantaneous snapshot of velocity vectors in the presence 

of a single, shallow water normal mode 

Plane-wave scattering 

Although the complexity of the vector field may complicate 

extraction of unique information from a single sensor, there 

are cases where unique features may exist within the field.  

As an example, consider the near-field structure of acoustic 

intensity observed by plane-wave scattering from a rigid 

sphere.   The scattered pressure field is known to have the 

form[8] 
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R P n i P b h kR    sP ,                   (17) 

where the  nP x  refer to the Legendre’ polynomials,  nj x  

and  nh x  refer to spherical Bessel functions, 

and
'

'
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b

h ka
 .  Although algebraically challenging, the 

calculation of the associated vector velocity field is reasona-

bly straightforward[9]. 

By combining the total (incident plus scattered) pressure field 

wth the total vector velocity field, the structure of the com-

plex intensity field can be determined.  Analysis of the radial 

and angular components of the active and reactive intensity 

fields reveals a very rich structure that is unique in nature.  

Figure 5 displays the results of such an analysis for a rigid 

sphere, radius a , when ensonified by a plane wave satisfying 

3ka  . 
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UNDERWATER ACOUSTIC VECTOR FIELD 
MODELING 

In order to be able to study some of the features of the acous-

tic vector field in underwater acoustic applications, numerical 

algorithms are desired which are consistent with existing 

acoustic pressure propagation models.  However, the funda-

mental wave equation for the vector velocity field does not 

lend itself to direct integration, as the Helmholtz equation for 

acoustic pressure does.  Therefore, methods for computing 

the velocity field must rely on the solutions to the underlying 

pressure field and the relationship between the two quantities, 

defined by Eq. (2).  Ideally, such methods should utilize the 

constructs of the underlying model to ensure the same order 

of accuracy in the solution. 

 
Figure 5. Total field due to plane wave scatter from a rigid 

sphere ( 3ka  ): (a) radial active, (b) radial reactive, (c) an-

gular active, and (d) angular reactive intensities.  Scale of 

figures is 5 5a a .  Colorbar in units of dB. 

Parabolic equation methods 

The expressions for simultaneous computation of the vector 

velocity field from implementation of a parabolic equation 

(PE) model of the underlying pressure field were first defined 

by Smith, et al.[10]  In a straightforward manner, they began 

by defining the pressure field in terms of the PE field func-

tion,  r , such that 
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and  r  is known to satisfy a parabolic equation of the 

form 
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with operators defined by 
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The radial component of the velocity field can then be di-

rectly related to the fundamental parabolic equation, which in 

the far-field takes the form 
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Because the solution at any given range step is defined as a 

vector over depth, the vertical component may be computed 

by employing a sequence of Fourier transforms, such as 
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Thus, as Eq. (19) is solved via some iterative scheme (e.g., 

split-step Fourier, implicit finite difference, finite element, 

etc.), Eqs. (21) and (22) can be computed locally at each 

range step.  The result is the complete acoustic vector field 

(pressure and planar components of velocity).  Figure 6 dis-

plays results of such a calculation for a simple, isospeed, 

shallow water waveguide. 

 
Figure 6. Transmission loss plots (grayscale colorbar units dB re 

1m) for a shallow water waveguide: (a) pressure, (b) radial velocity 

component, and (c) vertical velocity component. 
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The underlying PE pressure field model had been previously 

benchmarked, and so the solutions to the vector field should 

be accurate.  It is still desirable, however, to have an inde-

pendent benchmark of the velocity field results.  This can be 

obtained by evaluating the response for an individual normal 

mode.   

For the purposes of benchmarking, we adapt the expression 

presented in Eq. (16) to investigate the ratios of the real quan-

tities 
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Figure 7 displays the results comparing the output of the 

MMPE model,[11] updated to compute the velocity field com-

ponents, with the analytic expressions defined in Eqs. (23) 

and (24).  The solutions are effectively identical, providing 

excellent confirmation of the accuracy of the numerical 

method. 

 
Figure 7. Results from MMPE model for single mode propa-

gation compared with analytic expressions in Eqs. (23) and 

(24). 

Normal mode methods 

Pressure field propagation models based on normal mode 

methods are also very popular.  The extension of such models 

to compute the velocity field has also been shown to be rea-

sonably straightforward.[12]  We begin by stating the local 

range description (i.e., in the jth range step) of the pressure 

field in terms of the local normal modes, 
   j

m z ,[13]  
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where the factors 
 j
ma  and 
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Range-dependent solutions are generated by computing mode 

coupling coefficients[13] that define the amount of modal 

energy transfer between range steps,  
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The corresponding expressions for the radial and vertical 

velocity components are then simply 
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Note that Eqs. (28) and (29) can be computed directly with 

the existing solutions of the normal modes and corresponding 

modal wavenumbers.  The only additional calculation re-

quired is the vertical derivative of the normal mode.  The 

horizontal and vertical boundary conditions of the velocity 

components are already satisfied by the coupling coefficients. 

The Couple97 normal mode model[14] was updated to incor-

porate Eqs. (28) and (29).  The evaluation of the vertical 

derivative was trivial since the mode shapes were computed 

using the Galerkin method which utilizes a summation over 

sinusoids.  Sample results of this model output compared 

against an analytic solution for a simple, shallow water 

waveguide are displayed in Fig. 8.  Again, the quality of the 

agreement is indicative of the accuracy of the numerical im-

plementation. 

APPLICATIONS OF VECTOR FIELD 
PROCESSING 

As stated previously, early work in vector field processing 

studied the directionality of the low-frequency noise field.  

With the introduction of more and better sensors, many in the 

underwater acoustics research community are exploring the 

use of such data for other applications. 

Ocean seafloor inversions 

One area that receives a considerable amount of attention is 

environmental inversions based on acoustic data collected 

from sea trials.  This includes the field of geo-acoustic inver-

sions, whereby acoustic data is used to infer information 

about the seafloor sediment and substrata.  A large number of 

inversion algorithms have been developed based on minimi-

zation of a cost function through some optimized search rou-
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tine, such as simulated annealing or genetic algorithms.[e.g., 15, 

16] 

The introduction of the acoustic vector data into these inver-

sion algorithms has recently been achieved by several inves-

tigators.[e.g., 17, 18, 19]  The results seem to suggest that the 

number of iterations required to find a suitable solution is 

reduced when the additional information in the vector field is 

included.  What remains unclear, however, is whether the 

additional information actually increases the accuracy (or 

reduces the variance) of the solution.  Part of the issue may 

be that these approaches rely on the same general cost func-

tion minimization techniques, rather than attempt to utilize 

unique features of the vector field. 

 
Figure 8. Results from Couple97 normal mode model com-

pared with analytic model for simple waveguide. 

To this end, Smith, et al.[20] showed that measurements of the 

modal vector intensity field could be exploited to make direct 

estimates of modal attenuation.  This information could be 

inverted to provide profiles of bottom attenuation, a parame-

ter known to exhibit large variability in standard inversion 

algorithms.  The estimates are based on determining the ac-

tive and reactive components of the complex vector intensity 

for a single mode.  When attenuation is present, it can be 

shown[20] that these quantities have the form 
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where  M z  are the mode functions of amplitude 
MA , and 

the modal attenuation factor is 
M .  It can then be observed 

that the ratio between the radial components of the reactive 

and active intensities asymptotically provides an estimate of 

the modal attenuation factor, 
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Figure 9 displays an example of the asymptotic behaviour of 

this ratio from an analytic solution.  The ratio response of 

three different modes is presented to illustrate the advantage 

of evaluating the higher order modes.  While such an analysis 

based on real data is understandably more challenging, this 

approach does suggest opportunities to extract additional 

information directly from the vector intensity field. 

 
Figure 9. Sample calculation of asymptotic evaluation of 

modal attenuation factor from ratio of reactive to active radial 

intensity components. 

Line array beamforming 

The majority of work involving signal processing of under-

water acoustic vector sensor data has been devoted to proc-

essing of a linear array of sensors. Studies comparing proc-

essing gains from the calculation of array intensity versus 

combinations of vector components have shown that the lat-

ter methods are generally superior.[21] 

The most basic form of vector component combination proc-

essing is simple linear processing, whereby the components 

are weighted and summed together.  The underlying motiva-

tion for this is the observation that the vector velocity sensor 

has a dipole response, half of which is in phase with the pres-

sure and half of which is out of phase.  By simply summing 

the various components with the pressure, a cardiod response 

is achieved on each sensor.  The inherent directionality of 

each sensor then increases the overall directionality of the 

array. 

Specifically, linear processing of an array of vector sensors 

produces a beam response when steered in the solid angle 

direction  ,s s s    defined by 
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The coherent array processing is achieved by steering the 

array phase according to coss n n sk r kz  , while the individ-

ual sensors are steered by using weights defined by 

cosxn n sw Aw  , sin cosyn n s sw Bw   , 

              sin sinzn n s sw Cw   ,  and 
pn nw w   .               (35) 

Note that we assume here the individual vector sensors are 

being steered in directions consistent with the array phase, 

i.e.  ,s s s   .  In general, however, each sensor could be 

steered independently of one another. 

When the weighting variables 1A B C    in (35), each 

sensor produces the cardiod pattern.  For a plane-wave arriv-

ing broadside, an array of such sensor patterns produces the 

array response depicted in Fig. 10.  The upper pattern dis-

plays the result when pressure-only sensors are employed, 

and the lower pattern displays the result of utilizing vector 

sensors.  Cray and Nuttal[22] showed that, in addition to the 

reduction of the right/left ambiguity effect, an array of vector 

sensors may also provide an optimal performance gain of 

approximately 5 dB. 

 
Figure 10. Line array response to broadside arrival using 

linear beamforming: (upper) pressure-only sensors; (lower) 

vector sensors steered using basic cardioids. 

By changing the relative values of the weighting variables, 

directional nulls can be steered in various directions.  Other, 

non-linear combinations of weighting variables have been 

employed to increase the directivity of individual sensors.[23]  

The advantages of some of these techniques is still unclear, 

however. 

Still others are investigating methods of non-linear, adaptive 

processing for arrays of vector sensors.  These promise to 

provide the most gain and best directionality.  

SUMMARY 

In this paper, the fundamentals of the vector acoustic inten-

sity field have been described.  Phenomenology that is some-

times counter-intuitive has also been presented that requires 

us to reconsider some of our preconceived notions of energy 

flow in the acoustic field.  Unique structures in the field and 

relationships between intensity components have also sug-

gested that the vector field may provide additional insight 

into the underlying physics of the propagation. 

Numerical methods for computing the acoustic velocity field 

in ocean acoustic waveguides were also presented.  These 

techniques were shown to be reasonably straightforward 

extensions of existing models for pressure field propagation.  

Additionally, some analytical expressions were defined that 

can be used to benchmark updated codes. 

Although the general principles of acoustic energy flow have 

been understand for many years, the formal description of 

vector acoustic intensity in terms of active and reactive inten-

sities was developed relatively recently.  Today, an under-

standing of the phenomenology associated with the vector 

field in complex, underwater environments is motivating a 

growing number of basic and applied research programs.  

This, along with the introduction of new, sophisticated sen-

sors capable of determining the vector velocity field, is lead-

ing to new applications in undersea studies. 
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