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ABSTRACT

Simulation techniques in the linear acoustics of rooms witharbitrary geometry often lack sufficient knowledge about the
dynamics of the surrounding walls. But the latter effect thesound distribution significantly. This is why boundary value
problems (BVP) of fully coupled structure fluid systems should be solved. Unless one transforms the discretized form of
this BVP into a system of only the sound pressure by means of the Schur complement. This produces a fully occupied
coupling admittance matrix within this formulation. Out ofsound pressure data it is certainly difficult to reproduce all
entries of this matrix. Due to this fact the authors introduce an approximation for the coupling admittance by defining local
admittance values on the boundary. This boundary conditiontype causes a simplification of the coupling admittance matrix.
It is demonstrated on a simple structure fluid coupled systemwhose analytical equations are arranged in a matrix form
matching a standard BEM-FEM formulation, followed by a short discussion about its applicability.

INTRODUCTION

In systems where fluid and structure is coupled at their interfaces,
the system equations are formulated in terms of variables for
the fluid, e.g. sound pressure, and variables for the structure, e.g.
displacement. The variables for the structure can be substituted
by evaluation of the Schur complement. In that case, part of the
Schur complement can be understood as a coupling admittance
with non-local boundary admittance entries. Herein, the authors
try to explain and emphasize the effect on that coupling admit-
tance by changing this non-local to a local definition.
A one-dimensional problem of a duct is introduced as a sim-
ple example in order to understand this issue by means of a
boundary-element-method-like matrix formulation. Single
degree of freedom systems are introducted at both ends of the
duct. For the setup of an example with non-local boundary con-
ditions, both ends are connected by two springs and a rigid block.
For this system, the admittance matrix will be shown analytically.
We will discuss the influence of different masses of that block
onto local and non-local admittance condition within the formu-
lation of the Schur complement, towards the acoustical medium.
Throughout this contribution the authors try to emphasise the
analogousness of the mathematics of this one-dimensional duct
to discretised coupled systems of arbitrary geometry and size.

LOCAL ADMITTANCE

First of all we imagine a one-dimensional fluid domain bounded
on one side by a flexible wall that may be considered as a simple
mass-spring-damper system as shown in Figure 1.
For this system the balance of forces written in the time domain
is

m1ü1 +b1u̇1 +c1u1 = F1−Ap1 (1)

with A being the cross-sectional area of the interface. If we con-
fine ourselves to the stationary state we may transform this in
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Figure 1: One-dimensional model of fluid bounded by mass-
spring-damper system (MSD) as substitute for flexible wall.

terms of the circular frequencyω

−ω2m1u1− iωb1u1 +c1u1 = F1−Ap1 . (2)

Based on the Robin boundary condition formulation

v1−v1s = Y p (3)

with the structural velocity set to zero (v1s = 0) and

v1 = −iωu1 (4)

we find the acoustical admittance

Y1 =
v1

p1
=

−iωA

−ω2m1− iωb1 +c1
. (5)

During the following mathematics this parameter expressesthe
dynamics of the wall. It is a frequency dependend and complex
parameter (Figure 2).
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Figure 2: Acoustical admittance parameterY1 as equivalent for
the MSD.

DISCRETE MATRIX FORMULATION

The boundary value problem for a stationary vibrating system
consists of the Lame-Navier equation for the structure, of the
Helmholtz equation for the fluid and of the full coupling condi-
tion v f = vs along the fluid structure interaction (FSI).
Through discetisation we obtain this matrix formulation for a fi-
nite number of degrees of freedom in the frequency domain:

[

H −GC f s
−Cs f A

][

p
u

]

=

[

0
f

]

. (6)

In this contextH andG are system matrices from the boundary
element formulation (BEM), matrixA derives from a finite ele-
ment formulation (FEM), as in [2]. The matricesC f s and Cs f
allow to convert structural displacement and fluid velocityback
and forth.
Column matrixp denotes the nodal sound pressure amplitude,u
the displacement of the structure.
Applying Schur complement eliminatesu

(

H−GC f sA−1Cs f

)

p = GC f sA−1f . (7)

Here we may introduces the coupling admittance matrix

Yc = C f sA−1Cs f . (8)

Thus we obtain a matrix equation reduced in size to give the
sound pressure as solution:

(H−GYc)p = Gv with v = C f sA−1f . (9)

Yc is generally densely occupied due to full coupling.

MEANING OF NON-LOCAL ADMITTANCE

In this section the one-dimensional, analytical problem ofa cou-
pled structure fluid system is put into a particular form of a sys-
tem of equation that matches equation (7) and equation (9) re-
spectively.
Figure 3 shows this structural-fluid system with mass spring
damper systems enclosing the fluid on either side. The two sys-
tems are themselves connected dynamically by an additional
massmb. Therewith the structure acts in a non-local fashion to-
wards the fluid.
As shown in Figure 3 we introduced a couple of degrees of free-
dom on the interfaces between the fluid and the two massesm1
andm2: the sound pressuresp1 andp2 as well as the normal fluid
velocitiesv1 andv2.
In the following we shall neglect a detailed description of the
necessary mathematical steps. Instead, they shall be accounted
for verbally.
Firstly, we assemble the balances of forces on the three masses
m1, m2 andmb for their displacementsu1, u2 andub. The balance
on mb may then be used to removeub. Applying relation (4) in
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Figure 3: One-dimensional fluid with MSDs on either side and
an additional massmb.

the frequency domain, the other two displacements are replaced
by their interface velocitiesv0 andvl .
The analytical one-dimensional solution of the Helmholtz equa-
tion provides us with two equations for the sound pressuresp1
andp2.
Coupling structure and fluid implies merging the four remaining
equations to this system of equation:
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(10)
Applying the Schur complement again breaks this system down
to an equation that matches equation (9).
Now, here in particular the coupling admittance matrix looks like
this:

Yc =
−iωA

N
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The constantshi j, d1, d2, db, w1, w2 und N appearing in equa-
tion (10) and (11) are as follows:
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(12)

and

d1 = −ω2m1− iωb1 +c1

d2 = −ω2m2− iωb2 +c2

db = −ω2mb − iω (b1 +b2)+(c1 +c2)

w1 = −iωb1 +c1

w2 = −iωb2 +c2

N = d1d2−
d1w2

2

db
−

d2w2
1

db
. (13)

As with a coupling admittance of any complex model discretized
using FEM and BEM,Yc appears to be fully occupied. This fact
conforms with general movement of the boundary that is con-
nected through the structure itself. Thus,Yc stands for a non-
local boundary admittance towards the fluid.

STRUCTURAL DECOUPLING

In order to understand the effect of a local structural behavior on
the equations we imagine an increasing massmb. If mb reaches
infinity, the movement of the two massesm1 andm2 become then
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Figure 4: The same one-dimensional fluid but with local admit-
tance parameters at its boundaries.

uncoupled, i.e. the dynamics of the structural path is cut.
Looking at the coupling admittance in (11) we realize that the
matrix becomes diagonal:

Yc =
−iωA
d1 d2

[

d2 0
0 d1

]

=

[

Y1 0
0 Y2

]

, (14)

withYi showing values according to the local admittance formula-
tion of equation (5). The model in Figure 4 correspondes to equa-
tion (9) for the presented one-dimensional problem. It is based on
the one-sided structure-fluid coupling utilising these local admit-
tancesY1 andY2 as part of the Robin boundary conditions.

CONCLUSION

The essence of this contribution is: a local definition of admit-
tance boundary condition within acoustical calculations leads to
a diagonalization of the coupling admittance matrix.
It is important for any simulation applications to investigate whe-
ther this fact may turn out advantagerous or disadvantagerous.
As an example, the local formulation is suitable for reconstruct-
ing local admittance values out of sound pressure measurements
using inverse techniques, [3, 4, 1]. One may rest assured that it
is practically impossible to reconstruct structural interaction out
of sound pressure data. Thus, it is of practical interest forwhich
applications one may approximate the usually densely occupied
coupling admittances by such diagonal matrices.
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