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ABSTRACT

Simulation techniques in the linear acoustics of rooms \ithitrary geometry often lack sufficient knowledge about th
dynamics of the surrounding walls. But the latter effect $bend distribution significantly. This is why boundary \&lu
problems (BVP) of fully coupled structure fluid systems dddae solved. Unless one transforms the discretized form of
this BVP into a system of only the sound pressure by meanseoStthur complement. This produces a fully occupied
coupling admittance matrix within this formulation. Out ®dund pressure data it is certainly difficult to reprodude al
entries of this matrix. Due to this fact the authors intraglaa approximation for the coupling admittance by definiroglo
admittance values on the boundary. This boundary condiyioa causes a simplification of the coupling admittance imatr

It is demonstrated on a simple structure fluid coupled systdtmse analytical equations are arranged in a matrix form
matching a standard BEM-FEM formulation, followed by a shtiscussion about its applicability.

INTRODUCTION

In systems where fluid and structure is coupled at theirfates,

the system equations are formulated in terms of variables fo
the fluid, e.g. sound pressure, and variables for the stejotug.
displacement. The variables for the structure can be $utesti

by evaluation of the Schur complement. In that case, patiof t
Schur complement can be understood as a coupling admittance
with non-local boundary admittance entries. Herein, thtba@ns

try to explain and emphasize the effect on that coupling &dmi
tance by changing this non-local to a local definition.

A one-dimensional problem of a duct is introduced as a sim-
ple example in order to understand this issue by means of a
boundary-element-method-like  matrix formulation. Sengl
degree of freedom systems are introducted at both ends of the
duct. For the setup of an example with non-local boundary con
ditions, both ends are connected by two springs and a rigickbl

For this system, the admittance matrix will be shown ancdyty.

We will discuss the influence of different masses of that kloc
onto local and non-local admittance condition within thenfa-
lation of the Schur complement, towards the acoustical umadi
Throughout this contribution the authors try to emphasise t
analogousness of the mathematics of this one-dimensiamcal d
to discretised coupled systems of arbitrary geometry ared si

LOCAL ADMITTANCE

First of all we imagine a one-dimensional fluid domain bouhde
on one side by a flexible wall that may be considered as a simple
mass-spring-damper system as shown in Figure 1.

For this system the balance of forces written in the time doma
is

myliy + byl +ciup =F —Apy ()

with A being the cross-sectional area of the interface. If we con-
fine ourselves to the stationary state we may transform this i
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Figure 1: One-dimensional model of fluid bounded by mass-
spring-damper system (MSD) as substitute for flexible wall.

terms of the circular frequenay
— wPmuy — iwbyug + Uy = Fp— Apy . 2
Based on the Robin boundary condition formulation
Vi—Vis=Yp (3
with the structural velocity set to zerg;§{ = 0) and
Vi = —iwu (4)

we find the acoustical admittance

Vi —iwA

Y1 = = - .
! p1  —w?m —iwb; +c1

©®)

During the following mathematics this parameter expresises
dynamics of the wall. It is a frequency dependend and complex
parameter (Figure 2).
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Figure 2: Acoustical admittance parameYeras equivalent for
the MSD.

DISCRETE MATRIX FORMULATION

The boundary value problem for a stationary vibrating syste
consists of the Lame-Navier equation for the structure hef t
Helmholtz equation for the fluid and of the full coupling cénd
tion vi = vs along the fluid structure interaction (FSI).

Through discetisation we obtain this matrix formulation &ofi-
nite number of degrees of freedom in the frequency domain:

H —GCis pl|_|O

& el e
In this contextH andG are system matrices from the boundary
element formulation (BEM), matri& derives from a finite ele-
ment formulation (FEM), as in [2]. The matric&ys and Cgf
allow to convert structural displacement and fluid velo@isck
and forth.
Column matrixp denotes the nodal sound pressure amplitude,
the displacement of the structure.
Applying Schur complement eliminates

(H - GcfSAflcsf) p— GCrA L. @
Here we may introduces the coupling admittance matrix
Ye= CfsAilef . (8)

Thus we obtain a matrix equation reduced in size to give the
sound pressure as solution:
v=CtA . 9)

(H=GY¢)p=Gv  with

Y. is generally densely occupied due to full coupling.

MEANING OF NON-LOCAL ADMITTANCE

In this section the one-dimensional, analytical problera obu-
pled structure fluid system is put into a particular form ofya-s
tem of equation that matches equation (7) and equation {9) re
spectively.

Figure 3 shows this structural-fluid system with mass spring
damper systems enclosing the fluid on either side. The two sys
tems are themselves connected dynamically by an additional
massmy,. Therewith the structure acts in a non-local fashion to-
wards the fluid.

As shown in Figure 3 we introduced a couple of degrees of free-
dom on the interfaces between the fluid and the two massges
andmy: the sound pressurgg andp; as well as the normal fluid
velocitiesvy andvs,.

In the following we shall neglect a detailed description loé¢ t
necessary mathematical steps. Instead, they shall be rdiecou
for verbally.

Firstly, we assemble the balances of forces on the threeamass
my, My andmy, for their displacements;, u, anduy,. The balance
onm, may then be used to remowg. Applying relation (4) in
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Figure 3: One-dimensional fluid with MSDs on either side and
an additional massy,.

the frequency domain, the other two displacements areaegpla
by their interface velocitiegy andy;.

The analytical one-dimensional solution of the Helmholjza-
tion provides us with two equations for the sound presspies
andpy.

Coupling structure and fluid implies merging the four renvain
equations to this system of equation:

hll h12 —ipC(A) 0

ho1  hoo 0 ipCOJ p1 0
P2 | _ 0
A0 oW _ww w | | F
dy dy =
W2 uz -2

_ _Wwp W

0 -A N

(10)
Applying the Schur complement again breaks this system down
to an equation that matches equation (9).
Now, here in particular the coupling admittance matrix lpbke
this:

W2

V.- —iwA dz—abz ——d—wl\évz 1)
CT TN w2
_Wiwe 4 W1
)

The constantsyj, di, dp, dy, Wy, W2 und N appearing in equa-
tion (10) and (11) are as follows:

R T
hi1 hio | gkl _ ol _e !
[hﬂ hzg}_ dk ik | (12
7e|kl _ K K _ oK
and
d = —wzml—iwbl—ircl
d = —w’mp—iwbtc
dy = —w’my—iw(bi+by)+(ci+c)
W, = —iwbi+c¢
Wy = —iwhy+0co
N = dldzfdliw%fdzl’%. (13)
dp dp

As with a coupling admittance of any complex model discestiz
using FEM and BEMY appears to be fully occupied. This fact
conforms with general movement of the boundary that is con-
nected through the structure itself. Thig, stands for a non-
local boundary admittance towards the fluid.

STRUCTURAL DECOUPLING

In order to understand the effect of a local structural bifraan
the equations we imagine an increasing magslf m, reaches
infinity, the movement of the two mass@s andm, become then
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Figure 4: The same one-dimensional fluid but with local admit
tance parameters at its boundaries.

uncoupled, i.e. the dynamics of the structural path is cut.
Looking at the coupling admittance in (11) we realize that th
matrix becomes diagonal:

_ —iwA[d, 0] [V1 O
YC— dle { 0 d]_:|_{ 0 Y2 :|7 (14)

with Y; showing values according to the local admittance formula-
tion of equation (5). The model in Figure 4 correspondes tmeq
tion (9) for the presented one-dimensional problem. It seldaon

the one-sided structure-fluid coupling utilising theseala@mit-
tancesy; andY; as part of the Robin boundary conditions.

CONCLUSION

The essence of this contribution is: a local definition of &dm
tance boundary condition within acoustical calculaticeeds to

a diagonalization of the coupling admittance matrix.

It is important for any simulation applications to investig whe-
ther this fact may turn out advantagerous or disadvantagero
As an example, the local formulation is suitable for recorett
ing local admittance values out of sound pressure measateme
using inverse techniques, [3, 4, 1]. One may rest assuredttha
is practically impossible to reconstruct structural iatgion out
of sound pressure data. Thus, it is of practical interestvfuch
applications one may approximate the usually densely dedup
coupling admittances by such diagonal matrices.
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