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ABSTRACT

The dynamical behaviour of a small cluster of microbubblasjected to ultrasound near a solid boundary is inves-
tigated. An equation for radial oscillation for bubbles nagplane rigid wall is derived using method of images and
solved numerically for a given set of ultrasound parametarthis paper, it is assumed that all bubbles in the system
have the same equilibrium radius and are equidistant froenamother and from the solid boundary. With the current
mathematical model, it is demonstrated that the presenaesolid wall has a signi cant effect on the bifurcation struc
ture and the route to chaos of the bubble system. As sepamdistance between microbubbles and solid boundary is
decreased, the bubble system is more likely to exhibit chadschaotic behaviour occurs at lower pressure amplitude.
Furthermore, the maximum amplitude of the bubble osailfetinear solid wall is shown to be related to the number of
dominant frequencies in the response of the bubble systerall& oscillation amplitude is associated bubble respons

with smaller number of frequencies while chaotic bubbléltzmns will lead to larger oscillation amplitude.

INTRODUCTION

The application of ultrasound driven microbubbles in bidme
ical acoustics and the possibility of using these microlebb
for targeted drug delivery and gene therapy has inspirecenum
ous studies on the dynamics of microbubblis3]. Keller and
Miksis derived an equation based on the classical Rayleigh-
Plesset equatior], and this equation was modi ed by Parlitz

et al. ], resulting in a model that well describes the oscilla-
tions of an isolated bubble at high forcing pressure amgidisu
and the behaviour of a bubble during cavitation.

In practice, it is extremely rare for a single bubble to exist
isolation. There are usually other bubbles nearby and #iig v
likely that they would in uence the behaviour of the wholedbu
ble system. Thus, it is important to be able to understand the
effects of the coupling interactions between bubbles. @di a
Manasseh§] and Chong et al.q] have performed numerical
simulations to investigate the effects of coupling on theaty-

ics of microbubbles, under the assumptions that all buldres
equidistant from one another and that each bubble is sulgject
the same external driving pressure, thus reducing the empl
ity of the system of ordinary differential equations (ODHEs)

be solved. Chong et al7], along with other studies such as that
of MacDonald and Gomatan8], also studied the bifurcation
characteristics of microbubbles within a bubble systemthad
effect of coupling on the route to chaos of a small cluster of
microbubbles.

In order to expand on the current understanding of the dynam-
ics of microbubbles for use in biomedical applications,sit i
important to be able to predict the behaviour of microbubble
that are close to a boundary. The study of linearized buldsle b
haviour for large bubbles (mm sized) close to a planar wall ha
been conducted by Payne et 8] &nd lllesinghe et al10]. In

the nonlinear regime, many studies on the dynamics of babble
near a solid boundary have concentrated on the cavitation da
age caused by the jets formed on bubble collapse (for example
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[11-14]). These are extreme behaviours brought about by high
amplitude forcing of the external pressure eld. In this pap
we will concentrate on examining the nonlinear behaviour of
small bubbles fm sized) close to walls. But we will limit our
scope to the parameter space (i.e. smaller pressure adg)litu
where the microbubbles do not undergo collapse and remain
spherical in shape. Similar studies have been carried out by
Shima and Tomital5] and Shima and Fujiwaralf] where
they investigated the behaviour of one and two spherical bub
bles respectively near a solid boundary in the absence of an
external driving pressure eld.

The main purpose of this study is to numerically investigate
the effect of a plane solid boundary on the dynamics of a small
group of ultrasound driven microbubbles. The bifurcatibare
acteristics of such a system will also be explored, since the
chaotic dynamics of a system of bubbles is related to the iner
tial cavitation of the bubblesl[7]. The study will be limited to
cases where all bubbles in a system have the same equilibrium
radius and are equidistant from one another and from the soli
boundary. Due to the symmetry of this arrangement, the bub-
bles all exhibit the same dynamical behaviour. The restits o
tained from this idealised scenario will hopefully lay tloeif-
dations for the study of more realistic microbubble systéms
the vicinity of a solid boundary.

THEORY

Consider the following equation of Keller-Miksis-Parlfzrm
with coupling terms%; 18] for a cluster of microbubbles in a
slightly compressible liquid as used bgj |
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Figure 1: Schematic diagram of a single bubble close to d soli
boundary and its image bubble
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whereR; is the instantaneous bubble radius of bulibly; is
the equilibrium bubble radius of bubbles; is the distance
between bubbles and j, mis the dynamic viscosity of the
liquid, r is the density of the liquidk is the polytropic ex-
ponent for the bubble gas,is the speed of sound in as, is
the surface tension of the bubble surfaaeis the amplitude
of the acoustic driving pressurégy; is the driving frequency
and Ny, is the number of bubbles. For all simulations in this
report,m= 0:001 kgm s 1 k= 1:33,c= 1484 msl s =
0:0725 Nm 1, R, = 2330 Pa and = 100,000 Pa. These are
accepted values for bubbles in water at 204].

To derive the equations of motion for a bubble near a solid
boundary, the image bubble technique will be used. Other in-
vestigators (seelp; 19]) have shown that this methodology
gives results that is in good agreement with experimental re
sults. It is assumed that the wall acts as a mirror for each bub
ble, so that it behaves as though there is an identical “image
bubble" the same distance from the wall on the other side of
the wall with the same dynamical behaviour (see E)gThus

we can use EqJlj) to model each of the bubbles near the solid
boundary. Using the image bubble theory, the governing-equa
tion for a single bubble close to a wall is given by
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It is assumed here, amongst the other assumptions used in the
derivation of Eq. {) by previous studies, that all the bubbles
remain spherical throughout their motion. This assumpion

still a valid approximation even for non-spherical bubblésse-
boer and KhooZ0] have shown that non-spherical bubbles can
be modelled as spherical bubbles with an equivalent rabats t
give the same bubble volume.

When there are more than one bubbles in the system, every
bubble will have an image bubble in order to simulate the ef-
fects of the wall. In this paper, we will assume that all baisbl

in the systems are equally spaced at distahé®m the wall,

i.e. they are all arranged in a planar fashion a distahfrem

a solid wall. If their distance of bubblefrom bubblej is de-
noted byD;:j, then the matrix form of Eq1 can be written as
shown in Eqg. 8)

VALIDATION OF THE MATHEMATICAL MODEL

To check the validity of the mathematical model, E2). \as
solved using the parameter values de ned &jgnd compared
with the results of the experiment performed W]} where
they studied the behaviour of a single bubble in the absehce o
an external driving pressure (the valueafwas set to zero)
near a solid boundary.

The data is taken from Fig. 11 of}] and Eq. @) was solved
with variable values ofl = 120 mm andRy = 1:2 mm. The
initial conditions used arB(0) = 4:5 mm and the initial bubble
wall velocity as given by Eq4), whereR.g= 4:64 10 3P
is the initial pressure inside the bubble and

2s

1
RO= o Po g

Po - 4)

Fig. 2 shows the close agreement between the experimental
results and the theoretical curve generated by Egbéfore

the rstrebound of the bubble. However, after this rst relnol

the agreement becomes progressively worse. This is due to th
fact that the assumptions that the bubble remains spharichl
xed in space are less valid after the rst rebound of the biebb
This will not be an issue for the numerical simulations in the
remainder of this study though, because the oscillatiomef t
bubble about its equilibrium radius will be consideredheat
than the collapsing-and-rebounding behaviour of the ribbl

Another validation of the model is to compare the solution ob
tained by solving Eq.1) with the experimental data obtained
by [19]. In this study, they investigated the behaviour of two
cavitation bubbles on a wall when subjected to the driviregspr
sure signal shown in Fig(a). Utilising the image bubble tech-
nique, it will be assumed that each hemispherical bubbléen t
wall behaves like a spherical bubble, thus Hjcan be used to
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Figure 2: Comparison between numerical and experimental re
sults for the behaviour of a single bubble near a solid bonda
in the absence of an external acoustic driving pressure. The
solid line is calculated using EcRY

simulate the effects of the wall. However the equation hdmtto
modi ed to take into account the fact that the external dviyi
pressure signal in the experiment is not sinusoidal, byapd
the a sin(2p fexit) term with the value of the pressure signal at
the speci ed time, and replacing thg ex;coq2p fexit) term
with the time derivative of the pressure signal. These \saba@

be obtained from Fig3. The modi ed equation was solved us-
ing the parameter values and initial conditions speci eiig.
3(a) and Fig. 6(a) of19].

Fig. 4 shows that there is a fairly close relationship between
the experimental data and the numerical results. The ttieore
cal curves do predict rebounding of the bubbles after the rs
collapse, but this is not shown by the experimental data It i
important to note that the experimental data suggests hkat t
maximum value oR is bigger for larger distance between the
bubbles,D, and when there are more bubbles in the system.
This observation is correctly replicated by the mathenatic
model. These results suggest that the equations deriveetin S
tion 2 based on the Keller-Miksis-Parlitz equation is a ogas
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Figure 3: (a) Pressure signal used in the experiment peefrm
by [19] (b) Time derivative of the pressure signal, estimated
using a rst-order central difference formula

Figure 4: Comparison between numerical results using Bqg. (
and experimental results obtained W[ for the behaviour of
cavitation bubbles on a wall



23-27 August 2010, Sydney, Australia

ably good model of bubble dynamics near a solid boundary.

NUMERICAL SIMULATIONS

To limit this study to a manageable set of parameters, we will
assume that the distance between all bubbles in the syseem, i
Djj = D = constant. This means that the distance of any bub-
ble to any other bubble in the bubble population is a constant
For Npyp = 3 this situation corresponds to a group of bubbles
arranged at the vertices of an equilateral triangle. Far pla-
per, we will only consider cases where all bubbles are agdng
on a plane i.eNpyp = 1;2;3. If we further assume that at time

t = 0, all bubbles have the same initial radius and bubble wall
velocity is zero, i.eR;(0) = Ry andR= 0, then symmetry will
ensure that all bubbles in the system will have the samesadiu
at any instant in time, i.eRi(t) = Rj(t) = R(t). Substituting
into Eq. @) with simple algebraic manipulation gives E§).(

Please note that because of all the assumptions that weres mad
the results presented here would be directly comparable onl
with experiments in a very speci cally designed micro uadi
system, rather than experimental data from a group of cstatra
agent microbbublem vivo. However, the results may be used
as both an ideal reference for a microtechnological apipioa

and to show the possible trends of a contrast-agent system as
the number of bubbles is increased from one towards a number
that is more typical in medical applications.

In this paper simulations will be carried using typical aitr
sound parameters af= 40 kPa and 125kPa arfdy= 1 MHz,
since these values are commonly used in the literaijr@ he
bubbles will start with initial conditions dR(0) = Ry andR(0) =

0, so that the bubbles oscillate ab&gtdue exclusively to the
driving pressure. If there is more than one bubble in the grou
then an inter-bubble distance Bf= 5Ry will be used, an arbri-
trary value used to ensure that the bubbles are close enough
to interact but will not collide. Symmetry of the initial cdia
tions will ensure that each and every bubble will exhibit the
same behaviour. In this study the behaviour of bubbles that
have equilibrium radiiRy = 2 nm will be analysed, which is
much smaller than the bubbles analysed 8ly [7] and [15],

and much closer to the size typically used in biomedicaliappl
cations [I-3].

Our numerical computation typically go through a short tran
sient period and then settle down to a statistically statipn
state. Typical time series of the system after the transiese
died out is shown in Figh. The data in this gure is computed
with one bubble close to the wall witRy = 2nrm, d = 30mm

and fext = 1=T=1MHz. The black dots in the gure represent
the value of the radius at the end of each period of the externa
pressure. The value afis increased from 40 kPa , 125 kPa and
135 kPa and it is clear from Fi§.that the response of the sys-
tem becomes more nonlinear with increasing values.dfor
a=40 kPa, the value dR is repeated every period (seconds)

i.e. the system responds with period-1 oscillation. &si.25
kPa, the value oR is repeated every 2 periodsT(Zeconds)
i.e. the system responds with period-2 oscillation. Fogdar
values ofa = 135 kPa, the response of the system becomes
chaotic.

Bifurcation characteristics

The information in Fig5 can be represented in a bifurcation
diagram. Figurés(d) shows the structure of the bifurcation for
a single bubble close to a wall as it transitions from a regula
behaviour to chaos asis incrementally increased. At the end
of each driving period, the value & is recorded and plotted
as a function ofa (see Fig.6 (d)). Fora = 40 kPa, there is
only one dominant frequency in the system. Thus, the value of
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Figure 5: Shows the variation of the radii§t) of a mi-

crobubble with initial radiusiRy = 2mm. The bubble is located
d=Ry = 15 away from a solid wall. This bubble is forced with a
frequency of 1IMHz and pressure amplitude of 40 kPa (a), 125
kPa (b) and 135 kPa (c).
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R at the end of every period is the same so all data appear as a
single dot in fora = 40 kPa in Fig6 (d). When the value o4

is increased to 125 kPa, the bubble undergoes a period2 osci
latory motion (i.e. there are two dominant frequencies) aihd
data appear as a two dots. Then the value &f increased and

the process is repeated. Since the systems behaves in &chaot
fashion fora = 135 kPa, all values dR appear as random dots.

By using the normalised radius at every forcing peridd=(
1=fey) as the state variableés] 21] and the driving pressure
amplitude as the control paramet&r 8], bifurcation diagrams
were plotted to investigate the chaotic dynamics of the bub-
ble systems considered in this study. Similar to the previou
section, a driving frequency dfext = 1 MHz, Ry = 2:0 nm,

D = 5Ry (to ensure a large range of pressure amplitudes for
which the bubbles do not collide). Bubbles with equilibrium
radius are considered here, each bifurcation diagram iteplo
for varying distances frord = 5:0 nm tod = 30:0 nm, and the
number of microbubbles in the system is varied fidgy, = 1

to Npup = 3. A single bifurcation diagram is suf cient to de-
scribe the characteristics of all bubbles in the group salte
bubbles will undergo the same oscillation due to the symynetr
of the arrangements initial conditions used in all simolasi.

The bifurcation diagrams are only plotted for driving pregs
amplitudes at which the bubbles do not collide with the solid
boundary, and do not collide with one another. If either of
these occur, then clearly the assumption that the bubbles re
main spherical is no longer valid, so the solution must be dis
carded. In the cases considered the maximum pressure ampli-
tude that provides a physically sensible solution lies leetw

a = 124 kPa an& = 138 kPa, which is determined on a case-
by-case basis.

For a single bubble a distande= 2:5R, from a solid boundary,
Fig. 6(a) shows a period-1 solution up to the period-doubling
bifurcation occuringad 110 kPa. This period-2 solution ex-
tendsuptm 125 kPa, where, at this upper limit of the pres-
sure amplitude, another period-doubling bifurcation esdo
form a period-4 solution.

Fig. 6(b) shows that when the distance from the solid bound-
ary is increased td = 5Ry the bubble undergoes period-1 os-
cillations up to a period-doubling bifurcation at 120 kPa,
which is greater than in the previous case. The resultinigger

2 solution then extends up to another period-doubling b#ur
tionata 130 kPa. After a small increase in pressure ampli-
tude, the period-4 solution splits into a series of pointaraged
vertically on top of one another, which indicates chaoticiles
lations of the microbubble for these pressure amplitudes.

If the distance from the solid boundary is increasedite
10Ry, Fig. 6(c) shows that the bubble undergoes period-1 osil-
lations up to a period-doubling bifurcationat 120 kPa. The
period-2 solution extends up o 130 kPa, when the system
begins to lead into a state of full chaos. A similar route taah

is shown in Fig6(d), which shows that when the distance from
the solid boundary is increasedda= 15Ry, the bubble under-
goes period-1 oscillations, as before, up to a period-dogbl
bifurcation ata 125 kPa. The resulting period-2 solution
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then begins to make its transition to chaosat 135 kPa.

Comparing all four plots in Fig, it can be observed that the
microbubble exhibits very similar routes to chaos for afi-di
tances considered. But, as the distance between the buitble a
the solid boundary is increased, the system begins itsdaifur
tions and route to chaos at a higher driving pressure andglitu

When a second microbubble is added to the bubble system, it
exhibits very different bifurcation characteristics. 3l con-
sistent with the results of7] and [8] who showed that adding

a bubble to an existing bubble cluster can signi cantly alte
the bifurcation characteristics of the system. Fifp) shows
that for two bubbles located a distamte 2:5R; from a solid
boundary, the bubbles undergo period-1 oscillations up to

125 kPa, when the system makes a transition directly to chaos
In our simulations, we did not observe any period-2 oscilla-
tions.

One the other hand, when the distance between the bubbles
and the boundary is increased, the bubbles do not exhibit any
chaotic dynamics. For a distance @f 5Ryp, Fig.7(b) shows

a period-1 solution up to a period-doubling bifurcatioraat

100 kPa, after which the branches of the period-2 solutiad-gr
ually converge back to a period-1 solution. Similar behawio

is observed for larger distances, although the solutiors doe
not quite revert back to a period-1 solution within the con-
sidered range of pressure amplitudes, and the bifurcatien o
curs at a higher pressure amplitudes — from Fig), when

d = 20:0 nm the bifurcation occurs a& 105 kPa, while
from Fig. 7(d), whend = 30:0 nm the bifurcation occurs at

a 110 kPa. So for larger distances from the solid bound-
ary, the bubbles actually remain in a state of order at higher
pressure amplitudes, unlike when the bubbles are closesto th
boundary, in which case they exhibit chaotic dynamics.

Adding a third microbubble to the system again signi cantly
alters its bifurcation properties. Fif(a) shows that when the
distance from the bubbles to the solid boundary s 2:5Ry,

the system makes a sudden transition from a period-1 solutio
to a chaotic solution a2 95 kPa. As was the case in the
two-bubble scenario, when the distance from the boundary is
increased, the bubbles exhibit a more orderly behavioueiwh

d = 5Ry, Fig. 8(b) shows that the bubbles undergo period-1 os-
cillations up to a period-4 bifurcation at 115 kPa. Fig8(c)
shows similar behaviour at = 10R; with the bifurcation oc-
curring at the higher pressure amplitudeaof 125 kPa. From
Fig. 8(d), atd = 15Rg bifurcation occurs whea 130 kPa.
So, just as in the two-bubble case, the bubbles remain iri@ sta
of order at higher pressure amplitudes when the distance be-
tween the bubbles and the solid boundary is relatively large
but when this distance is small then the bubbles exhibittihao
dynamics.

Maximum Radius

Another way of looking at the effects of the wall is to plot
the maximum extension of the radius of a bubble versus the
normalized distancd=Ry from the solid boundary. This is im-
portant because there are recent research activitiessbani
crobubbles to enable transportation of drugs to a targefrsit
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Figure 6: Bifurcation characteristics for a single bubkéamna Figure 7: Bifurcation characteristics for two bubbles naar
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the body. For such application, the methodology requires-d

ti cation of physical parameters that will give rise to l&rgub-

ble oscillations, leading to bubble rupture and localiseagd
delivery. The bifurcation diagrams computed thus far omhesg
information on the frequency content of the bubble response
Figure 9 shows

_ Rmax
Ro

e

(6)

computed with data for different values @Ry, and provides

a clearer idea of the effect of the distance from the solichideu
ary on amplitude of bubble oscillation. Each graph is plbtte
from the minimum distance before the bubble collides with
the solid boundary during its motion up =Ry = 15. Sim-
ulations were conducted with = 40 kPa anda = 125 kPa

and the dynamics of the bubble oscillations is indicatedhiey t
vertical lines in Figs6-8. Fora = 40 kPa bubble response is
dominated by one frequency fdf,,p = 1;2 and 3.a = 125

kPa will generate a response that has 1, 2 or many frequen-
cies, depending on the number of bubbles and distance from
the walls.

It can be observed from Fi@(a) that fora = 40 kPa and
Noub = 2;3, eincreases as the bubbles approach the boundary.
ForNpyp= 1 the opposite is true with the value @fncreasing

with d. There appears to be no clear trend in the data on how
Rmax changes witld and the number of bubbles in the system.
However, the differences are very small. The variatioRifax

is only about 3%-4% for all the simulations reported here. It
is clear that the wall has a negligible effect on the bubble re
sponse foa = 40 kPa.

The bubble response fa = 125 kPa is shown in Figd(b).

For this case, the effects dfon Ryaxis much more signi cant.
For Npyp = 1 the data in this gure shows th&max increases
with d up to ad=Ry 6 7 and then there appears to be a
sudden drop in the value &yax followed by a more gradual
decrease oRmaxWith d. The data in Fig9(b) should be com-
pared with the corresponding data in Fgy.As we move the
bubbles away from the wall, the number of dominant frequen-
cies inthe system is 4 fa=Ry = 2:5, 2-4 ford=Ry = 5:0 and 2

for d=Rp = 10:0 and 15.0. The sudden decreasRimxappear

to correspond to the change of number of dominant frequen-
cies from 4 to 2. ThéRmax values forNyyp = 2 appear to be
lower than theRmax values forNy,p = 1. Figure7 shows that
the number of dominant frequencies in the bubble response
for Npyp = 2 anda = 125 is only 1-2. Comparing the data
for Npup = 1 and 2 so far seems to suggest tRakx will in-
crease with the number of dominant frequencies in the bubble
response. This is con rmed with Fi@ which shows that for
Npub = 3, the bubble oscillations undergoes chaotic behaviour
for d=Ry = 2:5, less chaotic fod=Ry = 5:0 and only one dom-
inant frequency fod=Ry = 10 and 15. Fig9(b) shows that the
corresponding values &nax appear to be large up till about
d=Ry = 10 and drops quite suddenly fdeRy > 10.

CONCLUSION

In this study, a mathematical model is derived that can bd use
to simulate the dynamics of a group of bubbles in the vicin-
ity of a solid wall. This model is based on the Keller-Miksis-
Parlitz equation with coupling terms that describe theatfef
nearby bubbles and the solid boundary. These equations were
veri ed by comparison with available experimental expegim

tal data. In order to limit the number of parameters involved
in this problem, the study is limited to bubble arrangements
where all bubbles are equally spaced from each other and all
bubbles are equally spaced from the solid wall. Thus, the-num
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Figure 9: Effect of distance from the solid boundary for (a)
a = 40kPa, (b)a = 125kPa-— — Npup= 1,———— Npup= 2,
Nbub: 3.

ber of bubbles in this study is limited to 1, 2 or 3. Numerous
numerical simulations were performed to investigate tfecef
of the solid boundary on the oscillations of the microbubble
for ultrasound parameters.

The bifurcation diagrams of the bubble systems shows tleat th
solid boundary does have a signi cant effect on the bifucsat
structure of microbubbles oscillations. When the distanee
tween the microbubbles and the solid boundary is decreased,
a bubble system is more likely to exhibit chaotic dynamics,
while the system also makes the transition from order to€hao
at lower driving pressure amplitudes. It was also found tihet
solid boundary has an effect on the amplitude of oscillation
of the microbubbles. In general, the amplitude of oscibiati
Rmax increases with the pressure forcing amplitualel arger
values ofa give rise to larger values dRmax. For a given
value of a, the value ofRnax appear to have a positive cor-
relation with the number of dominant frequencies in the bub-
ble response. Bubble systems with 1-2 dominant frequencies
appear to have smaller values Rf,ax when compared with
microbubble systems which undergoes chaotic oscillations
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