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ABSTRACT

The dynamical behaviour of a small cluster of microbubbles subjected to ultrasound near a solid boundary is inves-
tigated. An equation for radial oscillation for bubbles near a plane rigid wall is derived using method of images and
solved numerically for a given set of ultrasound parameters. In this paper, it is assumed that all bubbles in the system
have the same equilibrium radius and are equidistant from one another and from the solid boundary. With the current
mathematical model, it is demonstrated that the presence ofa solid wall has a signi�cant effect on the bifurcation struc-
ture and the route to chaos of the bubble system. As separation distance between microbubbles and solid boundary is
decreased, the bubble system is more likely to exhibit chaosand chaotic behaviour occurs at lower pressure amplitude.
Furthermore, the maximum amplitude of the bubble oscillations near solid wall is shown to be related to the number of
dominant frequencies in the response of the bubble system. Smaller oscillation amplitude is associated bubble response
with smaller number of frequencies while chaotic bubble oscillations will lead to larger oscillation amplitude.

INTRODUCTION

The application of ultrasound driven microbubbles in biomed-
ical acoustics and the possibility of using these microbubbles
for targeted drug delivery and gene therapy has inspired numer-
ous studies on the dynamics of microbubbles [1–3]. Keller and
Miksis derived an equation based on the classical Rayleigh-
Plesset equation [4], and this equation was modi�ed by Parlitz
et al. [5], resulting in a model that well describes the oscilla-
tions of an isolated bubble at high forcing pressure amplitudes
and the behaviour of a bubble during cavitation.

In practice, it is extremely rare for a single bubble to existin
isolation. There are usually other bubbles nearby and it is very
likely that they would in�uence the behaviour of the whole bub-
ble system. Thus, it is important to be able to understand the
effects of the coupling interactions between bubbles. Ooi and
Manasseh [6] and Chong et al. [7] have performed numerical
simulations to investigate the effects of coupling on the dynam-
ics of microbubbles, under the assumptions that all bubblesare
equidistant from one another and that each bubble is subjectto
the same external driving pressure, thus reducing the complex-
ity of the system of ordinary differential equations (ODEs)to
be solved. Chong et al. [7], along with other studies such as that
of MacDonald and Gomatam [8], also studied the bifurcation
characteristics of microbubbles within a bubble system andthe
effect of coupling on the route to chaos of a small cluster of
microbubbles.

In order to expand on the current understanding of the dynam-
ics of microbubbles for use in biomedical applications, it is
important to be able to predict the behaviour of microbubbles
that are close to a boundary. The study of linearized bubble be-
haviour for large bubbles (mm sized) close to a planar wall has
been conducted by Payne et al [9] and Illesinghe et al [10]. In
the nonlinear regime, many studies on the dynamics of bubbles
near a solid boundary have concentrated on the cavitation dam-
age caused by the jets formed on bubble collapse (for example

[11–14]). These are extreme behaviours brought about by high
amplitude forcing of the external pressure �eld. In this paper,
we will concentrate on examining the nonlinear behaviour of
small bubbles (mm sized) close to walls. But we will limit our
scope to the parameter space (i.e. smaller pressure amplitude)
where the microbubbles do not undergo collapse and remain
spherical in shape. Similar studies have been carried out by
Shima and Tomita [15] and Shima and Fujiwara [16] where
they investigated the behaviour of one and two spherical bub-
bles respectively near a solid boundary in the absence of an
external driving pressure �eld.

The main purpose of this study is to numerically investigate
the effect of a plane solid boundary on the dynamics of a small
group of ultrasound driven microbubbles. The bifurcation char-
acteristics of such a system will also be explored, since the
chaotic dynamics of a system of bubbles is related to the iner-
tial cavitation of the bubbles [17]. The study will be limited to
cases where all bubbles in a system have the same equilibrium
radius and are equidistant from one another and from the solid
boundary. Due to the symmetry of this arrangement, the bub-
bles all exhibit the same dynamical behaviour. The results ob-
tained from this idealised scenario will hopefully lay the foun-
dations for the study of more realistic microbubble systemsin
the vicinity of a solid boundary.

THEORY

Consider the following equation of Keller-Miksis-Parlitzform
with coupling terms [5; 18] for a cluster of microbubbles in a
slightly compressible liquid as used by [7]:
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Figure 1: Schematic diagram of a single bubble close to a solid
boundary and its image bubble
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whereRi is the instantaneous bubble radius of bubblei, R0i is
the equilibrium bubble radius of bubblei, si j is the distance
between bubblesi and j, m is the dynamic viscosity of the
liquid, r is the density of the liquid,k is the polytropic ex-
ponent for the bubble gas,c is the speed of sound in air,s is
the surface tension of the bubble surface,a is the amplitude
of the acoustic driving pressure,fext is the driving frequency
andNbub is the number of bubbles. For all simulations in this
report,m= 0:001 kg m� 1s� 1, k = 1:33,c = 1484 m s� 1, s =
0:0725 N m� 1, Pv = 2330 Pa andP0 = 100;000 Pa. These are
accepted values for bubbles in water at 20� C [4].

To derive the equations of motion for a bubble near a solid
boundary, the image bubble technique will be used. Other in-
vestigators (see [15; 19]) have shown that this methodology
gives results that is in good agreement with experimental re-
sults. It is assumed that the wall acts as a mirror for each bub-
ble, so that it behaves as though there is an identical “image
bubble" the same distance from the wall on the other side of
the wall with the same dynamical behaviour (see Fig.1). Thus
we can use Eq. (1) to model each of the bubbles near the solid
boundary. Using the image bubble theory, the governing equa-
tion for a single bubble close to a wall is given by
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It is assumed here, amongst the other assumptions used in the
derivation of Eq. (1) by previous studies, that all the bubbles
remain spherical throughout their motion. This assumptionis
still a valid approximation even for non-spherical bubbles. Klase-
boer and Khoo [20] have shown that non-spherical bubbles can
be modelled as spherical bubbles with an equivalent radius that
give the same bubble volume.

When there are more than one bubbles in the system, every
bubble will have an image bubble in order to simulate the ef-
fects of the wall. In this paper, we will assume that all bubbles
in the systems are equally spaced at distanced from the wall,
i.e. they are all arranged in a planar fashion a distanced from
a solid wall. If their distance of bubblei from bubble j is de-
noted byDi; j , then the matrix form of Eq. (1) can be written as
shown in Eq. (3)

VALIDATION OF THE MATHEMATICAL MODEL

To check the validity of the mathematical model, Eq. (2) was
solved using the parameter values de�ned by [4] and compared
with the results of the experiment performed by [15], where
they studied the behaviour of a single bubble in the absence of
an external driving pressure (the value ofa was set to zero)
near a solid boundary.

The data is taken from Fig. 11 of [15] and Eq. (2) was solved
with variable values ofd = 12:0 mm andR0 = 1:2 mm. The
initial conditions used areR(0) = 4:5 mm and the initial bubble
wall velocity as given by Eq. (4), wherePi;0 = 4:64� 10� 3P0
is the initial pressure inside the bubble and
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1

r c

�
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2s
R(0)
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�
: (4)

Fig. 2 shows the close agreement between the experimental
results and the theoretical curve generated by Eq. (2) before
the �rst rebound of the bubble. However, after this �rst rebound
the agreement becomes progressively worse. This is due to the
fact that the assumptions that the bubble remains sphericaland
�xed in space are less valid after the �rst rebound of the bubble.
This will not be an issue for the numerical simulations in the
remainder of this study though, because the oscillation of the
bubble about its equilibrium radius will be considered, rather
than the collapsing-and-rebounding behaviour of the bubble.

Another validation of the model is to compare the solution ob-
tained by solving Eq. (1) with the experimental data obtained
by [19]. In this study, they investigated the behaviour of two
cavitation bubbles on a wall when subjected to the driving pres-
sure signal shown in Fig3(a). Utilising the image bubble tech-
nique, it will be assumed that each hemispherical bubble on the
wall behaves like a spherical bubble, thus Eq. (1) can be used to
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Figure 2: Comparison between numerical and experimental re-
sults for the behaviour of a single bubble near a solid boundary
in the absence of an external acoustic driving pressure. The
solid line is calculated using Eq. (2)

simulate the effects of the wall. However the equation had tobe
modi�ed to take into account the fact that the external driving
pressure signal in the experiment is not sinusoidal, by replacing
thea sin(2p fextt) term with the value of the pressure signal at
the speci�ed time, and replacing the 2p fextcos(2p fextt) term
with the time derivative of the pressure signal. These values can
be obtained from Fig.3. The modi�ed equation was solved us-
ing the parameter values and initial conditions speci�ed inFig.
3(a) and Fig. 6(a) of [19].

Fig. 4 shows that there is a fairly close relationship between
the experimental data and the numerical results. The theoreti-
cal curves do predict rebounding of the bubbles after the �rst
collapse, but this is not shown by the experimental data. It is
important to note that the experimental data suggests that the
maximum value ofR is bigger for larger distance between the
bubbles,D, and when there are more bubbles in the system.
This observation is correctly replicated by the mathematical
model. These results suggest that the equations derived in Sec-
tion 2 based on the Keller-Miksis-Parlitz equation is a reason-

Figure 3: (a) Pressure signal used in the experiment performed
by [19] (b) Time derivative of the pressure signal, estimated
using a �rst-order central difference formula

Figure 4: Comparison between numerical results using Eq. (1)
and experimental results obtained by [19] for the behaviour of
cavitation bubbles on a wall
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ably good model of bubble dynamics near a solid boundary.

NUMERICAL SIMULATIONS

To limit this study to a manageable set of parameters, we will
assume that the distance between all bubbles in the system, i.e.
Di j = D = constant. This means that the distance of any bub-
ble to any other bubble in the bubble population is a constant.
For Nbub = 3 this situation corresponds to a group of bubbles
arranged at the vertices of an equilateral triangle. For this pa-
per, we will only consider cases where all bubbles are arranged
on a plane i.e.Nbub = 1;2;3. If we further assume that at time
t = 0, all bubbles have the same initial radius and bubble wall
velocity is zero, i.e.Ri(0) = R0 and �R= 0, then symmetry will
ensure that all bubbles in the system will have the same radius
at any instant in time, i.e.Ri(t) = Rj (t) = R(t). Substituting
into Eq. (1) with simple algebraic manipulation gives Eq. (5).

Please note that because of all the assumptions that were made,
the results presented here would be directly comparable only
with experiments in a very speci�cally designed micro�uidic
system, rather than experimental data from a group of contrast-
agent microbbublesin vivo. However, the results may be used
as both an ideal reference for a microtechnological application,
and to show the possible trends of a contrast-agent system as
the number of bubbles is increased from one towards a number
that is more typical in medical applications.

In this paper simulations will be carried using typical ultra-
sound parameters ofa = 40 kPa and 125kPa andfext = 1 MHz,
since these values are commonly used in the literature [7]. The
bubbles will start with initial conditions ofR(0) = R0 and �R(0) =
0, so that the bubbles oscillate aboutR0 due exclusively to the
driving pressure. If there is more than one bubble in the group
then an inter-bubble distance ofD = 5R0 will be used, an arbri-
trary value used to ensure that the bubbles are close enough
to interact but will not collide. Symmetry of the initial condi-
tions will ensure that each and every bubble will exhibit the
same behaviour. In this study the behaviour of bubbles that
have equilibrium radii,R0 = 2 mm will be analysed, which is
much smaller than the bubbles analysed by [6], [7] and [15],
and much closer to the size typically used in biomedical appli-
cations [1–3].

Our numerical computation typically go through a short tran-
sient period and then settle down to a statistically stationary
state. Typical time series of the system after the transients have
died out is shown in Fig.5. The data in this �gure is computed
with one bubble close to the wall withR0 = 2mm, d = 30mm
and fext = 1=T=1MHz. The black dots in the �gure represent
the value of the radius at the end of each period of the external
pressure. The value ofa is increased from 40 kPa , 125 kPa and
135 kPa and it is clear from Fig.5 that the response of the sys-
tem becomes more nonlinear with increasing values ofa . For
a =40 kPa, the value ofR is repeated every period (T seconds)
i.e. the system responds with period-1 oscillation. Fora =125
kPa, the value ofR is repeated every 2 periods (2T seconds)
i.e. the system responds with period-2 oscillation. For larger
values ofa = 135 kPa, the response of the system becomes
chaotic.

Bifurcation characteristics

The information in Fig.5 can be represented in a bifurcation
diagram. Figure6(d) shows the structure of the bifurcation for
a single bubble close to a wall as it transitions from a regular
behaviour to chaos asa is incrementally increased. At the end
of each driving period, the value ofR is recorded and plotted
as a function ofa (see Fig.6 (d)). For a = 40 kPa, there is
only one dominant frequency in the system. Thus, the value of
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Figure 5: Shows the variation of the radiusR(t) of a mi-
crobubble with initial radius,R0 = 2mm. The bubble is located
d=R0 = 15 away from a solid wall. This bubble is forced with a
frequency of 1MHz and pressure amplitude of 40 kPa (a), 125
kPa (b) and 135 kPa (c).
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R at the end of every period is the same so all data appear as a
single dot in fora = 40 kPa in Fig.6 (d). When the value ofa
is increased to 125 kPa, the bubble undergoes a period-2 oscil-
latory motion (i.e. there are two dominant frequencies) andall
data appear as a two dots. Then the value ofa is increased and
the process is repeated. Since the systems behaves in a chaotic
fashion fora = 135 kPa, all values ofRappear as random dots.

By using the normalised radius at every forcing period (T =
1=fext) as the state variable [5; 21] and the driving pressure
amplitude as the control parameter [7; 8], bifurcation diagrams
were plotted to investigate the chaotic dynamics of the bub-
ble systems considered in this study. Similar to the previous
section, a driving frequency offext = 1 MHz, R0 = 2:0 mm,
D = 5R0 (to ensure a large range of pressure amplitudes for
which the bubbles do not collide). Bubbles with equilibrium
radius are considered here, each bifurcation diagram is plotted
for varying distances fromd = 5:0 mm tod = 30:0 mm, and the
number of microbubbles in the system is varied fromNbub = 1
to Nbub = 3. A single bifurcation diagram is suf�cient to de-
scribe the characteristics of all bubbles in the group sinceall
bubbles will undergo the same oscillation due to the symmetry
of the arrangements initial conditions used in all simulations.

The bifurcation diagrams are only plotted for driving pressure
amplitudes at which the bubbles do not collide with the solid
boundary, and do not collide with one another. If either of
these occur, then clearly the assumption that the bubbles re-
main spherical is no longer valid, so the solution must be dis-
carded. In the cases considered the maximum pressure ampli-
tude that provides a physically sensible solution lies between
a = 124 kPa anda = 138 kPa, which is determined on a case-
by-case basis.

For a single bubble a distanced = 2:5R0 from a solid boundary,
Fig. 6(a) shows a period-1 solution up to the period-doubling
bifurcation occuring ata � 110 kPa. This period-2 solution ex-
tends up toa � 125 kPa, where, at this upper limit of the pres-
sure amplitude, another period-doubling bifurcation occurs to
form a period-4 solution.

Fig. 6(b) shows that when the distance from the solid bound-
ary is increased tod = 5R0 the bubble undergoes period-1 os-
cillations up to a period-doubling bifurcation ata � 120 kPa,
which is greater than in the previous case. The resulting period-
2 solution then extends up to another period-doubling bifurca-
tion ata � 130 kPa. After a small increase in pressure ampli-
tude, the period-4 solution splits into a series of points arranged
vertically on top of one another, which indicates chaotic oscil-
lations of the microbubble for these pressure amplitudes.

If the distance from the solid boundary is increased tod =
10R0, Fig. 6(c) shows that the bubble undergoes period-1 osil-
lations up to a period-doubling bifurcation ata � 120 kPa. The
period-2 solution extends up toa � 130 kPa, when the system
begins to lead into a state of full chaos. A similar route to chaos
is shown in Fig.6(d), which shows that when the distance from
the solid boundary is increased tod = 15R0, the bubble under-
goes period-1 oscillations, as before, up to a period-doubling
bifurcation ata � 125 kPa. The resulting period-2 solution

then begins to make its transition to chaos ata � 135 kPa.

Comparing all four plots in Fig.6, it can be observed that the
microbubble exhibits very similar routes to chaos for all dis-
tances considered. But, as the distance between the bubble and
the solid boundary is increased, the system begins its bifurca-
tions and route to chaos at a higher driving pressure amplitude.

When a second microbubble is added to the bubble system, it
exhibits very different bifurcation characteristics. This is con-
sistent with the results of [7] and [8] who showed that adding
a bubble to an existing bubble cluster can signi�cantly alter
the bifurcation characteristics of the system. Fig.7(a) shows
that for two bubbles located a distanced = 2:5R0 from a solid
boundary, the bubbles undergo period-1 oscillations up toa �
125 kPa, when the system makes a transition directly to chaos.
In our simulations, we did not observe any period-2 oscilla-
tions.

One the other hand, when the distance between the bubbles
and the boundary is increased, the bubbles do not exhibit any
chaotic dynamics. For a distance ofd = 5R0, Fig.7(b) shows
a period-1 solution up to a period-doubling bifurcation ata �
100 kPa, after which the branches of the period-2 solution grad-
ually converge back to a period-1 solution. Similar behaviour
is observed for larger distances, although the solution does
not quite revert back to a period-1 solution within the con-
sidered range of pressure amplitudes, and the bifurcation oc-
curs at a higher pressure amplitudes — from Fig.7(c), when
d = 20:0 mm the bifurcation occurs ata � 105 kPa, while
from Fig. 7(d), whend = 30:0 mm the bifurcation occurs at
a � 110 kPa. So for larger distances from the solid bound-
ary, the bubbles actually remain in a state of order at higher
pressure amplitudes, unlike when the bubbles are close to the
boundary, in which case they exhibit chaotic dynamics.

Adding a third microbubble to the system again signi�cantly
alters its bifurcation properties. Fig.8(a) shows that when the
distance from the bubbles to the solid boundary isd = 2:5R0,
the system makes a sudden transition from a period-1 solution
to a chaotic solution ata � 95 kPa. As was the case in the
two-bubble scenario, when the distance from the boundary is
increased, the bubbles exhibit a more orderly behaviour. When
d = 5R0, Fig.8(b) shows that the bubbles undergo period-1 os-
cillations up to a period-4 bifurcation ata � 115 kPa. Fig.8(c)
shows similar behaviour atd = 10R0 with the bifurcation oc-
curring at the higher pressure amplitude ofa � 125 kPa. From
Fig. 8(d), atd = 15R0 bifurcation occurs whena � 130 kPa.
So, just as in the two-bubble case, the bubbles remain in a state
of order at higher pressure amplitudes when the distance be-
tween the bubbles and the solid boundary is relatively large,
but when this distance is small then the bubbles exhibit chaotic
dynamics.

Maximum Radius

Another way of looking at the effects of the wall is to plot
the maximum extension of the radius of a bubble versus the
normalized distanced=R0 from the solid boundary. This is im-
portant because there are recent research activities that use mi-
crobubbles to enable transportation of drugs to a target site in

ICA 2010 5



23–27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010

0 50 100 150
0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

a (kPa)

R
/R

0

(a)

0 50 100 150
0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

a (kPa)

R
/R

0

(b)

0 50 100 150
0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

a (kPa)

R
/R

0

(c)

0 50 100 150
0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

a (kPa)

R
/R

0

(d)

Figure 6: Bifurcation characteristics for a single bubble near a
solid boundary withR0 = 2:0 mm (a)d=R0 = 2:5, (b)d=R0 =
5:0, (c)d=R0 = 10:0, (d)d=R0 = 15:0. The two vertical lines in
the �gure shows reference location wherea = 40 anda = 125.
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Figure 7: Bifurcation characteristics for two bubbles neara
solid boundary withR0 = 2:0 mm (a)d=R0 = 2:5, (b)d=R0 =
5:0, (c)d=R0 = 10:0, (d)d=R0 = 15:0. The two vertical lines in
the �gure shows reference location wherea = 40 anda = 125.
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Figure 8: Bifurcation characteristics for three bubbles near a
solid boundary withR0 = 2:0 mm (a)d=R0 = 2:5, (b)d=R0 =
5:0, (c)d=R0 = 10:0, (d)d=R0 = 15:0. The two vertical lines in
the �gure shows reference location wherea = 40 anda = 125.

the body. For such application, the methodology requires iden-
ti�cation of physical parameters that will give rise to large bub-
ble oscillations, leading to bubble rupture and localised drug
delivery. The bifurcation diagrams computed thus far only gives
information on the frequency content of the bubble response.
Figure 9 shows

e =
Rmax

R0
(6)

computed with data for different values ofd=R0, and provides
a clearer idea of the effect of the distance from the solid bound-
ary on amplitude of bubble oscillation. Each graph is plotted
from the minimum distance before the bubble collides with
the solid boundary during its motion up tod=R0 = 15. Sim-
ulations were conducted witha = 40 kPa anda = 125 kPa
and the dynamics of the bubble oscillations is indicated by the
vertical lines in Figs.6-8. For a = 40 kPa bubble response is
dominated by one frequency forNbub = 1;2 and 3.a = 125
kPa will generate a response that has 1, 2 or many frequen-
cies, depending on the number of bubbles and distance from
the walls.

It can be observed from Fig.9(a) that fora = 40 kPa and
Nbub = 2;3, e increases as the bubbles approach the boundary.
ForNbub= 1 the opposite is true with the value ofe increasing
with d. There appears to be no clear trend in the data on how
Rmax changes withd and the number of bubbles in the system.
However, the differences are very small. The variation inRmax
is only about 3%-4% for all the simulations reported here. It
is clear that the wall has a negligible effect on the bubble re-
sponse fora = 40 kPa.

The bubble response fora = 125 kPa is shown in Fig.9(b).
For this case, the effects ofd onRmax is much more signi�cant.
For Nbub = 1 the data in this �gure shows thatRmax increases
with d up to ad=R0 � 6 � 7 and then there appears to be a
sudden drop in the value ofRmax followed by a more gradual
decrease ofRmax with d. The data in Fig.9(b) should be com-
pared with the corresponding data in Fig.6. As we move the
bubbles away from the wall, the number of dominant frequen-
cies in the system is 4 ford=R0 = 2:5, 2-4 ford=R0 = 5:0 and 2
for d=R0 = 10:0 and 15.0. The sudden decrease inRmaxappear
to correspond to the change of number of dominant frequen-
cies from 4 to 2. TheRmax values forNbub = 2 appear to be
lower than theRmax values forNbub = 1. Figure7 shows that
the number of dominant frequencies in the bubble response
for Nbub = 2 anda = 125 is only 1-2. Comparing the data
for Nbub = 1 and 2 so far seems to suggest thatRmax will in-
crease with the number of dominant frequencies in the bubble
response. This is con�rmed with Fig.8 which shows that for
Nbub = 3, the bubble oscillations undergoes chaotic behaviour
for d=R0 = 2:5, less chaotic ford=R0 = 5:0 and only one dom-
inant frequency ford=R0 = 10 and 15. Fig.9(b) shows that the
corresponding values ofRmax appear to be large up till about
d=R0 = 10 and drops quite suddenly ford=R0 > 10.

CONCLUSION

In this study, a mathematical model is derived that can be used
to simulate the dynamics of a group of bubbles in the vicin-
ity of a solid wall. This model is based on the Keller-Miksis-
Parlitz equation with coupling terms that describe the effects of
nearby bubbles and the solid boundary. These equations were
veri�ed by comparison with available experimental experimen-
tal data. In order to limit the number of parameters involved
in this problem, the study is limited to bubble arrangements
where all bubbles are equally spaced from each other and all
bubbles are equally spaced from the solid wall. Thus, the num-
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Figure 9: Effect of distance from the solid boundary for (a)
a = 40kPa, (b)a = 125kPa. Nbub= 1, Nbub= 2,

Nbub = 3.

ber of bubbles in this study is limited to 1, 2 or 3. Numerous
numerical simulations were performed to investigate the effect
of the solid boundary on the oscillations of the microbubbles
for ultrasound parameters.

The bifurcation diagrams of the bubble systems shows that the
solid boundary does have a signi�cant effect on the bifurcation
structure of microbubbles oscillations. When the distancebe-
tween the microbubbles and the solid boundary is decreased,
a bubble system is more likely to exhibit chaotic dynamics,
while the system also makes the transition from order to chaos
at lower driving pressure amplitudes. It was also found thatthe
solid boundary has an effect on the amplitude of oscillation
of the microbubbles. In general, the amplitude of oscillation,
Rmax, increases with the pressure forcing amplitude,a . Larger
values ofa give rise to larger values ofRmax. For a given
value of a , the value ofRmax appear to have a positive cor-
relation with the number of dominant frequencies in the bub-
ble response. Bubble systems with 1-2 dominant frequencies
appear to have smaller values ofRmax when compared with
microbubble systems which undergoes chaotic oscillations.
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