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ABSTRACT 

An image source method is presented for coherently evaluating the sound field from a point source in flat waveguides 
with two infinite and parallel locally reacting boundaries, where one is sound absorbing and the other is reflective. 
The method starts from formulating sound reflections into integrals by plane wave expansion, and the inherent intrac-
tability in solving these integrals in such spaces is avoided by introducing a physically plausible assumption that 
wave fronts remain the same before and after the reflection on a near-rigid boundary. By comparisons to the classical 
wave theory and the existing coherent ray-based methods, it is shown that the proposed method is considerably accu-
rate to predict the sound propagation in flat waveguides with a sound absorbing ceiling and a reflective floor over a 
broad frequency range and for various source/receiver geometries, even if at large distances from the source com-
pared to the waveguide height while the existing methods are shown to be erroneous. 

INTRODUCTION 

Speech privacy and noise control problems are often encoun-
tered in open-plan offices and appear serious in large ones [1]. 
These rooms usually have heights much smaller than the 
lateral dimensions, reflective floors, and suspended ceilings 
lined with sound absorbing material. A simplified model for 
such rooms can be a flat waveguide with two infinite parallel 
boundaries (floor and ceiling) with locally reactive material.  

There have been many methods for predicting the sound field 
inside a flat waveguide. Based on the incoherent image 
source method, Kuttruff [2] proposed analytical formulas to 
predict the sound energy distribution in flat waveguides in 
1980s. With similar incoherent ray-based methods, many 
other researchers have studied sound fields in similar spaces, 
such as large fitted factories [3-6], workshops [7,8], and din-
ning rooms [9]. These models neglected the interference 
effect among direct sound and multiple reflections, and in 
some applications such as that for predicting sound fields of 
speech or narrow band noise, the models appear erroneous 
and cannot provide meaningful prediction [10-12].  

There are some studies on the coherent ray-based method for 
the sound field in bounded spaces. Dance et al. [10] have 
developed an interference model to predict the sound pres-
sure in industrial enclosures by considering the sound propa-
gating phase shift and coherent summation of different re-
flected waves. Wang et al. [13] employed the image source 
method to coherently calculate the total field from a point 
source in open-plan offices by using the plane wave reflec-

tion coefficients for the reflections of spherical sound radia-
tion of the image sources. Brekhovskikh [14] described the 
sound field in a flat-layered homogeneous media as sum of 
direct sound and multiple reflections from image sources, 
where each reflection is formulated as a form of plane wave 
expansion integral. In light of Brekhovskikh’s work and 
based on the solution for the spherical wave reflection on an 
infinite plane, Gensane and Santon [15] proposed a general-
ized solution to effectively model the successive reflections 
of spherical sound radiation from a point source in bounded 
spaces having more than two planes. According to the con-
cepts of Gensane and Santon, Lemire and Nicolas [11] re-
placed the reflection coefficient with a more accurate solution 
[16] of the spherical wave reflection on one infinite plane to 
numerically investigate the sound field in flat waveguides. 
Westwood [17] has proposed a ray-based method for sound 
fields in flat waveguides with a penetrable bottom boundary 
and an idealized sound-soft top boundary to model the shal-
low water ocean environment.  

However these previous coherent ray-based methods either 
require spaces bounded with sufficiently hard boundaries at 
high frequencies, or appear erroneous when source/receiver 
distance being large compared to the height in the flat 
waveguide with a sound absorbing ceiling and a reflective 
floor, which is a common situation in large fitted open-plan 
offices. In this paper, research is presented toward a simple 
but accurate coherent model to predict the sound propagation 
in flat waveguides with a sound absorbing ceiling and a re-
flective floor, particularly at large distances from the source 
compared to the space height. 
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THEORETICAL METHOD 

Formulation of the problem 

Figure 1(a) shows a vertical section of a flat waveguide, 
where the ceiling and floor are locally reactive with uniform 
normalized specific admittance of cβ  and fβ  respectively. 
The height of the space is h, a point source is at (0, Sz ) and a 
receiver is at ),( zr  with r being the horizontal distance from 
the source to receiver. The time-dependant factor tje ω−  is 
suppressed for simplicity throughout this paper. 
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Figure 1. Vertical section of a typical flat waveguide. (a) The 
source and receiver geometry. (b) The schematic geometry of 

image sources, where the real source is assumed to be 0S ,  
nR  denote the propagation distances of the corresponding ray 

from the nth image source to the receiver and nθ  represents 
the incident angle of each ray to the horizontal boundaries.  

Based on the plane wave expansion of the spherical wave, the 
Green function in free field can be expressed as [14] 
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where k
v

 = k( ϕθ cossin , ϕθ sinsin , θcos ) and k is the 
wave number. 0R

v
 is the distance vector from the source to 

the receiver with quantity of 0R . θ  and ϕ  represent the 
azimuth angles in cylindrical coordinates characterizing the 
direction of each plane wave propagation in vertical and 
horizontal planes respectively. 

In the absence of the ceiling, the reflection of spherical wave 
incidence can be obtained by the superposition of all the 
elementary plane wave reflections on the floor plane as [14] 
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where 1−P  denotes the field of the first reflection on the floor 
plane shown in Fig. 1(b), and 1−R

v
 is the corresponding dis-

tance vector from the image source 1−S  to the receiver. 
)(θfV  represents the plane wave reflection coefficient of the 

floor at incidence angle θ  and is given by 
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With the ceiling, the total field can be constructed with the 
rays from an infinite number of image sources [14] with an 
expression of 
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in which 0=n , 1± , 2± , …, and nP  represents the ray con-
tribution from the nth image source shown in Fig. 1(b). Par-
ticularly 0P  denotes direct sound from the real source. Simi-
lar to Eq. (2), the ray contribution from the path with fn  
floor reflections and cn  ceiling reflections can be expressed 
with an integral [14] 
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where nR
v

 = ( nr ϕcos , nr ϕsin , nnR θcos ) is the distance 
vector from the nth image source nS  to the receiver, nθ  and 

nϕ  denote the azimuth angles to characterize the direction of 
nR
v

 in vertical and horizontal planes respectively. )(θcV  is 
the plane wave reflection coefficient on ceiling boundary and 
is expressed as 
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The orders fn  and cn  can be determined from the order n 
with a rule of 
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where (.)sign  denotes the signum function, and )2|,(|rem n  
represents the remainder of || n  after division by 2. 

Defining an overall coefficient )(θV  to replace the term 
cf n

c

n

f VV )]([)]([ θθ , nP  in Eq. (5) is rewritten as 
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and then can be further transformed into 
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By using [14,18] 
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where (.)0J  represents the Bessel function of zero order, Eq. 
(9) can be simplified as 
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Using the identities for a complex number u that 
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in which (.)1
0H  and (.)2

0H  are the Hankel functions of first 
and second kind with zero order. Now the total field from a 
point source in a flat waveguide is explicitly formulated by 
Equation (4) accompanied with the integral Equation (12). 

The coherent image source method 

As shown in Fig. 1(b), 0P  is the direct sound 040 Re jkR π , and 
1P  and 1−P  is the field of single reflections whose integral 

expressions with Eq. (12) can be evaluated with the exact 
(integral) solution provided by Nobile et al. [19], 
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where (.)I  is an integral function given by 
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and β  is the normal specific admittance of the plane that the 
reflection takes place on. 
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For the ray with multiple reflections ( 2|| ≥n ) on boundaries, 
though the exact solution of integral expression of nP  in Eq. 
(12) is generally not possible, it is feasible to analytically 
approximate such integral with the method of steepest de-
scents for larger kr  [14,16]. A second order approximate 
solution provided by Brekhovskikh [14] in term of asymp-
totic series with accuracy to terms of 2)/(1 nkR  is 
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where )( nV θ′  and )( nV θ′′  represent the first and second de-
rivative of )(θV  at nθ , and cf n

c

n

f VVV )]([)]([)( θθθ = . Al-
though Eq. (16) can be used in flat waveguides directly, its 
convergence needs to be analyzed before the application in 
the circumstance concerned in this paper. After substituting 
the expressions of )(θfV  and )(θcV  in Eqs. (3) and (6) into 
Eq. (16), a common factor of [ ] 1

)(cos)(cos
−

++ cf n
cn

n

fn βθβθ  
can be found in all the series terms in Eq. (16).  

In the current circumstance, the floor is sound reflective, 
which leads that 0|| →fβ . If the receivers are far from the 
source compared to the waveguide height, which is a com-
mon situation in large open-plan offices, the incidence angle 

nθ  of rays at the first few orders will approach 2/π as 
shown in Fig. 1(b). This causes that 0)(cos →+ fn βθ  and 
then limits the convergence radius of the asymptotic series in 
Eq. (16). The second order approximation in Eq. (16) is not 
sufficiently accurate for the current problem theoretically.  

To explicitly obtain the higher orders of the asymptotic series 
in Eq. (16), exponential complexity will be encountered as 
the order increases [14,15] and such extension appears not 
sensible as the common factor 
[ ] ∞→++

−1
)(cos)(cos cf n

cn

n

fn βθβθ [16]. The steepest de-
scent method modified by subtraction of the pole has been 
employed to remedy the similarly worsen accuracy of the 
asymptotic series for sound propagation along a single reflec-
tive boundary [16,20]. The modified method is based on the 
Laurent series expansion of the integrand in Eq. (2) to avoid 
the singularities from the poles. Nonetheless such strategy 
becomes difficult in the cases of flat waveguides with two 
boundaries, because the poles in this case come from the 
denominator cf n

c

n

f )(cos)(cos βθβθ ++  of the integrand in 
Eq. (12) and mostly are high order ones. It is intractable to 
explicitly obtain the residues of this integrand at these higher 
poles for Laurent series expansion.  

Analysis on the physics of the problem might be helpful to 
get over the mathematical intractability above. The solution 
in Eq. (13a) or (13b) for the singly reflected field from a 
point source on an infinite plane can be rewritten for general-
ity with a form of image source method as 

 
srdissr QPP ⋅= ,                                                     (17)  

where srP  is the field of single reflection of spherical wave 
from a point source on an infinite plane and disP  is the direct 
field at receiver from the image source due to the single re-
flection.  srQ  is the single reflection coefficient for spherical 
wave incidence, and can be determined from Eq. (13a) or 
(13b) by 
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where nR  is the propagation distance of the ray and interpre-
tations of other parameters are in accord with those in Eqs. 
(13a), (13b), and (14).  

It is revealed that the reflected wave of the spherical sound 
incidence from an image source remains almost spherical 
along a hard enough boundary [21,22]. Thus according to Eq. 
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(17), each reflection of a ray on a reflective boundary that is 
denoted by RB, regardless of the reflection being the first or 
the successive one in the ray propagation from the spherical 
radiation, can be heuristically approximated by 
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where rP  denotes the ray field at receiver after a reflection on 
RB, and rpP  represents the expected ray field at the receiver if 
the boundary RB is rigid, which is just the perfectly reflected 
field on this boundary. )|,( RBRISQref  is used to replace the 
single reflection coefficient srQ  for reflections on the reflec-
tive boundary RB and corresponds to the ray from the image 
source IS to receiver R, which is determined by Eq. (18) also.  

In the current circumstance, the floor boundary is reflective. 
Thus before and after each reflection on it, the wave fronts 
can be assumed to remain the same. The ray field alterations 
after each reflection can be quantified by a weighting factor 

)|,( FBRISQref  that depends on the floor boundary (FB) and 
the ray geometry according to Eq. (19). Thus in the propaga-
tion of a ray with reflection order nf on the floor and nc on the 
ceiling shown in Fig. 1(b), after each “transmission” through 
the floor or its images, the propagation field of the ray with 
reflection order n should be once weighted by the reflection 
coefficient )|,( FBRSQ nref . Therefore after the ray field 
being weighted for nf times due to “transmission” through the 
floor and its images in propagation, the field contribution of 
the ray, nP , can be approximated as 
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where )|,( FBRSQ nref  can be determined from Eq. (18). 
Compared to Eq. (12), the integral of nP  in Eq. (20) has been 
simplified, and now the integrand involves only the reflection 
coefficient on the ceiling.  

The integral in Eq. (20) describes the field of the ray after nc 
times reflections on the absorbent ceiling. This can be evalu-
ated by the second order approximation in Eq. (16) with en-
sured accuracy because || cβ  does not approach zero and for 
the asymptotic series there is no singularity similar to that 
from 0)(cos →+ fn βθ  as 2/πθ →n . So nP  can be further 
approximated for larger kr  by 
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where ),|( ct nCBV θ  represents a total plane wave reflection 
coefficient to take account of the successive nc times plane 
wave reflections on the absorbent ceiling boundary (CB) at 
an incident angle θ , which equals [ ] an

cV )(θ  in this case. 
),|( cnt nCBV θ′  and ),|( cnt nCBV θ′′  are the first and second 

derivatives of ),|( ct nCBV θ  at nθ  respectively. The factor 
n

jkR Re n π4  is the direct sound field at the receiver from the 
nth image source, while the factors in front of it act like a 
combined coherent reflection coefficient to evaluate the 
overall influence from all the successive reflections during 
the ray propagation. Hence nP  can be expressed as 
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where nQ  denotes the combined reflection coefficient corre-
sponding to the ray with reflection order n and 
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in which ),|,( cnabs nCBRSQ  represents a total reflection co-
efficient taking account of all the successive reflections on an 
absorbent boundary for a ray with spherical radiation, where 
nc times successive reflections have taken place on the absor-
bent ceiling during the propagation of the ray from Sn to R. 
The coefficient ),|,( cnabs nCBRSQ  can be approximated by 
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and ),|( ct nCBV θ [ ] cn

cV )(θ= .  

Eqs. (22) and (23) are the main contribution of this paper, 
which in company with Eq. (4) delivers a coherent image 
source method to approximately solve the total field from a 
point source in flat waveguides with a sound absorbing ceil-
ing and a reflective floor. In the next section, numerical simu-
lations will be carried out to validate the model and compare 
it to the existing coherent ray-based methods.  

NUMERICAL RESULTS AND DISCUSSIONS 

The wave theory [23,24] is used as a reference to validate the 
ray-based methods being used for predicting the sound fields 
in flat waveguides concerned in this paper. The equations in 
the wave theory to solve the sound field from a point source 
in flat waveguides are detailed in the Ref. 11, 15, 23, 24 and 
not presented here for brevity. In simulations, the eigenvalue 
equation in the wave theory becomes complex for absorbent 
boundaries with complex admittance and is solved numeri-
cally [23-25]. For the image source methods, the locations of 
image sources can be determined through Fig. 1(b). The 
maximum order l is determined when the accumulated total 
field amplitude differs less than 0.1% from that accumulated 
up to the order l+10.  

The Delany and Bazley model [26] is employed to evaluate 
the boundary admittances in simulations, which are given by 

 
[ ] 1732.0

0
754.0

0 )/(087.0)/(057.01 −−− −+= σρσρβ fjf ,    (25)  

where β  is the normalized specific boundary admittance, 
0ρ  = 1.293 kg∏m-3 denotes the air density at the room tem-

perature, and f  is the actuating frequency of sound wave. 
Parameter σ  is the flow resistivity of boundary material with 
a unit of cgs (1 cgs = 1 kPa∏s∏m-2). Although the Delany and 
Bazley model is semi-empirical and sometimes may be far 
from ideal to represent the realistic circumstance in open-plan 
offices, it is used in this paper due to its simpleness.Fig. 2 
shows the normal incident absorption coefficient of materials 
with flow resistivities used hereafter versus frequency.  
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Figure 2. Spectra of normal incident absorption coefficient of 

materials with various flow resistivities σ  in simulations. 

Two numerical cases are investigated to access the prediction 
performance in flat waveguides by the proposed method and 
the existing coherent ray-based methods, such as the method 
of Brekhovskikh [14], the method of Lemire and Nicolas [11], 
and the method of Gensane and Santon [15]. The ceiling of 
the flat waveguide is assumed to be highly sound absorbing 
(30 cgs) in the first case and to be moderately absorbent (150 
cgs) in the second, while the floor keeps reflective (10k cgs) 
and the waveguide height is always 2 m in both cases.  

In the first case, the predictions of the sound pressure level 
(SPL) are firstly investigated versus r/h at 1000 Hz, where 

== zzs 0.25 m and the normal incident absorption coeffi-
cients of the ceiling and floor are 0.85 and 0.03 respectively. 
The corresponding results are compared in Fig. 3. It is shown 
that the results from the proposed method and those from the 
wave theory almost overlap over the range of r/h from 1 to 50. 
The method of Gensane and Santon [15] provides accurate 
results only when r/h is smaller than 2, and the method of 
Lemire and Nicolas [11] is accurate with r/h below 3. For the 
method of Brekhovskikh [14], large discrepancies are found 
between it and the wave theory as r/h > 5.  
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Figure 3. Predictions of SPL at frequency 1000 Hz versus r in 
a 2 m high flat waveguide. == zzS 0.25 m. The flow resis-
tivities of the ceiling and floor are 30 and 10k cgs respec-

tively.  

Computations have been carried out in this case to further 
validate the proposed method in the frequencies range from 

100 Hz to 2000 Hz, where receivers are chosen with a set of 
horizontal distances from the source of 5, 10, and 20 times of 
the waveguide height. Figures 4 shows the results corre-
sponding to the situations where the source and receivers are 
at the height of a person seated ( == zzs 1.2 m). The predic-
tion of SPLs with the proposed method always agree well 
with the wave theory over a broad frequency range, except 
small differences observed at frequencies below 200 Hz, 
which may be explained by the reason that the accuracy of 
Eq. (16) is ensured in theory for large kr .  
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Figure 4. Spectra of SPL in the 2 m high flat waveguide in-

vestigated in Fig. 3, where  == zzS 1.2 m.  

In the second numerical case, the predicted SPL versus hr /  
curves with different methods are compared in Fig. 5, where 

== zzS  0.25 m and the frequency is 1000 Hz still for ex-
amination while the normal incident absorption coefficient of 
the ceiling becomes 0.5. The agreement between the pro-
posed method and the wave theory is remarkable with hr /  
ranging from 1 to 50 again. The method of Brekhovskikh [14] 
is shown with errors also for hr /  larger that 5 while the 
performance from the methods of Lemire et al. [11] and Gen-
sane et al. [15] seem better by comparison with that in Fig. 4 
of the first case, which might be explained by the less wave 
fronts distortion after each reflection on the ceiling as it being 
less absorbent. In this case, results similar to those in Fig. 4 
in frequency domain were obtained by selecting the same 
source/receiver geometries, which are not presented here for 
brevity.  
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Figure 5. Same caption as Fig. 3 except that cσ =150 cgs. 
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The computational time from the calculation with the pro-
posed method and the numerical evaluation of the wave the-
ory is also compared. In evaluation with the wave theory, the 
computational time increases exponentially with the fre-
quency. At the highest frequency of 2000 Hz, it takes over 45 
seconds for a personal computer with a 2.4 GHz Intel Q6600 
processor to execute the numerical evaluation of the wave 
theory. However less one second is needed for the same 
computer to implement the calculation with the proposed 
method at a single frequency and the computational time is 
frequency independent. It is shown that the proposed method 
is simple and much faster than the numerical evaluation with 
the wave theory for an equivalent accuracy degree. From the 
above results for sound fields in the flat waveguide with a 
sound absorbing ceiling and a reflective floor, it is clear that 
the proposed coherent image source method is valid and can 
provide more accurate predictions than the existing coherent 
ray-based methods for various source/receiver geometries.  

CONCLUSION 

In the present study, an accurate coherent image source 
method has been derived to predict the sound fields in the flat 
waveguide with a sound absorbing ceiling and a reflective 
floor, which can be a simplified model for the fitted open-
plan offices. Based on the theory of expending spherical 
wave into plane wave integrals, the method provides a physi-
cally meaningful prediction avoiding the intractability in 
analytically approximating the integrals in such flat 
waveguides, by introducing an assumption that wave fronts 
remain the same before and after each reflection on a reflec-
tive boundary. Numerical results compared to the wave the-
ory and the existing ray-based coherent methods show that, 
the proposed method is valid and accurate to predict the 
sound propagation, even if at large distances from the source 
compared to the waveguide height while the existing coher-
ent ray-based methods are inaccurate. 
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