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ABSTRACT

Finite difference time-domain (FDTD) methods are accurateand efficient methods to solve the linearized Euler equa-
tions that governed long range sound propagation. Interactions between pressure fluctuations and local wind and temper-
ature profile as well as a complex topography are readily taken into account. The main issue in time-domain methods is
to account for reflection of acoustic waves on an impedance ground. Impedance boundary conditions are classicaly de-
fined in frequency-domain and cannot be directly translatedin time-domaine. Thus, a time-domain boundary condition
(TDBC) has been recently proposed by Cottéet al. (1) for applications in outdoor sound propagation. This TDBC has
been implemented in a FDTD solver using several methods developed in the community of computational aeroacoustics.
In this paper, propagation of an initial gaussian pulse is considered in a two-dimensional geometry over a distance of
500 m with a frequency resolution up to 1200 Hz. The results are compared in time-domain with an analytical solution.
The waveforms of the acoustic pressure are found to be strongly dependant on the impedance model. Surface waves are
also identified in the numerical calculations.

INTRODUCTION

Outdoor sound propagation is governed by many complex phe-
nomenons which can be ordered in two groups: on one hand, at-
mospheric effects due mainly to refracting induced by vertical
profile of wind and temperature, atmospheric absorption and
scattering by turbulent stuctures and on the other hand bound-
ary effects due to ground impedance and topography. More-
over, for applications in transportation noise, acoustic sources
are also complex: in the case of the TGV - the french high-
speed train - they are broadband and in motion (320 km/h).
Time-domain numerical solutions of the linearized Euler equa-
tions can account precisely for all these phenomenons (2, 3)
and are becoming increasingly popular (2, 4–6). Modelling
of impedance grounds is one of the main difficulties in time-
domain solvers since the impedance models are defined in the
frequency-domain. Several methods have been proposed in the
litterature: some authors choose to model the ground layer in
their computational domain (4) while others have developed
time-domain impedance boundary condition (TDBC). In this
paper, the TDBC recently proposed by Cottéet al. (1) for ap-
plications in outdoor sound propagation is implemented.

This paper aims at studying propagation of acoustics waves
from an initial gaussian pulse over an impedance ground and
over a distance of 500 m. Three impedance models clasically
used for applications in outdoor sound propagation are con-
sidered. The major contribution at the ground level for two
impedance models is a low-frequency wave. Comparison with
an analytical solution shows that this wave corresponds to the
surface wave.

TIME-DOMAIN SIMULATIONS

Solver description

The linearized Euler equations (LEEs) are solved by using ex-
plicit numerical schemes developed by the community of com-
putational aeroacoustics. Optimized finite-difference schemes
and selective filters over 11 points are used for spatial deriva-
tion and for grid-to-grid oscillations removal, respectively. For
the interior points, fourth-order finite-difference scheme of Bo-
gey and Bailly (7) and six-order selective filters are applied.
For boundary points, non-centered schemes are used. The fil-
tering coefficient is set to 0.2 for all filters except at the extreme
points where a filtering coefficient of 0.01 is applied. At last,
time integration uses the linear six-step fouth-order Runge Kut-
ta algorithm of Berlandet al. (8). At the ground, the TDBC de-
veloped by Cottéet al. (1) is used. At the other boundaries, a
radiation boundary condition is applied.

The domain of interest has a length of 500 m in thex-direction
and of 50 m in thez-direction. An uniform spatial step∆x =
∆z = 0.05 m is used in both directions. The computational do-
main has then 22 millions of points. The Courant-Friedrich-
Levy number denoted as CFL and defined by CFL= c0∆t/∆x
is set to 1 wherec0 = 340 m/s is the adiabatic sound speed. 11
000 time iterations are needed so that the pressure pulse leaves
the computational domain. An homogeneous atmosphere is con-
sidered and the air densityρ0 is set to 1.22 kg/m3.
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Source

In the simulation, an initial gaussian pulse is considered:

p(x,z,t = 0) = S0exp

(

− ln2
x2 +(z− zS)2

B2
x

)

(1)

wherezS is the height of the source,S0 is a parameter set to 1
Pa andBx = 5∆x is the gaussian halfwidth. In this paper, the
acoustic pressure is normalized by the parameterS0.
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Figure 1: Amplitude of the equivalent point source strength
versus frequency.

This source can be seen as a monopole with an equivalent
source strengthQ(ω). Indeed, the analytical solution of propa-
gation of this pulse in free field can be written as the product
of the Green function times a parameter denoted asQ(ω) that
depends only on frequency. This term is given by:

Q(ω) = S0
πB2

c0
ik0 exp

(

−k2
0B2

4

)

(2)

whereω is the angular frequency,k0 is the acoustic wavenum-
ber and the parameterB is linked toBx by the relationB2 =
B2

x/ ln2. On figure1, the absolute value ofQ(ω) is plotted ver-
sus frequency. It can be seen that this source has frequency
components up to 800 Hz (-30 dB compared to the maximum
value of |Q(ω)|). In the numerical simulations, the source is
located atx = 0 and its height is set tozS = 2 m.
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Figure 2: Real and imaginary parts of the normalized
impedance models (in full lines) and of their approximations
(in dots). The two vertical lines delimit the frequency bandof
interest on which the optimization process has been realized.

Impedance model

Impedance modelsZ(ω) are usually defined in the frequency-
domain by the relation :

P(ω) = Z(ω)Vn(ω), (3)

whereVn(ω) andP(ω) represent respectively the component
of acoustic velocity normal to the ground and the pressure at
the interface between the ground and the air. To translate di-
rectly the impedance boundary condition in time-domain, a
convolution that is not efficient numerically is then needed.
To avoid this calculation, following work done in electromag-
netic propagation (9) and applied in acoustics for duct con-
figurations (10), a method proposed by Cottéet al. (1) for
applications in outdoor sound propagation is used. First, the
impedance model is approximated in the frequency-domain by
a rational function:

Z(ω) ≈
N

∑
k=0

Ak

λk − iω
(4)

where the parametersλk andAk are respectively the poles of
the model and corresponding coefficients andN is the num-
ber of poles. A recursive convolution method, numerically effi-
cient, can then be used. Several methods are available to getthe
approximation of the impedance model and are described in
Cottéet al. (1). Three impedance models are considered here:

• the modified Zwikker and Kosten impedance model (11):

ZZK = Z∞

(

1+
µZK

−iω

)1/2

. (5)

with Z∞ = ρ0c0q
Ω andµZK = σ0Ω

ρ0q2γ . This model depends
on the tortuosityq, the porosityΩ and the flow resistiv-
ity σ0. We choose here the following set of coefficients
for the impedance model, denoted as ZW:q=1,Ω = 0.8
etσ0 = 10 kPa.s.m-2. This model can represent an semi-
infinite snowy ground.

• the Miki impedance model (12) :

ZM = ρ0c0

(

1+
µ

(−iω)0.632

)

, (6)

with µ = 0.1279(2πσe)
0.632. This model has only one

parameter, the effective flow resistivityσe. We use here
σe = 100 kPa.s.m-2 which is a common value for grassy
grounds. This model will be denoted as M1.

• the two-parameter Miki impedance model (12, 13) :

ZMe = ZM coth

[

e
c0

(

−iω + µe(−iω)0.382
)

]

, (7)

with µe = 0.193(2πσe)
0.618. The parametere is called

the equivalent thickness of the porous layer. The set of
coefficientse = 0.1 m andσe = 10 kPa.s.m-2 is chosen
and can model a rigidly backed layer of thcknesse and
of impedanceZM. This model will be referred as M2.
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Figure 3: Phase of the three impedance models versus fre-
quency.

The coefficients of the approximation in equation4 are calcu-
lated with a method of optimization in the frequency-domain
on the frequency band [50 Hz ; 1200 Hz] withN = 5. The real
and the imaginary parts of the impedance models and of their
approximations are plotted on figure2. It can be seen that a
good approximation has been obtained through the frequency
band of interest.
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ZW M1 M2

Figure 4: Waveforms of the normalized pressure obtained forthe three different impedance models at a column of receivers located at
x = 500 m from the source. On the right, the colorbar scale indicates the normalized pressure.

ZW M1 M2

Figure 5: Sound pressure levels in dB obtained for the three different impedance models at a column of receivers located at x = 500 m
from the source. On the right, the colorbar scale indicates the sound pressure level in dB.

ZW M1 M2

Figure 6: Waveforms of the surface wave obtained from the analytical solution for the three different impedance models at a column of
receivers located atx = 500 m from the source. The dotted lines represent the arrivaltime of the direct wave. On the right, the colorbar
scale indicates the normalized pressure.
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Figure 7: Comparison between the waveforms obtained from numerical calculations (in full line) and the waveform of the surface wave
obtained with an aalytical solution (in dotted line) for thedifferent impedance models at three receivers at differentheights.

At last, the phase of the impedance models are plotted ver-
sus the frequency on figure3. This parameter is related to the
relative contribution of the surface wave: indeed, amplitude
of the surface wave compared to the amplitude of total field
seems more important for large values of the phase (14). For
impedance models with both real and imaginary parts positive,
the phase ranges from 0 toπ/2. It can be noticed that the model
ZW has the lower phase values for frequencies below 300 Hz.
At the opposite, the phase of the M2 reach values close toπ/2
for low frequencies.

RESULTS

Waveforms

The pressure waveformsp(t) obtained for a column of receivers
located atx = 500 m and at height from 0 m to 40 m are plot-
ted on figure4 for the three impedance models. Firstly, it can
be seen that the first arrival corresponds to the direct wave in
the three cases. A second arrival can be distinguished and corre-
sponds to the reflected wave on the ground. This wave depends
strongly on the impedance model. The waveforms for receivers
close to the ground are notably different: the waveform dura-
tion of these arrivals is much longer to those of the direct and
the reflected waves. Thus, a quasi-harmonical behavior can be
noticed, especially for the case of the model M2 where the de-
cay of oscillations with time is small.

On figure 5, the sound pressure level∆L defined by∆L =
20log( p̂/ p̂re f ) is plotted versus frequency. The reference pres-
sure is set to ˆpre f = 2.10−5 Pa. Large contribution from low-
frequencies can be seen on the spectra for receivers close to
the ground in the three cases; the frequency band and the am-
plitude of this contribution depend on the impedance model.
Thus, for the model ZW, frequency components of pressure are
neglectible for frequency above 30 Hz while this limit is close
to 100 Hz for the model M1. Moreover, amplitude of this low-
frequency contribution is greater for the model M2 than for the
model M1. Thereafter, it will be shown that this contribution
correspond to the surface wave.

Surface wave

The surface wave is a distinct contibution propagating above
an impedance plane. Among its properties, it should be noticed
that this wave decay exponentially with height. In the 3D case,
it decays with the square root of range while the direct and the
reflected waves decay linearly with range. At long ranges, sur-
face waves can then become the major contribution to acoustic
pressure.

An interesting interpretation has been proposed by Waxler (15)
: in the theory of modal expansions, the surface wave corre-
sponds to the first mode. The analytical expression for the sur-
face wave can then be obtained in a two-dimensional config-
uration for a monopole source of unit amplitide assuming an
homogeneous atmosphere. The following equation is then pro-
posed:

p̂S(x,z,ω) =
kS

√

k2
0−k2

S

ei
√

k2
0−k2

Sxe−ikS(z+zS), (8)

wherekS = k0β is the vertical wavenumber of the surface wave
and β = ρ0c0/Z is the normalized admittance. The surface
wave component is then given in the time-domain by:

pS(x,z,t) =
1

2π

∫ +∞

−∞
Q(ω) p̂S(x,z,ω)e−iωt dω, (9)

where the expression ofQ(ω) can be found in the equation2.
A Discrete Fourier Transform is used to compute efficiently the
equation9.

The analytical waveforms of the surface wave have been repre-
sented on figure6 for the different impedance models. Close to
the ground, the waveforms observed on figure4 are retrieved,
especially the quasi-harmonical behavior. It can be also noted
that the amplitude of the surface waves is larger with impor-
tant values of the impedance phase at low frequencies. Thus,
the large oscillations obtained with the model M2 and the low
amplitude of the surface wave with the model ZW are consis-
tent with the figure3. Besides, it can be observed that a part of
the surface wave is non-causal: indeed, in the different cases,
the surface wave is non-zero before arrival of the direct wave.
This means that the speed of the surface wave is greater than
the sound speed. It is one of the classical features of the sur-
face waves (16). However, in the numerical calculations, this
non-causal part of the surface wave does not appear: analyti-
cal calculations could show that it is cancelled by the reflected
wave.

Comparison with the analytical solution

In this section, the waveforms of the pressure obtained from
the numerical calculations are compared to the waveform of
the surface wave obtained from the analytical solution. On the
figure7, these two waveforms have been plotted for receivers
located atx = 500 m and at heights of 1 m, 2 m and 5 m. It
can be seen that in the different cases the surface wave compo-
nent corresponds well with the tail of the signal. Note also the
acausal part of the surface wave. At last, it can be noted that,
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in the cases M1 and M2, the major contribution to pressure at
the ground level comes from the surface wave; for the case ZW,
it is less obvious because the amplitude of the surface wave is
very low.

CONCLUSION

In this paper, a numerical simulation of outdoor sound propaga-
tion over a distance of 500 m has been studied. Surface waves
depending on the ground impedance have been observed. It has
been shown that the low-frequency tails of the pressure signal
correspond to the surface waves for the different impedance
models considered in this work. At last, it has ben observed
that the shape and the amplitude of the waveforms of the sur-
face wave depend strongly on the impedance model. In future
work, propagation of acoustic waves over terrain with a com-
plex topography will be studied. Indeed, surface wave can also
exist in acoustic shadow zones. It will be then interesting to
study its contribution to the pressure and to compare its influ-
ence with the other types of acoustic waves.
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