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Abstract 
This work is focused on modeling the perception of tremor 
found in pathological voices. The main research objective is to 
automatically separate the different sources of tremor to 
estimate the magnitude of tremor perturbations using signal 
processing techniques. A new assessment algorithm is derived 
from speech recordings which combines non-linear filtering, 
amplitude demodulation and spectral estimation techniques. 
The algorithm is evaluated against the perceptual judgments 
provided by speech pathologists and other reported indexes. 
The results show that the algorithm is effective differentiating 
normal from pathological tremor and it is a reliable 
measurement of tremor perturbations with high correlation 
with perceptual judgments. 
Index Terms: Tremor, pathological speech, dysarthria. 

1. Introduction 
Vocal tremor can be a symptom of neurological disorders. It 
has been studied with respect to various neurological 
conditions such as organic voice tremor (OVT) [14], 
spasmodic dysphonia [18], Parkinson disease (HP) [2], 
amyotrophic lateral sclerosis (ALS) [19] and cerebellar ataxia 
[7]. Darley, Aronson and Brown [7] also reported a study 
analyzing the relevance of tremor for eight types of dysarthria 
including flaccid (FD), spastic (SD), ataxic (AD), Parkinson 
disease (HP), OVT, chorea (HC), dystonia (HD) and ALS. 
They found tremor as a relevant feature for OVT and other 
dysarthria types such as HP, ALS and ataxic dysarthria (AD). 
Voice tremor is defined as a low-frequency fluctuation in 
amplitude or frequency (or both) [20] caused by oscillating 
movements of components of the speech mechanism. Its origin 
is generally neurological and its frequency ranges between 1-
18 Hz. The frequency and intensity of the tremor varies with 
the type of disorder, providing valuable information for the 
assessment of this type of acoustic perturbation.  

There are various algorithms reported to instrumentally assess 
tremor perturbations. Some of the most reliable measures rely 
on amplitude and frequency modulation indexes that are 
measured in sustained vowel phonations (SVP) 
[14][18][2][19][7]. For instance, the frequency of the 
oscillations in OVT has been reported in the range of 4-8 Hz, 
with amplitude modulation indexes above 40% [1][13]. 

A spectral analysis of the demodulated speech signal was 
investigated in [11], where it was found that the frequency of 
the most prominent spectral peaks of the radiated speech 
signal failed to differentiate pathological tremor from normal 
oscillation encountered in control subjects. Only the 
magnitude of the 6 most prominent peaks correlated well with 
more severe cases of tremor (90% correlation) but did not 
correlate so well for control utterances (40%). This work 
observed that the frequency of the oscillations of normal and 
pathologic tremor overlaps, with mainly the magnitude of the 
tremor (and not its frequency) influencing in its perception. 

Buder and Strand [4] proposed a combined visual analysis 
(called "modulogram") of the amplitude and frequency 
modulations (AM and FM) present in sustained vowels. They 
divided the frequency ranges for both, frequency and 
amplitude modulations, in three bands: namely "wow" (0-2Hz) 
"tremor" (2-10 Hz) and "flutter" (10-20 Hz). It is interesting to 
note that frequency spectrums of AM and FM shown as 
examples portray different distributions, indicating that there 
might be different sources of oscillations in the resulting 
radiated waveform. Vocal folds and vocal tract tremors can 
have different intrinsic oscillation patterns, and can be non-
linearly combined in the radiated [16]. The simultaneous 
existence of different sources of tremor has been reported in 
[21] and the potential benefits of separated analysis. 

Differences between the AM and FM demodulated signals are 
also shown in [8], where variable phase differences for low, 
normal and high pitch are reported. In the same study, it is 
suggested that valuable insights about the underlying 
mechanisms of vocal tremor can be gained by distinguishing 
the AM at the sound source from the AM caused by the 
oscillation in the resonators (vocal tract). 

In this paper, a separation of both sources of oscillations is 
performed by means of inverse filtering techniques, under the 
assumption that a separate analysis can yield a better 
correspondence with perceptual ratings. The research is 
focused on modeling the perception of tremor perturbation, 
searching for an index that is both highly correlated with 
human perception and objective. An automatic algorithm to 
assess tremor perturbations is proposed to aid in performing 
acoustic evaluations of pathological speech. The performance 
is assessed with respect to the perception of three speech and 
language pathologists with experience assessing voice 
disorders and it is compared to other reported algorithms. 

2. Materials and methods  

2.1. Database 
The data used in this investigation contained SVP of the vowel 
/a/ from 127 subjects from two databases [5][12] with similar 
disorder distributions to the one reported by Darley, Aronson 
and Brown [7]. Recordings from a total of 19 healthy subjects 
and 108 patients were studied1. Perceptual judgments were 
obtained from three judges as described in [6] using a lineal 
scale between 0 and 6 with an anchored judgment system. 
The frequency band of interest to this work was from 2-10Hz 
to include the overall reported tremor range [4] reported for 
OVT, HP, ALS and AD (starting at 3 Hz, ending at 8 Hz 
[2][19][1]). 

                                                                  
 
1 The onset and offset of all recordings were automatically 
removed to analyzed  the steady segments where amplitude 
and pitch are expected to be constant or monotonically 
decreasing with a very smooth  slope 



Figure 1 shows a plot of intensity and pitch contour of a 
patient with OVT, selected from the database. This plot shows 
that tremor is present in both amplitude and pitch signals, 
suggesting multiple sources. 

 
Figure. 1 Top: Sample waveform of a severe OVT 
subject (HO66F059A). Middle: Pitch contour. Bottom: 
Intensity envelope. 

2.2. Tremor index 
The radiated speech is, according to the source filter theory of 
speech production [9], the convolution of the signal generated 
in the glottis and the transfer function of the vocal tract. Thus, 
tremor in both the glottal area and the vocal tract contributes to 
the perceived tremor in the acoustic signal. The algorithm 
proposed in this work separates these different sources of 
tremor and combines them to determine a global tremor index 
based on AM parameters (TrAM). A list of the symbols and 
notations used in this paper to describe the calculation of the 
index in the following sections is summarized in Table 1. 

Table 1. Summary of notations used in the paper. 

Notation Description 
D framed acoustic signal data matrix 
k number of frames 
n number of samples per frame 
A vocal tract filter matrix 
Hz impulse response of vocal tract filters 
R residual signal (glottal source estimation) 
K kurtosis 
↓x downsample operation at rate x 

LPFx low-pass filter at frequency x 
PSDx power spectral density of signal x 

F0 pitch frequency  
SAMD amplitude demodulation of speech signal 
SAMA amplitude demodulation of filter response 
SAMR amplitude demodulation of residual signal 

2.2.1. Signal decomposition by inverse filtering 

The isolation of tremor sources can be implemented using 
inverse filtering [22] as shown in Figure 2. Let the recorded 
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where R is the estimation of the glottal signal and A contains 
the information on the vocal tract configuration. Both terms 
are separate sources that contribute to the tremor observed in 
the recorded speech manifested in a form of 
amplitude/frequency modulation. Recursive Least Square 
algorithm provided faster convergence to optimal filter 
coefficient [22]. The algorithm was implemented with frames 
of 1s and overlapping increments of 50 ms to capture low 
frequency oscillations embedded in the modulated signals.  

The tremor source is then analyzed in the lower-spectral band 
of the frequency response of the filter when it is excited with 
white noise. 

 
Figure 2. Block diagram for the inverse filtering process. 
The recorded signal is decomposed into the residue 
(glottal excitation) and the adaptive filter (vocal tract 
transfer function). 

The independent AM tremor components were estimated by 
means of envelope detection. Let us assume that um is a 
narrow-band message signal that corresponds with the tremor 
observed in the recorded speech (BWum<12 Hz) and that uc is a 
carrier signal that corresponds with the fundamental frequency 
(F0). If recorded speech is a Sustained vowel phonation (SVP) 
utterance in which pitch and intensity is expected to be 
constant, the recorded speech can be described by: 

)2cos()](1[)( 00 nFnuCnd m π+=    (2) 
 
where C0 is a constant given by the amplitude of the carrier. 

If F0 is detected reliably using a pitch waveform matching 
algorithm [15] and F0 >> BWum (which still holds for the case 
of speech with lower pitch corresponding to male speakers 
with average F0 = 100-120 Hz); then, um can be extracted 
using a simple envelope (low pass) detection operation [10]: 

})({)( ndLPFnu FfHzm 012 ≤≤∝    (3) 

In this case, um is the narrowband modulation present in the 
radiated signal AMD (the "D" subscript comes from the matrix 
D representing the radiated signal). This derivation can also be 
performed in the residual (glotal source) signal (matrix R), to 
obtain AMR, the modulation in the source. 

The PSD of the resulting demodulated signals (denoted SAMD 
and SAMR) were then estimated using Welch modified 
periodogram [17] with minimum frequency resolution of 



0.0610 Hz, 1 second length Blackmann window, 25% overlap 
and 215 points FFTs. 

2.2.2. Normal / pathological separation. 
Results in [11] showed different behaviors for the amplitude 
peaks of the AM spectra for normal and pathological samples, 
with a higher predictive value in the latter (90% vs. 40%). This 
fact suggested the implementation of an initial extra step in the 
design of the automatic measurement of tremor. This is, 
pathological samples should be separated from normal 
samples before quantifying the magnitude of the tremor 
perturbation. This avoids sensitivity of the tremor index  to 
low-magnitude peaks of the spectrum of control subjects. 
The SVP of the subjects from the databases that were scored 
by the judges with high index of tremor were analyzed 
together with a similar number of control subjects (19 of each 
type). 

 

 
Figure 3: Frequency response (a,c) and contour (b,d) of 
the amplitude-demodulated signal of the vocal tract 
model for:  subject HO66F059A with severe OVT (top) 
and healthy subject PS37M086A, with no tremor. 

Figure 3 shows 3-dimensional plots of the estimated frequency 
response of the amplitude-demodulated signal derived for the 
vocal tract filter model of a subject with OVT (a) and normal 
(c). The spectrum was obtained as indicates in previous 
section. Plot a) exhibits high-amplitude oscillations in the 
frequency range reported in [1] for OVT, with the higher 
intensity between 4 and 5 Hz. In contrast, the plot b) shows 
small-magnitude oscillation with peaks in the 8-11Hz band 
(range reported for tremor in normal subjects [23]). All signals 
were normalized to account for differences in energy, down-
sampled and time-limited to an average duration of 6s. The 
contour plots (b, d) reflect a more accurate representation of 
the bands with higher energy with respect to the frequency 
axis. 

Two indexes were evaluated to separate healthy from 
pathological tremor recordings. One was the ratio of the 
energy in the 3-8 Hz band to the energy of the 0-25Hz band: 
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where subscript "X" can be any of the three power spectral 
densities obtained (D-radiated, R-residual, A-filter response). 
BrX index should be higher for utterances with tremor due to 
higher relative energy in the 3-8 Hz band. 

The other index is the kurtosis (K) of the SAMA values in the 
0-25 Hz range. The kurtosis is defined as: 
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where • is the mean operation, σ is the standard deviation 
and n is the number of samples of the estimated spectrum per 
frame. The rationale for the use of KX is that the peak 
excursions in SAMX should increase the value of KX, while 
spectra of healthy subjects should have a closer-to-normal 
distribution. 

Threshold values to separate normal from pathological 
samples were established in terms of equal error rates (EER) 
[24] assuming normal distributions for the values of BrX and 
KX in the two groups. 

2.2.3. Quantification of tremor perturbation magnitude 

After an abnormal tremor is detected, the quantification of the 
magnitude of the perturbation is required. A peak ratio 
algorithm was used to assess the magnitude of the tremor 
perturbation observed in the studied disorders. A peak peaking 
algorithm was implemented to find the most relevant peaks in 
the frequency band of interest for the amplitude-demodulated 
power spectrum of the original radiated speech (SAMD), the 
amplitude demodulated power spectrum of the residual signal 
(SAMR) and the amplitude demodulated power spectrum of the 
vocal tract filters (SAMA). 

A peak matching algorithm was later performed between the 
SAMD and the other two spectra. The peaks that matched within 
a range of ±0.25Hz were considered to derive an energy ratio 
index that quantified the magnitude of the tremor 
perturbations. The index was derived as the ratio between the 
energy of the matched peaks within the 3-8Hz frequency band 
in SAMD and the total energy of the SAMD spectrum below 25 
Hz. A weigh factor of 1.3 times was used emphasize peaks 
that are perfectly aligned in the three spectra. 

Figure 4 shows the signal required to derive the tremor index 
for a subject with OVT. It is observed that a good separation 
of the two sources of tremor is achieved since the product of 
SAMR and SAMA (plot e) closely resembles the original 
spectrum of the amplitude demodulated spectrum.  However, 
both spectra provide different information of the manifested 
tremor. On one side SAMA matches more closely the amplitude 
modulation information due to the resemblance with the 
amplitude demodulation spectrum SAMD (highest peak located 
at 4.7Hz). On the other side SAMR matches more closely the 
frequency demodulated spectrum (SFM) shown for comparison 
in plot b (highest peak located at 4.1Hz). SFM was estimated 
with the average pitch frequency derived with a waveform 
matching algorithm [15] for each frame of D. These 

a) 

b) 

c) 

d) 



observations were consistently observed in subjects with 
perturbation judgments above 3 in the perceptual scale.  
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Figure 4: PSD of the amplitude-demodulated (a,c,d,e) and 
frequency (b) signals used quantify the tremor 
perturbations (subject HO66F059A). (a,b) SAMD and SFM 
derived from the radiated signal (c) SAMR derived from the 
residual signal (d) SAMA derived from the vocal tract 
model. (e) estimated SAMD signal from SAMR and SAMA.  

3. Results and Discussion 

3.1. Normal/Pathological separation: 
Results showed that only the kurtosis operator of SAMA (from 
0≤ f ≤ 25Hz) (KA) showed different means for both groups at 
the 95% significance level. 

The average normal subjects exhibited less variability having 
higher KA values (over 9.2). Subjects with tremor exhibited 
kurtosis values closer to 0. A detection threshold of 8.2 was 
found as optimal according to the EER criterion.  

The fact that only KA significantly separated normal from 
pathological samples imply that the main differences between 
normal and pathological tremor should be given by the tremor 
perturbations made by the vocal tract. The tremor observed in 
normal subjects would be mainly due to oscillation in the 
glottal area, with smaller contribution of the vocal tract. The 
solution to the normal/pathological separation requires  the 
separation of tremor sources and the assessment of the 
information contained in the vocal tract model (matrix A). 

3.2. Tremor magnitude estimation 
The new algorithm was compared to commonly-used tremor 
indexes previously reported such as: the frequency 
demodulation index (FoTRI) from Kay Elemetrics [12], the 
tremor intensity index (ATRI) [12] and the AM-modulation and 
frequency modulation indexes reported in [23]. The results of 
analyzing the data with all tremor indexes was compared to 
the perceptual judgments (PJ) provided by the clinicians 
(intra-rater correlation 0.9283). The new measure, TrAM, 
showed the highest correlation with respect to the PJ 
exhibiting a coefficient of 0.8723 (p<0.001), followed by ATRI 

with 0.6531 (p<0.001) and next by FoTRI with 0.4968 
(p<0.01). The other two measurements yielded smaller 
correlation coefficients with p values below the 95% 
confidence level. The differences in performance between the 
TrAM and ATRI algorithms were attributed to the independent 
estimation of the different sources of tremor which enabled the 
peak alignment and peak weighting algorithms. 

It was noticed that the frequency demodulation parameter 
FoTRI did not correlate significantly with perceptual 
judgments, denoting a higher influence of the amplitude 
modulation component over the perceptual judgments. Figure 
6 shows the correspondence of the PJ and the objective 
measures obtained with TrAM and ATRI. It is observed a higher 
correlation between both types of judgments with PJ in the 
extremes of the scale while in the correlation in the middle is 
weaker. The best fit of a second order polynomial is shown to 
highlight a nonlinear trend between both types of judgments.  

The sequence of operations for computing TrAM is given in 
Table 2 and graphically represented in Figure 5. 

Table 2. Computation of TrAM. 

Algorithm description 
1 compute ↓2kHz and LPF1.2*F0 
2 construct matrix D 
3 derive matrices R and A using eq. (1) 
4 derive SAMA with (3) as in section 2.1.1 (0≤ f ≤ 25Hz) 
5 derive K using (4) → normal/abnormal decision 
6 obtain SAMD with (3) as in section 2.1.1 (0≤ f ≤ 25Hz) 
7 derive SAMR with (3) as in section 2.1.1 (0≤ f ≤ 25Hz) 
8 perform peak peaking on SAMA, SAMD and SAMR  
9 perform peak matching and weight function algorithms 
10 obtain energy ratio from prominent peaks  

 

 

 
Figure 5: Block diagram to obtain the tremor index. 

Figure 7 shows the magnitude of TRAM for all the disorders in 
the databases. The algorithm is able to differentiate OVT from 
the rest of the groups (3 subjects did not present large amounts 
of tremor). It is also noticeable that other groups such as HP, 
HD and ALS show small non-zero averages of the index. 

4. Conclusions 
This paper reported an alternative automatic measurement to 
assess tremor perturbations in SVP utterances with high 
correlation with perceptual judgments. It was shown that 
estimating independent sources of tremor was beneficial to 
differentiate normal from pathological tremor and contributed 
positively to achieve objective judgments of tremor 
perturbations. 

The results obtained in this work indicate that the reported 
measurement performed better than the other tremor indexes 
studied by at least 26% when measurements are correlated 



with the perception of tremor perturbations. The performance 
of the measurement was enhanced by the independent 
estimation of tremor sources that enabled a two-tier analysis. 
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Figure 6: Plot of TR index vs. PJ.(a)TRAM index. (b) 
ATRI index. Best fit of a 2nd order polynomial is shown. 

 

 
Figure 7: Results of TRAM index for all subjects. 
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