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ABSTRACT

Since the early 1930s, brake squeal has been a problem for NVH departments and the high-pitched noise causes cus-
tomers to complain and lodge costly warranty claims. Due to its friction-induced nature, material properties and oper-
ating conditions, the problem of brake squeal is non-linear and highly complex. In the past, research has been focussed
on mode-coupling instability predicted by the complex eigenvalue analysis (CEA). However, for unstable modes not
detected by CEA, friction-induced energy fed back by the pad modes, due to the friction coefficient, pressure variations
and non-linear material properties, has been shown, by means of non-linear time series analyses and the acoustic bound-
ary element method, to cause friction-induced pad squeal or to amplify the mode coupling of brake components for a
pad-on-plate system. It is suggested that pad mode instabilities be treated as a stochastic process defined by a random
3-parameter-space: the mean changes in kinetic energy, frequency and acoustic power caused by changes in pressure
or the friction coefficient. It is shown that, for a pad-on-plate system and a pad-on-disc simplified brake system, this
stochastic approach enables the probability to be calculated for a specified increase in kinetic energy or a specified
change in frequencies, thus allowing the assessment of brake squeal propensity and the development of strategies for
controlling brake squeal.

INTRODUCTION

In automotive industry brake squeal has become an important
cost factor because of customer dissatisfaction. In North Amer-
ica, up to one billion dollars p.a. were spent on Noise, Vibra-
tion and Harshness (NVH) issues [1] while friction material
suppliers allocated more than half their budgets to dealing with
NVH problems [2]. According to a J.D. Power survey con-
ducted in 2002, 60% of warranty claims concerning the brake
corner are due to brake squeal [3]. Up to 5% of the USA‘s
gross national product can be accounted for by losses due to
friction and wear, which includes brake noise related problems
[4].

There have been numerous literature reviews on disc brake
squeal recently. Three of the most comprehensive include: Akay
[1], in which a general outline of the acoustics of friction con-
cerning not only brake squeal is given; Kinkaid et al. [5] who
discuss brake squeal mechanisms; and Ouyang et al. [6] who
focus on the numerical analysis of brake squeal noise using
the Finite Element Analysis (FEM) in the frequency and time
domain. Mechanisms investigated so far which are thought to
be responsible for brake squeal include stick-slip [7–9], neg-
ative gradient of friction coefficient with sliding velocity∂ µk

∂vs

[10], sprag-slip [11], mode coupling or binary flutter [12], ham-
mering [13], parametric resonances [14, 15] and moving loads
[16]. Other mechanisms sometimes mentioned include thermo-
elastic instability [17, 18], viscous instability [19] and stick-
slip-separation waves [20–22].

Despite intensive research efforts, disc brake squeal propen-
sity remains a very complex problem to predict [23], Figure
1 displays the number of publications and patents since 1935
using an internet search for ’disc brake squeal’ with GOOGLE

SCHOLAR. The following statistic is not complete and it can be
assumed, data related to more recent years is slightly more ac-
curate. However, for the purpose of showing trends, an internet
search seems to be sufficient.

The first patent for a proposed mechanism to handle brake
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Figure 1: Literature survey ’Google Scholar’: 1935-2009

squeal was registered in 1936 (Period I in Figure1) but the
publication in international journals of research on this issue
only started after 1969 to increase. From 1969 until 1995 (Pe-
riod II), the number of annual research publications remained
at a fairly low level with a total of 72 or 3.4/year on average.
In the same period, the number of registered patents also re-
mained quite low with a total of 32 or 1.8/yearon average. Af-
ter 1995, the number of publications began increasing, to 114
in 2009 (798 in total or 57/year, Period III). Periods I-III are
on the one hand side strongly influenced by the proprietary situ-
ation from sides of the automotive industry, but also exemplify
the change of focus of customers from possessing a merely
functioning automobile (period I) up to having more comfort
(period III). The increase in research publications after 1999 is
most likely caused by increased customers’ concerns and ex-
pectations and initiated through the application of the complex
eigenvalue analysis (CEA) to prediction of unstable vibration
modes in the 1989−1990 (A ) by Liles [24]. The maximum
number of patents, 14, was registered in 1999 (B) highlight-
ing also the practical impact of the CEA. Initially, the contact
interface between pads and disc was manually tailored with
springs in numerical simulations. As better contact elements
were developed and implemented in commercial codes such
as ABAQUS 6.4 (2003) (C ) [6], research into numerical anal-
ysis of brake squeal propensity continued to accelerate in the
last decade but the number of patents actually decreased. This
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could be an indication that research findings are not yet ma-
ture enough to be applied in industry. As a result, brake squeal
is still of practical concern to the automotive industry as con-
firmed by Hoffmann and Gaul [25] or Chen [26].

Traditionally, research into brake squeal has been focused on
three approaches: (a) using experimental methods to study the
vibration and acoustic responses of a brake system; (b) using
numerical methods, predominantly finite element models with
complex eigenvalue analysis, to determine unstable vibration
modes; and (c) using simplified analytical models to gain in-
sight into the mechanism of brake squeal generation. It has
been proposed by Oberst & Lai [23] that, despite the merits
of these approaches, it could be beneficial to explore the use
of other analysis methods for providing greater insight into the
mechanism of brake squeal. For example, by applying statisti-
cal analysis to industry brake squeal test data, it has been found
that the squeal performance of various pad modifications is
highly correlated with the degree of non-linearity in the system
[27]. Non-linear time series analysis tools and recurrence plots
applied to microphone squeal test data of a full brake system
illustrates the Ruelle-Takens-Newhouse route to deterministic
chaos [28]. Also, in Hoffmann & Gaul [25], non-conventional
analysis techniques, such as incorporating uncertainties, prob-
abilistic measures and statistics, are recommended. Although
brake squeal is essentially a deterministic problem, the exact
values of many operating parameters are not known because
of large variations in the material properties of notionally the
same materials in identical operating conditions [29].

Empirical distributions of the friction and normal forces related
to brake squeal vibrations can be found in [30, 31] where the
effect of a random friction component was investigated using
the discrete wavelet transform. It was found that the occurrence
of squeal noise is associated with a larger mean value of the in-
stantaneous friction coefficient and that random components of
the contact forces are non-Gaussian processes. Parametric ran-
dom vibrations due to friction and stochastic averaging tech-
niques are reviewed in [32].

Incorporation of uncertainties would involve solving a govern-
ing equation with astochasticcomponent, as in [33, 34]. In
order to reduce the computational resources required, instead
of obtaining a deterministic solution for each variation of ran-
domisation, a decomposition method has been developed and
found to be superior to the classical Monte Carlo simulation
[35]. With this decomposition method it is possible to approxi-
mate eigensolutions of a linear stochastic system.

Another way of incorporating uncertainties is to calculate the
probability of squeal occurrence by means of the Monte Carlo
simulation using a sub-structured and a reduced order model
[36]. Randomness is taken into account through the friction
coefficient,µ, the stiffness,k, or the Young‘s modulus,E, of
brake components. If the input parameters of structural calcu-
lations are randomised, it is possible to couple these calcula-
tions with a parametrised CEA in ABAQUS to solve a random
eigenvalue problem based on the uncertainties of key parame-
ters such as the material properties or the friction coefficient.

The main uncertainties in disc brake squeal arise from: (1) the
complexity of interacting mechanisms; (2) the still unknown
functional description of the friction coefficient which is de-
pendent on operating conditions; and (3) significant changes
in the properties of the pad-lining material during operation.
It has been found in a laboratory brake [37] that under vary-
ing loads, a change in pad resonances of up to 25%, due to
variations in the pad-disc’s ’angle of attack’ of up to 15%, are
possible. Thus a maximum change in a pad’s in-plane frequen-
cies of ∆ f = 11.2kHz is possible. Due to the importance of

pad vibrations, it has been suggested that a CEA should be per-
formed, which focus on pad’s modes [37]. This has been done
in [38, 39] by means of CEA, forced response calculations and
the acoustic boundary element method.

Based on the study presented in [38, 39], in this paper a novel
approach to predict the onset of instabilities is pursued. As lin-
ear analyses as the CEA cannot predict all instabilities [40, 41,
38], the new approach must be able to capture mechanisms dif-
ferent from those in the CEA which detect mode-coupling in-
stabilities. Ideally, the procedure should be easy to understand
and ready to use with commercial software packages. The new
approach is complementary to the CEA and focused on certain
pad modes, as suggested in [37] and studied by Oberst and Lai
[38, 39]. Three key indicators are used: changes in frequency,
in the kinetic energy spectrum, and the radiated acoustic power
as a result of changes in the operating conditions such as the
material properties of the lining materials, friction coefficient
and pressure. Most research into uncertainties is focused on
physical quantities such as the friction coefficient or material
properties (input variables). This choice is somewhat arbitrary
and requires time consuming calculations of a distribution of
complex eigenvalues as a function of these input variables. In
this study, therefore, the concept of uncertainty is quantified by
the relationshipbetween the changes in three output indicators:
frequency, peak kinetic energy and peak acoustic power as a re-
sult of changes in the two input variables: pressure and friction
coefficient. With this method, the computational efforts are sig-
nificantly reduced as a statistical distribution is applied only to
deterministic results (outputvariables). Further, the chosen out-
put variables mark readily important physical design variables.

NUMERICAL MODELS

In this study, three different models are used.Plate-models con-
sist of a slider on a moving plate, similar to the analytical mod-
els used in [4, 28] but with elasticity and area contact. These
models represent a simplified annular disc as used in [42–45]
cut open and stretched to a plate. As previous simplified brake
system are fcoussed on mode-coupling instability due to the
merging of the split modes [42–45], this type of instability is
not expected for a plate model due to the loss of its annular
structure. Although plate model II from [38] is not analysed in
further detail, the numbering of the models remains the same
as in [38, 39]. Further,disc-models consist of a pad on a mov-
ing disc.

• Plate-models:
(I) isotropic pad: translational moving steel plate, fre-

quency range investigated (0−6.5kHz); variation:
friction coefficient, pressure

(II) transversely isotropic pad: NA (studied in [38],
but left out in the present paper)

• Disc-models:
(III) isotropic pad: rotating thick annular disc; frequency

range investigated (0.7−7.0kHz); variation: fric-
tion coefficients; material

(IV) transversely isotropic pad: isotropic steel back -
plate; rotating thick annular disc;frequency range
investigated (1−7kHz); variation: friction coeffi-
cient, material constants with pressure

The form factor (size, geometrical features) remains the same
for the isotropic/ anisotropic pad-on-disc models except that,
for the anisotropic lining material, a back-plate is attached which
results in higher out-of-plane stiffness. Since the total thick-
ness remains the same, the puck‘s thickness has to be reduced
by the thickness of the backplate.

The emphasis in this study is on models I and IV. Model I is
used to simulate an experiment performed by Chen [26] and
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model IV is used to study the influence of changes in the lining
material properties (due to changes in the model’s compress-
ibility under different loads according to [46]) on Young‘s/shear
moduli and Poisson‘s ratios. For both pad-on-disc systems, com-
pliant boundary conditions, as described in [47] are taken. In
Figure2, the pad-on-plate (I) and pad-on-disc (IV) models are
depicted. The material properties and mesh details are taken
from [38, 39, 47].
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Figure 2: (color online) (a)isotropic pad-on-plate model (I);
(b) anisotropicpad-on-discmodel (IV)

Modes of the pad-on-plate model are referred to asq1 to q7
according to [38] and resonances are identified in frequencies
as f1 to f4. Apart from the resonancef1 each of the reso-
nancesf2 − f4 house two modes, which lie very close in fre-
quency. Due to structural and frictional damping, their peaks
are merged. For the pad-on-disc systems, modes are described
by (m,n, l ,q), according to [48]. Here,m, n, l and q stand for
out-of-plane modes withmnodal circles andn nodal lines, and
in-plane radial and tangential (shear) modes, respectively. Res-
onances in the kinetic energy spectrum / acoustic power spec-
trum are identified byf1 to f24 (model III) andf1 to f18 (model
IV) respectively, according to plots of kinetic energy & acous-
tic power [38, 39]. System modes, which are dominated by
pad-modesare assignedPx, Py for the plate model andPr , Pt
andProt for the disc model, according to [38]. In this study, the
friction coefficientµ ranges from 0.05 to 0.65 and the pressure
p covers the range from 0.001 to 8.0MPa.

MODELLING OF UNCERTAINTY

The first part of this section provides insights into the prob-
lem’s scope, the second introduces the probabilistic model.

Problem Scope

In modelling a brake system in order to analyse brake squeal
propensity, two major unknowns are the composition and the
dynamic behaviour of the brake lining as well as the exact rela-
tionship of the two mating bodies in contact expressed in terms
of the friction coefficient.

When a car is slowed down in the course of the braking pro-
cess, due to increased brake-line pressure, the vehicle‘s veloc-
ity decreases and the friction coefficient increases. With com-
pression of the lining material, the elastic constants change
non-linearly, resulting in varying material stiffness parameters
[29, 46].

In Figure3 the brake system (response) is depicted with its in-
put (excitation) and output (squeal). In the control box, the sta-
tionary parts (caliper assembly) and the rotating brake disc are
depicted. The friction coefficient and its dependency on vari-
ables is also depicted, and assigned as part of the input of the
control system, inherently responsible for the feed-back loop.
In many brake squeal studies it is assumed that the relative ve-
locity between the pad and the disc, and pressurisation of the
pad and its associated contact are the most important factors
for mechanisms which generate squeal. Wear and temperature
are little investigated compared with the aforementioned vari-

ables relative velocity and pressure, and almost nothing can be
found on the dependency on humidity. That temperature has
a major effect on elastic constants and therefore on frequency
variations is intuitive and is briefly studied in [38], but will not
be followed up in this study.

In practical engineering concerned with friction and contact,
the hypothesis of COULOMB-AMONTON is of particular inter-
est [8, 49]. However, it only accounts for a normal force with
point contact and is, apart from the direction, not dependent on
the absolute value of velocity [50].

In the following, the assumptions underlying this study are
along the lines of findings taken from a wider study in the
course of design of experiments [51]: A full brake system is
tested on an industrial computer-controlled brake dynamome-
ter as described in [51, 27]. The test consists of a total of 1669
stops and is divided into a warm and a cold section. The warm
section is set up according to SAE J2521 [52] and the cold
section satisfies NVH needs and customer specifications. The
test conditions themselves as in SAE J2521, are designed so
stringent that a problem brake system, rather squeals on the
test bank than during on-vehicle tests under real operating con-
ditions [29]. Of course, statistical data based on and derived
from experiments is highly dependent on the test procedure it-
self. Because of the overestimative character of dynamometer
tests and its derived statistics, dynamometer tests are the only
true standardised benchmark of practical relevance so that, to
the authors’ opinion, computer simulations, in order to be of
direct practical use, have to be, in the end, related to real test
procedures and their statistics. Figure4 exemplifies recorded
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Figure 3: (color online) Schematic functional dependency of
the friction coefficient and its influence on the input (excita-
tion) of the brake system (response) prior to/during squeal.

pressure, velocity and friction coefficient data for only one stop
[51]. The dashed boxes in Figure4 (a)-(c) mark the time inter-
val investigated in this paper (0.4 to 5.9s) for a cold forward
stop of a two-piston floating calliper brake system for a mid-
size sedan. The pressure in Figure4 (a) increases linearly with
1MPa/s, as indicated by a triangle (point-slope form) at the
beginning of the dashed line. The velocity in subfigure (b) de-
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creases only slightly and is almost constant. In (c), the friction
coefficient oscillates but tends to increase slightly. In subfig-
ure (d), the histogram and the theoretical normal distribution
of the friction coefficient data of the dashed box (Figure4 (c))
are plotted.

The data of the friction coefficient over time is tested for nor-
mal distribution by means of a Lilliefors test withα = 0.05
andα = 0.01 significance levels. The null hypothesis, that the
distribution comes from the family of normal distributions can
only be rejected forα = 0.01. By taking the exponential of this
data, this hypothesis can no longer be rejected, hence it can be
assumed that the friction coefficient data is truly log-normally
distributed. From Figure4 (d) it can be seen that the experimen-
tal data of the friction coefficient is slightly negatively skewed
which results from the negative gradient of the friction coeffi-
cient curve (see also [28]). However, as in a first approach only
the methodology of how to incorporate uncertainty is of inter-
est, the assumption of normally distributed data is used for all
three models at hand. The normal distribution has some advan-
tages as it is symmetrical around its mean, and thus halves the
area of the probability density function; this simplifies mod-
elling, the calculation effort and the presentation of results.
Further, in the course of the study it is assumed that the fric-
tion coefficient fluctuates very strongly due to a (i) dominant
normal distributed component, with an underlying (ii) deter-
ministic trend towards higher values due to a (iii) decreasing
but almost stationary sliding velocity. All this is driven by a
(iv) linearly increasing pressure. Based on these assumptions,
in this paper a concept is developed related to findings of pad-
mode instabilities presented in [47, 38, 39]. These pad modes
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Figure 4: (colour online) Example data from experiments: (a)
brake line pressure; (b) rotor velocity; (c) friction coefficient;
and (d) histogram and normal distribution of part of friction
coefficient curve. Data provided courtesy of PBR Ltd.

show large but variable changes in kinetic energy and seem to
change their frequencies easily. The simulations performed in
[47, 38, 39] depend on two varying parameters, the friction co-
efficient µ and the pressurep. For the anisotropic pad-on-disc
model (IV), non-linear changes in the elastic constants due to
different pressures are applied. In Figure5, the development of
the kinetic energy,Ek, of the isotropic pad-on-plate model (I)
(Figure2(a)) is depicted. Four resonances are marked asf1 to
f4. For p0 = 1kPa, a friction coefficient ofµ = 0.001, which
exemplifies the friction-induced nature of the mechanisms in-
vestigated, is also applied: no peaks can be observed atf2− f4
but as soon asµ exceeds 0.01 little peaks show up.
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The problem of changes in frequency, peak kinetic energy /
acoustic power is sketched and exemplified for the kinetic en-
ergy in Figure6. Due to the braking process some of the res-
onance frequencies in the spectrum and their kinetic energy
levels change. Most of these variable peaks are associated with
in-plane pad modes which are very active in terms of vibration
due to energy fed into the system and being released at their res-
onance frequencies is efficiently transformed in vibrations [38].
A prediction of how these pad modes behave for varying oper-
ating conditions is desirable from a design and, hence, an op-
timisation point of view as in for instance mixed, constrained,
multi-objective problems [53]. In general, resonances are due
to dominant modes which can be extracted in a CEA and are,
as such, accessible for analysis in terms of mode-coupling the-
ory and their positions in frequency. In the kinetic energy spec-
trum, if additional damping is applied or the pressure is high
enough, not all modes might be visible anymore. This is the
case for doublets of out-of-plane modes and holds also true at
certain pressures for the radial and rotational pad modesPr and
Prot . However, it can be hypothised thatPr andProt, due to their
large changes in frequencies, adopt the function of acting as an
additional perturbation in the time domain in the sense of an
additional energy source superimposing changing harmonics
in the time signal [38]. Therefore, it is important to know, at
which frequency those, in the kinetic energy spectrum in terms
of resonance peaks eliminated modes vibrate and which should
not be totally neglected. For this purpose, and also to check for
mode coupling instabilities, the CEA is practical. The kinetic
energy, as suggested in [38], is extracted by a forced response
by means of a direct, steady-state solution step and takes the
role of describing the change in vibration energy by being di-
rectly related to the underlying velocity field. A change in vi-
bration energy is important as it can be related to the external
work [38], hence to feed-in energy of the system and, hence,
to its self-exciting character [54]. The change in kinetic energy
is the highest at those frequencies, at which the external work
becomes negative. This negative external work describes work
done by springs due to contact, which is not transferred into in-
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ternal work and released in vibrational energy [55, 47]. Finally,
changes in the acoustic power level describe the sensitivity of
the system in terms of its radiated sound power, hence are di-
rectly related to brake squeal propensity.

Figure7 exemplifies for the isotropic pad-on-plate model (I)
[38] the dependency of the peak kinetic energy on (a) pressure
variations with constantµ and (b)µ variations with constant
pressure. According to resonancesf1 and f3, two families of
curves are formed. Each of its curves is developed by moving
along the vertical lines in Figure5 and noting down the values
of peak kinetic energy for each friction coefficient at each pres-
sure value. Clearly, the pressure dependency of the frequencies
of interest can be well approximated by a quadratic function (∗
in Figure7) in contrast to the identical function (∗∗ in Figure7).
By varying the pressure (Figure7 (a)), the families of curves
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Figure 7: Scattering of peak amplitudes of kinetic energy ex-
emplified in f1 and f3 by varying (a) pressure or (b) friction
coefficient, by leaving eitherµ or p constant, respectively

look similar each, which is not the case for variations inµ (Fig-
ure7(b)). Further, the trend of behaviour for a family of curves
is very different in Figure7 (b) from that depicted in (a). As all
calculations are performed in the frequency domain, their de-
pendency in the time domain is a-posteriori synthesised. This
is done by taking the previously described time dependency of
the pressure by means of an identical function and replacing
pressure with time (hence identical). In that sense, thex−axis
in Figure7 is replaced by a surrogate, coined here asquasi-
time τ̄: By doing so, modal quantities as peak kinetic energy
are related to the time estimatēτ. Hereby, it is further assumed
that the contribution of other modes in resonance is supposedly
neglegible. Based on the fact that the determination of the fric-
tion coefficient is a very difficult task, due to strong non-linear
dependencies with a variation of variables (see Figure3), in
this synthesis,µ is assumed to be a random variable which has
99.9% of its probability mass within the limits ofµ = 0.05 and
µ = 0.65. With a set of calculations, forp ranging from 1kPa
to 8MPa, performed in the frequency domain, their time depen-
dence is developed by assumingµ to be Gaussian, similar to a
particle in a turbulent velocity field at high Reynolds numbers
[56]. In this paper, for each fixedp, the deterministic equations
are solved for allµ and the complex eigenvalues, as well as the
kinetic energy levels, are obtained by means of structural fi-
nite element calculations (ABAQUS 6.8-4). Then, the acoustic
power level is calculated by means of the acoustic boundary
element method, using a solver based on the fast multi-pole
method (FMM) implemented in ESI/VAOne. For this purpose,
an ABAQUS plug-in was developed in Python, which is linked
to VAOne via MatLab and allows for automated calculations of
probabilities.

Probabilistic Background

For the sake of simplicity, it is assumed that the distribution
(D) of the friction coefficientµ is normalbased on the normal
distribution presented in Figure4 (d).

µ ∼ D = N (ν,σ) (1)

The change in frequency,∆ f (based on eigenfrequencies of
complex modes), peak kinetic energy,∆Ek,p, and peak acoustic
power,∆Πp, (both based on resonance peaks) are calculated by
deterministic equations dependent on the friction coefficientµ,
the pressurep and the relative velocityvrel . Here, onlyp and
µ are varied as it is assumed that the velocity is almost con-
stant since it can decreases only very slightly in reality when
it comes to a squealing event (see Figure4 (b)). Further, it is
assumed that functions of∆ f , ∆Ek,p and∆Πp are smooth func-
tions.

During the further course of this study, it is important that the
pressure is a function of time. Then, the experimental data in
Figure4 allows for the construction of a family of functions
of the form y(x) = ax+ b. If we assume the pressure to be
zero at the beginning of the test (Figure4 (a)), which can be
assumed without violation of generality, the pressure becomes
an identical function (id(x) = x),

p(τ̄) = α × id(τ̄) = τ̄. (2)

as,α = 1MPa/s describes the slope of a linear function.

The distribution ofµ as the parameter with more uncertain de-
pendency (Figure7), are mapped a-posteriori onto the three
variables∆ f , ∆Ek,p and∆Π, in turn become normally distributed
as well. The two simulation parametersp andµ are assumed
to be independent from each other. In contrast to that, the fre-
quency, the kinetic energy and the acoustic power are related
and their probabilities might become conditional [57, 58]. How-
ever, their conditionality is neglected here, as a change in fre-
quency does not necessarily mean that the kinetic energy in-
creases and that if the kinetic energy increases strongly, for in-
stance at modef4, still no significant acoustic power can be cal-
culated at this resonance [39]. Hence, the dependency of thef ,
Ek and Π changes with the modes, which changes themselves
due to friction and pressure. Therefore, it is here assumed that
a strong dependency exists betweenµ and p (input variables)
on the one side,∆ f , ∆Ek,p and∆Πp (output variables) on the
other side. From that it follows that the dependency between
the two/three input/output values is assumed to be weak and it
may be allowed to treat them as independent.

Based on that, the three random variables investigated,Vi , i ∈
{1,2,3}, are defined in the following by

V1 = ∆ f = F( f , p(τ̄)) ∼ D1 (3)

V2 = ∆Ek,p = F(Ek, p(τ̄)) ∼ D2 (4)

V3 = ∆Πp = F(Π, p(τ̄)) ∼ D3. (5)

Here,F is a function dependent on the time dependent pres-
surep(τ̄) and either,f as the complex modes‘ imaginary part
divided by 2π or Ek as the kinetic energy level orΠ as the
acoustic power level. By replacingp(τ̄) by τ̄, it is possible to
see the development of∆ f , ∆Ek,p and∆Πp as quasi-stochastic
processes. Quasi due to the quasi-time dependency; stochas-
tic, as the change in frequency, peak kinetic energy and peak
acoustic power are themselves Gaussian at each timeτ̄ (Equa-
tion (2)); and processes, as input states variable determine the
output states over time [59]. For the three models at hand, it
is assumed that all processes belong to the class of MARKOV

International Congress on Acoustics 5



23–27 August 2010, Sydney, Australia Proceedings of ICA 2010

processes, as the present state is independent from a possibly
underlying time history [60]. A stochastic process is exempli-
fied by means of the change in peak kinetic energy and denoted
in the following equation:

{V2τ̄}T = {{∆Ek,p}τ̄}T , with T = [0.001,8.0] ⊂ R
+. (6)

Here,V2τ̄ = ∆Ek,pτ̄ marks a distribution at timēτ and{} gives
a vector of distributions [61]. T is the index set defined by a
subset ofR+ (positive real numbers, without zero) and gives
the interval of time in s. As the random variables,∆ f , ∆Ek,p
and∆Πp as well as the index setT are continuous, this process
is classified asstate- andtime-continuous[62]. As the process
is random, it can be seen as the counterpart of a deterministic
process [63] which is for instance described by the time trace
of particle, calculated by means of classical laws of mechanic.
However, for the stochastic process at each point of time, a
(normal) distribution determines the probability of a change in
f , Ek,p or Πp for each mode/ in each resonance. For theEk,p
andΠp, sometimes two modes are assigned to one resonance
peak due to their closeness in frequency and damping effects.
In practice, all numerical values are sorted into matrices of
pressure over friction coefficient, according to their assigned
resonancefi . This means one gets 18 matrices in the case of
model IV which are formed for all three parameters∆ f , ∆Ek,p
and ∆Πp, giving in the end 54 matrices with stored data. In
the case of vanishing resonance peaks, as it is the case at some
pressures for the radial and rotational pad modes, the modes‘
matrices of changes in peak energy/power are filled with zeros
so that the standard deviation at these resonances has a width
of zero with a mean of zero. Plotting the normal distributions
for each mode or resonance, at all times and in one graph, and
connecting the mean values as well as+σ and−σ gives the
trajectory of the process [64]. Based on the data calculated, the
process is taken to be a WIENER process [65] which is exem-
plified again for changes in peak kinetic energy and defined as
follows.

{V2τ̄}T = δ τ̄ +σB(τ̄) (7)

With δ τ̄ marking a drift,σ2 the variance andB(τ̄), τ̄ ∈ T a
standardised Brownian motion. The drift is responsible for the
trend of the mean value, the variance describes the increase
or decrease in width of two subsequent distributions. For the
standardised Brownian motion, the following definition must
hold true:

(1) the initial value isB(0) = 0 which can be assumed with-
out losing generality for the zero pressure,∀Vi , i ∈{1,2,3}
as, with no pressure, the brake system does not squeal
as no system modes are established and the differences
in kinetic energy are zero.

(2 incrementsh of the standardised Brownian motion are
normally distributed withB(τ̄ + h)−B(τ̄) ∼ N (0,h)
which is one of the methodological concepts applied
here. The change inµ is absorbed by the drift param-
eterδ τ̄.

(3) the increaseshi are stochastically independent which
means, forqi = τ̄i + hi and si = τ̄i with i ∈ 1,2, that
0 ≤ s1 = τ̄1 ≤ q1 = τ̄1 + h1 ≤ s2 = τ̄2 ≤ q2 = τ̄2 + h2
which is true for the condition thathi ≥ 0 for the for-
ward marching time. For calculations of the brake sys-
tem, this means that it does not matter for the increase
in peak kinetic energy if the pressure difference is low
or high.

By means of a WIENER process with drift, it is possible to
calculate at each time the probability of changes in frequency,
peak kinetic energy or peak acoustic power according to some
specified values marked by a previously defined eventA. This
event could be in the case of changes in peak kinetic energy,
A: the peak kinetic energy deviates by1dB from its mean value.

Again, exemplified by means of changes in peak kinetic energy,
it is possible to calculate the probability at each time point.

{P{∆Ek(A)τ̄}}T (8)

Here,P is a probability measure, which is used, to calculate
the probability ofV2τ̄ = ∆Ek(A)τ̄ ,∀τ̄ ∈ T. A probability is cal-
culated at each̄τ and contour plots of probability over time are
obtained.

APPLICATION TO SIMPLIFIED BRAKE SYSTEMS
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Figure 8: Example of a stochastic process which describes the
variation of frequency for an= 3-mode with positive travelling
wave

In Figure8 a stochastic process for the variation in frequency
∆ f over pressure/time of then= 3 mode is depicted.Φν,σ2(∆ f )
gives the value of the normal distribution of∆ f dependent on
the two characteristic parametersντ̄ andστ̄ which change with
forward marching time. For the sake of illustration, in the fur-
ther course of this paper only contour plots of∆ f / ∆Ek,p / Πp
over time of such distributions depicted in Figure8 are used.

Isotropic Pad-on-plate

The variability in frequency and peak kinetic energy/acoustic
power of all pad-on-plate (I) modes/resonances is depicted in
Figure9(a)-(c). In Figure9(a), the pad modesPx and Py have
the highest dispersions of frequency with increasing pressure
values (Figure9(a)). The lowest dispersions of frequency for
each pressure value are given forq1 andq5. The trace of the
process, as indicated by the mean value, might change which
is especially obvious for modesq1, q3 andq7 with a trend to
lower frequencies with increasing pressure, rendering the pro-
cess as non-stationary. The modesq2, q3 andq4 are strongly in-
fluenced by the pad and the friction in the contact patch. How-
ever, a change in frequency itself does of course not say any-
thing about the squeal propensity at resonances depicted in Fig-
ure 5, and the measure developed merely describes a mode’s
variability on the frequency axis (Figure6). The higher the
dispersion in frequency, the more problematic would be sub-
sequently and traditionally applied design optimisation steps.
In terms of robustness in frequency,q3, q4 andq7 have to be
seen as the three most problematic modes.

In Figure 9(b), the processes of changes in peak kinetic en-
ergy (∆Ek,p) are depicted for the isotropic pad-on-disc model
(I). The wider this corridor, the more kinetic energy is likely
to be released at this particular frequency. The curves do not
look very spectacular, not many differences between changes
in peak kinetic energy can be observed as changes in reso-
nancesf2 to f4 are almost congruent. However, it is visible that,
for f1, the trace of the process is negative and that the change
in peak kinetic energy decreases with increasing pressure, the
dispersion becomes larger which, taken together, can be inter-
preted as stabilising. However, for the other three frequencies,
this trend cannot be observed: changes in peak kinetic energy
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are positive and dispersions due to variations in the friction co-
efficients are expected to be high. From these results, it can
be concluded that, from a design point of view, less attention
should be paid to the resonance peakf1; rather, f2, f3 and f4,
which give almost identical corridors, are important. Also, the
development of potential changes in peak kinetic energy can be
assumed to be rather constant as the variability does not greatly
change its span. As the traces off2 to f4, which are described
by the curves formed from the mean values, are almost con-
stant, their processes can be described as stationary with only
a slightly negative drift parameterδ .

In Figure 9(c), the changes in peak acoustic power as taken
from [39] are depicted. Evident is the close relationship be-
tween the traces depicted in this graph to those of peak kinetic
energy depicted in Figure9(b). Again, peaks at three frequen-
cies, f2 to f4, show mostly the same behaviour which can be
coined as quasi-constant. Also, based on this graph, it can be
said that a system’s treatment, in terms of noise measures con-
cerning frequencyf1, requires that measures be applied that
are not countermeasures against primarily friction-induced ef-
fects. If the noise is squeal, it has to be checked whether mode
coupling could be the reason. As the system is also not pre-
dicted to be unstable by means of CEA, the peak atf1 can be
excluded as a possible noise source.
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Figure 9: Stochastic processes for modesqi of pad-on-plate
system for (a) change in frequency, (b) change in peak kinetic
energy and (c) change in acoustic power, respectively.

Isotropic Pad-on-disc

In Figure10, the corridors of (a) frequency and (b) peak ki-
netic energy variation for the isotropic pad-on-disc model (III),
under increasing pressure and varying friction coefficient, are
depicted. For the sake of brevity, the processes of the acous-
tic power are not depicted due to their similarity to the kinetic
energy. Further, only corridors of some prominent modes are
exemplified: the unstable mode pairs of the(0,3±,0,0) and
(0,5±,0,0) mode, the rotational pad mode,Prot , the radial pad
mode,Pr , and the tangential pad mode,Pt . The same modes
were investigated in [38, 39] from the aspect of structural vi-
brations and acoustics. The unstable mode does not show the
same mean frequency as depicted by the trace of the stochastic
process in Figure10 (ai). This is due to two effects, (1) the av-
eraging process and (2) an imperfect merging due to frictional

damping at high pressures [38]. Clearly, the corridors for the
n = 3 modes, which are predicted to be unstable by means of
the CEA, are very small which implies very little variation and
uncertainty concerning possible frequency fluctuations. In con-
trast to that, the variations in frequency of the rotational pad
mode,Prot , andPr are very strong, especially at higher pres-
sures. This is consistent with the pad-on-plate model, where
the modes with a component perpendicular to the sliding di-
rection have very large variations in frequency. The tangen-
tial pad modePt only shows a much smaller variability in the
low-pressure regimes than for higher pressures. Further, the ro-
tational modeProt also shows strong deviations in frequency.
In Figure 10(b), processes which describe the variability of

(i) (ii) (iii)

∆
F

re
qu

en
cy

H
z

Time τ̄ in s

25
15

25
25

25
35

30
00

40
00

50
00

36
30

36
50

36
70

111 333 555 777

(0,3−,0,0)

(0,3+,0,0)

Pr

Prot

Pt

(a)

(i) (ii)
∆

E
ki

n
dB

re
1J

Time τ̄ in s Time τ̄ in s

8 86 64 42 2

-5 -5

5 5

10 10

15 15

20 20

25 25

30 30

Pt

(0,5,0,0)

l = 0

(0,3,0,0)

(b)

Figure 10: Corridor of variability for most prominent system
modes for isotropic pad-on-disc model (III)

peak kinetic energy over time are depicted. Here, in compari-
son with Figure9(b), most of the stochastic processes depicted
can now be described as non-stationary. The modes with higher
changes of peak kinetic energy arePt and the in-plane tangen-
tial shear model = 0, as can be seen using the scale of the
y-axis. Thel = 0 mode, does not vary in frequency at all, there-
fore, its stochastic process of∆ f is not depicted here. From the
out-of-plane disc modes-dominated system modes, only the un-
stablen = 3 and the stablen = 5 modes show wider disper-
sion values in changes of kinetic energy. The radial pad mode
and the rotational pad mode are not depicted in terms of their
changes in kinetic energy, as afterp= 0.5MPa no resonance at
their frequency is visible anymore.

Anisotropic Pad-on-disc

For the anisotropic pad-on-disc model (IV), the rotational pad
mode,Prot, and the radial pad mode,Pr , show significant changes
in frequency, as depicted in Figure11 (a) (i-iii). Other modes
show negligible variations. In Figure (b) and (c), the varia-
tions in frequency of the only as unstable predicted mode pair,
(0,3±,0,0), and the tangential pad mode,Pt , are depicted. In
comparison with the isotropic pad-on-disc model III (Figure
10 (aii)), the change in frequency of the radial and rotational
pad mode in Figure11 (a) is much stronger at lower pressures,
indicating a higher sensitivity of these modes due to changed
lining. The tangential pad modePt (c) shows a similar dip as
the Pt of model III (Figure10 (aiii)). Similar to the isotropic
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pad-on-disc model, modesPr andProt do not show significant
kinetic energy peaks afterp = 0.5MPa, and are thus not de-
picted here.

Calculation of Probabilities

As the stochastic processes of changes in modal frequencies,
changes in peak kinetic energy and peak acoustic power have
been calculated in the previous section, it is now possible to
calculate the probability that these variables change by either
(1) a certain percentage or (2) a certain value. Even though
it might be interesting to look for the probability of a certain
percentage deviation, it is of more interest to search specifi-
cally for a certain deviation in kinetic energy or frequency and,
hence, the percentage changes in each mode. In the following,
probability calculations for the isotropic pad-on-plate model
(I) are performed as an example. In Figure12(a), the probabil-
ity density function and in Figure12(b) its cumulative density
function are depicted for modef1 of the kinetic energy plot for
a pressurep = 10−3MPa. Exemplified is the calculation of the
probability of the event that the kinetic energy increase devi-
ates about 25% from the mean increase in kinetic energy. For
the first mode,f1, this probability is around 40%. In the fol-
lowing, this procedure is repeated over time which allows the
calculation of probabilities plotted to be in the form of traces.
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Figure 11: Corridor of variability of anisotropic pad-on-disc
model (IV) for changes in frequency of (a) all system modes,
(b) unstable mode pair(0,3,±,0,0) (i), pad mode (ii)

Plots of probabilities due to changes in frequency (Figure13)
and kinetic energy (Figure14) over pressure for the simplistic
pad-on-plate model (I) are depicted. As the frequency change
of q2 is negligibly small, it is not depicted here. Each graph
represents the probability that either the frequency deviation
from the mean frequency (event A) or the kinetic energy devi-
ation from the mean kinetic energy (event B) is either smaller
than, or equal to, an assumed frequency or energy level (A:
∆ f ∈ {10,20, ...,100Hz}, B : ∆Ek ∈ {1,2,10}). As can be seen
in Figure13, Px and Py show the highest likelihoods of chang-
ing their frequencies irrespective of the values applied. For the
other modes, only small changes in frequencies, up to 30Hz,
have a probability greater than 0.02%. For changes in peak
kinetic energy (Figure14), it can be observed that the reso-
nance inf1 (see Figure5) shows a higher probability of chang-
ing its kinetic energy but only up to 2dB whereas the other
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Figure 12: Example of calculating probability of cumulative
density function (Probability calculated in terms of deviation
of position parameter taken as trace of median of stochastic
process and then normalising probabilities to cumulative den-
sity of median

three resonances show higher probabilities up to changes of
10dB. As, from those graphs, a detailed analysis and compar-
isons of different systems is difficult to accomplish, the aver-
aged probabilities for pressures from 0.001 to 8.0MPa for se-
lected frequencies, peak kinetic energies/acoustic powers are
depicted in Table1. In this table,P1, P2 andP3 stand for the
probabilities that the frequency, peak kinetic energy and peak
acoustic power, respectively, change according to previously
chosen values. Here, it is stipulated that the higher the proba-
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Figure 13: Probabilities for different variations of frequency of
modesq1 to q4 for pad-on-plate system (model I)

bility, the less controllable is the brake system’s behaviour at
that frequency. For the energy related terms,Ek,p and Πp, it
is assumed that only for positive growth released vibrations
are high or that squeal propensity increases, respectively. This
means, especially for the first three modes of the isotropic pad-
on-disc system (III) that the propensity of squeal decreases. It
can be readily seen in table1 which of the modes it is impor-
tant to treat in terms of squeal propensity. However, by intro-
ducing an arbitrary chosen value of change in frequency, ki-
netic energy or acoustic power, it becomes necessary to ar-
rive at an overall conclusion. Therefore, similar to the plots
of frequencies over real parts to show squeal propensity by
means of the CEA (see Figure 3 in Ouyang et al. [6]), the av-
eraged uncertainty for each mode is calculated. As squeal can
appear at a change of either 1dB or 10dB kinetic energy or
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acoustic power, the three probabilities of Table1 are equally
weighted and plotted in Figure17 for the three simplified sys-
tems. The (averaged) probabilities of∆ f , ∆Ek,p andΠp allow
design goals to be tackled differently. As the three parameters
are assumed to be independent their probabilities were simply
multiplied and normalised by the maximum of all products:
Ψ = P1P2P3/MAX. The value ofΨ is depicted by bars and
provides an overall and absolute measure ofexigency to change
the design. From Figure17 (a), it is possible to conclude that
it is necessary to assess mode 3, and then mode 3 and mode 7,
with the goal of minimisingΨ of these modes. For the stability
of model III, it appears that, firstly, the probabilities of modes
11 (Pr ) and 12 (Pt), and the rotational pad mode 17 should be
minimised. Meanwhile, the probability of neighbouring modes
that is modes 7/8 for the radial pad mode and modes 15/16
and 18 for the rotational pad mode, should also be monitored
in optimisation runs. These neighbouring modes are strongly
influenced by pad modes and were found oscillating in terms
of acoustic power overµ [38]. So far, only the probability
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Figure 14: Probabilities for different kinetic energy of reso-
nancesf1 to f4 for the pad-on-plate system (model I)

over the whole pressure range averaged over three frequency,
kinetic energy and acoustic power values is considered. As it
is assumed in [38, 39] that pad modes, here especially the ra-
dial and rotational pad mode, lead directly to squeal only in
low pressure regimes, non-averaged values for pressures from
1kPa to 1MPa are calculated next (Figure18). Evidently, the
changes inf , Ek,p andΠp are still significant for the pad modes
whereas other modes, including those predicted by the CEA to
be unstable, do not show higher values ofΨ. This exemplifies
that the pad modes are likely to cause squeal in low-pressure
regimes. With higher pressures, they are partially eliminated.
However, at the same time, for low pressures the frequency
changes of these pad modes are not as strong as for higher
pressures. At higher pressures, pad modesPr and Pt change
their function: from being squeal sources, they might act as
disturbing functions and change their frequencies. This might
work as an additional energy source which could induce or am-
plify the mode-coupling mechanism. From the design point of
view, it is important to keep an eye on the regime where the
pad modes fluctuate in frequency and are not eliminated in the
resonance spectrum at the same time.

Table 1: Probabilities of∆ f change in frequencyP1 =
P(∆ f ), ∆Ek in peak kinetic energyP2 = P(∆Ek,p) and∆Π
in peak acoustic powerP3 = P(∆Πp) in %

(I)
Mode Resonance CEA P1 P2 P3

(1,50,100)Hz (1,5,10)dB (1,5,10)dB

1 f1 (15,0,0) (0,1,0) (4,0,0)
2 f2 (0,0,0) (92,60,30) (96,81,64)
3 f2 (94,54,24) (92,60,30) (96,81,64)
4 f3 (98,77,47) (92,61,31) (96,81,63)
5 f3 (23,0,0) (92,61,31) (96,81,63)
6 f4 (0,0,0) (92,60,29) (96,81,62)
7 f4 (75,0,0) (92,60,29) (96,81,62)

(III)
Mode Resonance CEA P1 P2 P3

(10,30,70)Hz (1,3,7)dB (1,3,7)dB

1 f1 (7,0,0) (0,0,0) (29,0,0)
2 f1 (0,0,0) (0,0,0) (29,0,0)
3 f2 (1,0,0) (23,0,0) (21,0,0)
4 f3 (0,0,0) (24,0,0) (22,0,0)
5 f3 (0,0,0) (24,0,0) (22,0,0)
6 f4 (0,0,0) (96,89,74) (0,0,0)
7 f5 ✔ (8,0,0) (87,62,27) (86,59,24)
8 f5 ✔ (0,0,0) (87,62,27) (86,59,24)
9 f6 (0,0,0) (87,62,27) (93,80,55)
10 f6 (0,0,0) (92,77,50) (93,80,55)
11 Pr (57,37,27) (45,39,33) (45,40,33)
12 Pt (21,2,1) (91,75,45) (93,79,54)
13 f9 (11,0,0) (60,13,0) (50,8,0)
14 f9 (0,0,0) (60,13,0) (50,8,0)
15 f10 (5,0,0) (96,88,72) (96,87,70)
16 f10 (0,0,0) (96,88,72) (96,87,70)
17 Prot (84,70,53) (37,29,25) (35,27,24)
18 f12 (0,0,0) (1,0,0) (0,0,0)
19 f13 ✔ (0,0,0) (90,71,39) (90,71,39)
20 f13 ✔ (2,0,0) (90,71,39) (90,71,39)
21 f14 (0,0,0) (0,0,0) (0,0,0)
22 f14 (0,0,0) (0,0,0) (0,0,0)
23 f15 (3,0,0) (89,69,35) (89,68,34)
24 f15 (0,0,0) (89,69,35) (89,68,34)

(IV)
Mode Resonance CEA P1 P2 P3

(10,50,70)Hz (1,5,7)dB (1,5,7)dB

1 f1 (7,0,0) (27,0,0), (28,0,0)
2 f1 (0,0,0) (27,0,0) (28,0,0)
3 f2 (1,0,0) (8,0,0) (13,0,0)
4 f3 (6,0,0) (4,0,0) (7,0,0)
5 f3 (0,0,0) (4,0,0) (7,0,0)
6 f4 (0,0,0) (93,66,54) (0,0,0)
7 f5 ✔ (9,0,0) (94,70,60) (93,68,57)
8 f5 ✔ (9,0,0) (94,70,60) (93,68,57)
9 f6 (0,0,0) (92,63,50) (92,62,50)
10 f6 (0,0,0) (92,63,50) (92,62,50)
11 Pr (91,88,86) (60,40,34) (48,41,39)
12 Pt (69,11,2) (94,71,60) (94,71,60)
13 f9 (0,0,0) (17,0,0) (34,1,0)
14 f9 (0,0,0) (17,0,0) (34,1,0)
15 f10 (1,0,0) (96,78,69) (95,76,67)
16 f10 (0,0,0) (96,78,69) (95,76,67)
17 Prot (94,84,80) (38,27,25) (39,27,25)
18 f12 (0,0,0) (4,0,0) (34,8,4)
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Figure 15: Probability of frequency variation 10 Hz to 100 Hz
for selected modes of the isotropic pad-on-disc model (III).
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CONCLUSION

In this paper, a probabilistic approach, which applies uncer-
tainty prior to deterministic calculations of a brake system, is
presented. The uncertainty lies in the exact development of (a)
changes in frequency, (b) in developing vibrations represented
by the kinetic energy and (c) radiated acoustic power while
brake line pressure is increased and the vehicle is slowed down.
From experimental data, it is found that the friction coefficient

(a) l = 0 (b) (0,3,0,0)

(c) Pt (d) (0,5,0,0)
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Figure 16: Probabilities for changes in kinetic energy for se-
lected modes of isotropic pad-on-disc model (III).

is approximately normally distributed in the regime with lin-
early increasing pressure and represents a linear function of
time. The normal distribution of the friction coefficient data
is mapped on deviations in frequency derived from the CEA,
and the kinetic energy is calculated by a direct, steady-state
response analysis and acoustic power [38, 39]. By this proce-
dure, a time-continuous stochastic process, namely, a Wiener
process, is formed whereby it is possible to calculate, by means
of probability measures, the uncertainties of the variable be-
haviour of a brake system due to changes in the response spec-
trum. This probability can be seen as an indicator of brake
squeal propensity. To calculate the uncertainty measure, the
following steps have to be performed.

(1.) A CEA over various pressures,pi , and friction coeffi-
cients,µ j , gives mean values and standard deviations
of the complex modes‘ frequencies and indicates which
mode is predicted to be unstable in terms of mode cou-
pling. The mean values of the frequencies form a corri-
dor with their standard deviations over pressures.

(2.) The kinetic energy spectrum, calculated by means of
the direct, steady-state analysis, delivers locations of the
highest fed-in energy for pressures,pi , and friction co-
efficients,µk, for which µk = µ j is not necessarily re-
quired.

(3.) The peak kinetic energies are selected for eachµk and
pi , and are tabulated for each mode in order to calculate
their standard deviations due to pressure and increases
in friction coefficients. Plotting the peak kinetic energy
over pi or µk gives their dependency and forms a cor-
ridor from which the mean values of the minimum and
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Figure 17: Probabilities of changes in frequency of 10Hz,
changes in kinetic energy and acoustic power of 1dB and joint
probability over pressure range of 0.001 to 8MPa

maximum boundaries are isolated.
(4.) As in (3.) but, this time, for the acoustic power after

acoustic calculations by means of, for instance, the bound-
ary element method or (even faster) the ERP method
[45, 47].

(5.) Over each corridor‘s mean value of the formed corri-
dors, a normal distribution can be found which produces
a continuous stochastic process.

(6.) For each normal distribution, a probability can be calcu-
lated. As the possible dispersion of modes in resonance
is of interest, a certain deviation from the stochastic pro-
cess‘ position parameter is requested. This can be done
for either each time point or intervals of pressure.
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If a different distribution, other than the mean values and stan-
dard deviations of the normal distribution, is taken, other po-
sition and dispersion parameters have to be calculated. A non-

10 International Congress on Acoustics



Proceedings of ICA 2010 23–27 August 2010, Sydney, Australia

symmetrical distribution doubles the calculation effort but does
not change the methodology.

Since the degree of uncertainty is applied after deterministic
calculations via the finite and the boundary element method on
a limited number of frequencies, as only the peaks are of inter-
est, the computational costs are lower than, for instance, those
accrued by a Monte Carlo simulation. The method is straight-
forward, can be enlarged by incorporating different velocities
or temperatures and is easily implemented and automated by
means of a plug-in function in Python which reads out results
from ABAQUS (FEM) and VAOne (BEM), respectively. Fi-
nally, a probability is obtained which, as a measure comple-
ments the CEA, but is in the end also superior to the CEA
alone, in the sense that it incorporates released feed-in energy
[38] as an indication of vibrational activity [54, 66]. It is ex-
emplified that the pad modes, apart from the unstable modes(
CEA), show an overall tendency to induce squeal. This insta-
bility is not predicted by the CEA but has been evidenced by
calculations of kinetic energy, non-linear time series analyses
[38] and calculations of radiated acoustic power [39]. Here, it
is quantified by probability measures which can be used in an
optimisation process in order to gain higher squeal stability.
The application of stochastic processes and their calculations,
in terms of squeal propensity measures, will be performed in
the near future on the real geometry of a brake system to test
the validity of the proposed method.

ACKNOWLEDGEMENTS

This research was undertaken on the NCI National Facility
in Canberra, Australia, which is supported by the Australian
Commonwealth Government. The first author acknowledges
receipt of a University College Postgraduate Research Schol-
arship for the pursuit of this study and the Australian Acousti-
cal Society for aYoung Scientist‘s Awardto participate at the
ICA2010 Conference. Also, the authors would like to thank
PBR Pty Ltd and, especially, Dr. Antti Papinniemi, for the
provision of measurement data from an industrial noise dy-
namometer.

REFERENCES

[1] A. Akay. Acoustics of friction.Journal of the Acoustical
Society of America, 111(4):1525–1548, 2002.

[2] H. Abendroth and B. Wernitz. The integrated test con-
cept: Dyno-vehicle, performance-noise.SAE Technical
Paper Series, 2000-01-2774, 2000.

[3] M. Yang and P.Blaschke Afaneh, A.-H. A study of disc
brake high frequency squeal and disc in-plane / out-of-
plane modes.SEA Technical Papers, 2003-01-1621:1–8,
2003.

[4] N. Hinrichs, M. Oestreich, and K. Popp. On the mod-
elling of friction oscillators.Journal of Sound and Vibra-
tion, 216(3):435–459, 1998.

[5] N.M. Kinkaid, O.M. O’Reilly, and P. Papadopoulos. Au-
tomotive disc brake squeal.Journal of Sound and Vibra-
tion, 267:105 – 166, 2003.

[6] H. Ouyang, W. Nack, Y. Yuan, and F. Chen. Numerical
analysis of automotive disc brake squeal: a review.Inter-
national Journal of Vehicle Noise and Vibration, 1:207–
231, 2005.

[7] F. P. Bowden and L. Leben. Nature of sliding and the
analysis of friction.Nature, 3572:691–692, 1938.

[8] F. P. Bowden and D. Tabor. Mechanism of metallic fric-
tion. Nature, 3798:197–199, 1942.

[9] C.M. Mate, G.M. McClelland, R. Erlandsson, and S. Chi-
ang. Atomic-scale friction of a tungsten tip on a graphite
surface.Phys. Rev. Lett., 59:1942–1945, 1987.

[10] H.R. Mills. Brake squeak. Technical report, The Institu-

tion of Automobile Engineers, Research Report, 9000 B
and 9162 B, 1938.

[11] R.T. Spurr. A theory of brake squeal.Proceedings of
the Automobile Division, Institution of Mechanical Engi-
neers 1961-1962 (1), 1:33 – 52, 1961.

[12] M.R. North. Disc brake squeal - a theoretical modell.
Technical Report 5, Motor Industry Research Associa-
tion, Warwickshire, England, 1972.

[13] S.K. Rhee, P.H.S. Tsang, and Y.S. Wang. Friction-
induced noise and vibration of disc brakes.Wear, 133:39–
45, 1989.

[14] J.E. Mottershead, H. Ouyang, M.P. Cartmell, and M.I.
Friswell. Parametric resonances in an annular disc
with a rotating system of distributed mass and elastic-
ity: And the effects of friction and damping.Proceed-
ings: Mathematical, Physical and Engineering Sciences,
453(1956):1–19, 1997.

[15] H. Ouyang, J.E. Mottershead, M.P. Cartmell, and M.I.
Friswell. Friction-induced parametric resonances in
discs: effect of a negative friction-velocity relationship.
Journal of Sound and Vibration, 209(2):251–264, 1998.

[16] H. Ouyang. Moving loads and car disc brake squeal.
Noise & Vibration WORLDWIDE, 34(11):7–15, Decem-
ber 2003.

[17] J.R. Barber. The influence of thermal expansion on the
friction and wear process.Wear, 10(2):155 – 159, 1967.

[18] J.R. Barber. Thermoelastic instabilities in the sliding of
conforming bodies.Royal Society of London Proceed-
ings Series A Mathematics Physics and Engineering Sci-
ence, 312(1510):381 – 394, 1969.

[19] N. Hoffmann and L. Gaul. Effects of damping on
mode-coupling instability in friction induced oscillations.
ZAMM, Z. Angew. Math. Mech., 83(8):524–534, 2003.

[20] G.G. Adams. Self-excited oscillations of two elastic
half-spaces sliding with a constant coefficient of friction.
ASME Journal of Applied Mechanics, 62:867–872, 1995.

[21] G.G. Adams. Steady sliding of two elastic half-spaces
with friction reduction due to interface stick-slip.ASME
Journal of Applied Mechanics, 65:470–475, 1998.

[22] V. Linck, L. Baillet, and Y. Berthier. Modelling the conse-
quences of local kinematics of the first body on friction
and on the third body sources in wear.Wear, 255:299–
308, 2003.

[23] S. Oberst and J. Lai. A critical review on brake squeal and
its treatment in practice. InInternoise 2008, Shanghai,
2008.

[24] G.D. Lilis. Analysis of disc brake squeal using finite ele-
ment methods.SAE Technical Papers, 891150:249–257,
1989.

[25] N. Hoffmann and L. Gaul. Friction induced vibrations
of brakes: Research fields and activities.SAE Technical
Paper Series, 2008-01-2579:1–8, 2008.

[26] F. Chen. Automotive disk brake squeal: an overview.
International Journal of Vehicle Design, 51(1/2):39–72,
2009.

[27] S. Oberst, J. C. S. Lai, S. Moore, A. Papinniemi,
S. Hamdi, and D. Stanef. Statistical analysis of brake
squeal noise. InInternoise 2008, Shanghai, 2008.

[28] S. Oberst, J. C. S. Lai, S. Moore, A. Papinniemi,
S. Hamdi, and D. Stanef. Chaos on brake squeal noise.
In Internoise 2008, Shanghai (China), 2008.

[29] F. Chen, F. Tan, C./Chen, C. A. Tan, and R. L. Quaglia.
Disc Brake Squeal: Mechanism, Analysis, Evaluation
and Reduction/Prevention. SAE-Society of Automotive
Engineers, 2006.

[30] R. A. Ibrahim, S. Madhavan, S. L. Qiao, and W. K.
Chang. Experimental investigation of friction-induced
noise in disc brake systems.International Journal of Ve-
hicle Design, 23:218–240, 2000.

International Congress on Acoustics 11



23–27 August 2010, Sydney, Australia Proceedings of ICA 2010

[31] D.M. Beloiu and R. A. Ibrahim. Analytical and ex-
perimental investigations of disc brake noise using the
frequency-time domain.Structural Control and Health
Monitoring, 13:277–300, 2006.

[32] J.B. Roberts and P.D. Spanos. Stochastic averaging: An
approximate method of solving random vibration prob-
lems. International Journal of Non-Linear Mechanics,
21(2):111–134, 1986.

[33] K. Sepahvand.Uncertainty Quantification in Stochastic
Forward and Inverse Vibration Problems Using General-
ized Polynomial Chaos Expansions. PhD thesis, Technis-
che Universität Dresden, Fakultät für Maschinenwesen,
Institut für Festkörpermechanik, 2008.

[34] Z.L. Huang and X.L. Jin. Response and stability of a sdof
strongly nonlinear stochastic system with light damping
modeled by a fractional derivative.Journal of Sound and
Vibration, 319:1121–1135, 2009.

[35] S. Rahman. Stochastic dynamic systems with complex-
valued eigensolutions.International Journal for Compu-
tational Methods in Engineering, 71:963̋U986, 2007.

[36] A. Culla and F. Massi. Uncertainty model for contact
instability prediction. Acoustical Society of America,
126(3):1111–1119, 2009.

[37] O. Giannini and A. Sestrieri. Predictive model of squeal
noise occuring on a laboratory brake.Journal of Sound
and Vibration, 296:583 – 601, 2006.

[38] S Oberst and J.C.S. Lai. Numerical study of friction-
induced pad mode instability in brake squeal. In20th
International Congress on Acoustics (ICA 2010) in Syd-
ney, 23 - 27 August, Australia, 2010.

[39] S Oberst and J.C.S. Lai. Acoustic radiation of instan-
taneous modes in brake squeal. In20th International
Congress on Acoustics (ICA 2010) in Sydney, 23 - 27 Au-
gust, Australia, 2010.

[40] M.T. Bengisu and A. Akay. Stability of friction-induced
vibrations in multi-degree-of-freedom systems.Journal
of Sound and Vibration, 171:557–570, 1994.

[41] N.M. Kinkaid, O.M. O’Reilly, and P. Papadopoulos. On
the transient dynamics of a multi-degree-of-freedom fric-
tion oscillator: a new mechanism for disc brake noise.
Journal of Sound and Vibration, 287:901–917, 2005.

[42] S. Oberst and J.C.S. Lai. Acoustic response of a sim-
plified brake system by means of the boundary element
method. InNOVEM2009, Keble College, Oxford, Eng-
land, 5-8April, 2009.

[43] S. Oberst and J.C.S. Lai. Numerical analysis of a simpli-
fied brake system. InNOVEM2009, Keble College, Ox-
ford, England,5-8April, 2009.

[44] S. Oberst and J.C.S. Lai. Non-linear analysis of brake
squeal. InICSV16, Krakow, 5-9 July, 2009.

[45] S. Oberst and J.C.S. Lai. Numerical prediction of brake
squeal propensity using acoustic power calculation. In
Proceedings of ACOUSTICS 2009, 2009.

[46] D. Yuhas, J. Ding, and S. Vekatesan. Non-linear aspects
of friction material elastic constants.SEA Technical Pa-
pers, 2006-01-3193:1–10, 2006.

[47] S Oberst and J.C.S. Lai. Methodology of numerically
simulating brake squeal noise by means of a simplified
brake system. In20th International Congress on Acous-
tics (ICA 2010) in Sydney, 23 - 27 August, Australia,
2010.

[48] H. Lee and R. Singh. Acoustic radiation from out-of-
plane modes of an annular disk using thin and thick plate
theories.Journal of Sound and Vibration, 282(1-2):313–
339, April 2005.

[49] J.T Oden and J.A.C. Martins. Models and computa-
tional methods for dynamic friction phenomena.Compu-
tational Methods in Applied Mechanics and Engineering,
52:527–634, 1985.

[50] J. Awrejcewicz and P. Olejnik. Analysis of dynamic sys-
tems with various friction laws.Applied Mechanics Re-
views, 58:389–411, November 2005.

[51] S. Moore, J.C.S. Lai, S. Oberst, A. Papinniemi, Z. Hamdi,
and D. Stanef. Design of experiments in brake squeal. In
Internoise 2008, 2008.

[52] Surface vehicle recommended practice, disc and drum
brake dynamometer squeal noise matrix. Technical re-
port, SAE J2521, 2006.

[53] T. Ray and K. M. Liew. A swarm metaphor for multiob-
jective design optimisation.Engineering Optimization,
34(2):141–153, 2002.

[54] D. Guan and J. Huang. The method of feed-in energy
on disc brake squeal.Journal of Sound and Vibration,
261:297–307, 1994.

[55] Dassault Systemes.ABAQUS/CAE User’s MANUAL,
2007.

[56] D.J. Thomson. Criteria for the selection of stochastic
models of particle trajectories in turbulent flows.Jour-
nal of Fluid Mechanics, 180:529–556, 1986.

[57] G.R. Shorack. Probability for statisticians. Springer:
New York, 2000.

[58] S. Huschens.Theorie und Methodik der Statistik. Tech-
nische Unisverität Dresden, Institut für quantitative Ver-
fahren, insbesondere Statistik, Vorlesungsskript, 7. Au-
flage, Oktober, 2007.

[59] R. Bellmann. On the theory of dynamic programming.
Proceedings of the National Academy of Sciences of the
United States of America, 38(8):716–719, 1952.

[60] J.C. Hull.Options, Futures, and Other Derivatives. Pren-
tice Hall, 2005.

[61] P. Embrechts, C. Klüppelberg, and T. Mikosch.Modeling
Extremal Events for insurance and finance. Berlin, New
York: Springer-Verlag, 1996.

[62] A. Spanos.Probability Theory and Statistical Inference.
Cambridge University Press, UK, 1999.

[63] K. Itô, editor. Turing Machines, volume 1. Cambridge,
MA: MIT Press„ 2 edition, 1987.

[64] J.L. Doob. What is a stochastic process?The American
Mathematical Monthly, 10:648–653, 1942.

[65] D.J. Thomson. On the relative dispersion of two parti-
cles in homogeneous stationary turbulence and the impli-
cation for the size of concentration fluctuations at large
times. Journal of the Royal Meteorological Society,
112:890–894, 2006.

[66] A. Papinniemi. Vibro-acoustic Studies of Brake Squeal
Noise. PhD thesis, School of Aerospace, Civil and
Mechanical Engineering, The University of New South
Wales, Australian Defence Force Academy, 2007.

12 International Congress on Acoustics


	Introduction
	Numerical Models
	Modelling of Uncertainty
	Problem Scope
	Probabilistic Background

	Application to Simplified Brake Systems
	Isotropic Pad-on-plate
	Isotropic Pad-on-disc
	Anisotropic Pad-on-disc

	Calculation of Probabilities

	Conclusion
	Acknowledgements

