
Proceedings of 20th International Congress on Acoustics, ICA 2010

23–27 August 2010, Sydney, Australia

Spatial Data Structures
for Dynamic Acoustic Virtual Reality

Dirk Schröder, Alexander Ryba and Michael Vorländer
dsc@akustik.rwth-aachen.de

Institute of Technical Acoustics, RWTH Aachen University, Neustraße 50, 52066 Aachen, Germany

PACS: 43.55.Ka

ABSTRACT

Over the last decades Virtual Reality (VR) technology has emerged to be a powerful tool for a wide variety of applications
such as rapid prototyping, evaluation, therapy, or training tasks. For high quality auralizations (in analogy to visualization)
of virtual environments, methods of Geometrical Acoustics (GA) are mostly applied to simulate the propagation of
sound inside enclosures. By adapting acceleration algorithms such as BSP- and Octrees, current implementations can
manage the computational load of moving sound sources around a moving receiver in real-time – even for complex
scenarios. However, insertion, modification and extraction of geometrical objects are basic operations in many real-world
experiences, but hierarchical spatial data structures do not support them efficiently. For this purpose the concept of Spatial
Hashing was introduced, which is usually applied to collision detection tests of deformable objects in Computer Graphics.
This contribution describes the design, implementation and integration of a dynamic object controller in the real-time
room acoustics simulation software RAVEN. By adapting the concept of Spatial Hashing to the simulation algorithms,
RAVEN is able to handle geometry modifications in real-time. The performance of the newly implemented data handling-
and simulation routines is briefly discussed and compared to that of Brute Force and BSP-based algorithms.

INTRODUCTION

In recent years, the development of room acoustics prediction
tools and auralization techniques has made a major leap forward
enabling a physical-based simulation of virtual environments in
real-time and, thus, adding a more plausible auditory component
– in comparison to simple audio effects– to multi-modal Virtual
Reality (VR) systems. A prerequisite for any immersive virtual
environment is thereby the enabling of user interaction with the
presented scenery to uphold and enforce the believability of the
simulation (real world scenarios are usually not static).

In more demanding applications such as an architectural plan-
ning stage, it is convenient to manipulate also the room geome-
try itself and directly experience the impact on the room acous-
tics, e.g., via the interactive insertion/manipulation/removal of
geometrical objects and the change of material data. While
the real-time modification of geometry is a simple operation
in visualization (see Fig. 1), a change of the scene geometry
additionally affects the whole auralization chain such as the
resimulation of corresponding Room Impulse Response (RIR)s,
which also includes the update of spatial data structures, the gen-
eration/update/removal of Image Source (IS)s with subsequent
tests on audibility and new ray tracing simulations.

For this purpose the concept of non-hierarchical Spatial Hashing
(SH), which also originates from Computer Graphics, is adapted
to the requirements of room acoustics simulations and inte-
grated in the hybrid room acoustics simulation framework
Room Acoustics for Virtual ENvironments (RAVEN). RAVEN
is one integral part of the auralization system of the CAVE-like
environment at the Center of Computing and Communication
of RWTH Aachen University [1, 2]. In this contribution, the
concept of SH is described and the design, implementation and
integration of a modular dynamic object controller is presented.
The performance of two newly implemented SH-based routines

is compared to existing Binary Space Partitioning (BSP)- and
Brute Force (BF)- algorithms and SH optimization techniques
are analyzed and briefly discussed.

Related Work

For the purpose of auralization of dynamically changing virtual
environments three concepts have been presented so far to the
authors’ knowledge. One simple approach supports only the
exchange of surface material data and has been presented in [3].
Lunden (and in an earlier stage Kajastila et al.) introduced a
concept based on a beam tracing approach [4, 5] using a BSP
acceleration method. The regeneration of BSP-trees, however,
still yields a bottleneck in real-time auralization processes. A
third concept based on SH has been presented by the first au-
thor in 2008 [6], which reduces significantly the complexity of
geometry modifications by introducing a special spatial hash
table that encodes the geometrical scene (see below). However,
this contribution presents new detailed information on imple-
mentation concepts and comprehensive insights on algorithmic
performance.

HYBRID ROOM ACOUSTICS SIMULATION

Today’s computer simulations are accurate enough to compete
with the established and reliable scale models [7]. For frequen-
cies above Schroeder frequency, the most common approaches
for computing RIRs are based on Geometrical Acoustics (GA),
which reduces the sound field description to the dispersion of
sound rays with a dedicated frequency and amount of energy,
similar to the wave-particle dualism in physics. To overcome
the different simulation demands of the early and late part of
the response, RAVEN uses a hybrid simulation model that com-
prises two different simulation methods that are specialized on
their concrete task. Here, RAVEN combines the deterministic
IS method [8] for the computation of early reflections with a

ICA 2010 1

23–27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010

(a) Insertion and adjustment of a geometrical object (reflector
panel).

(b) Insertion and adjustment of a natural sound source (violin
player).

Figure 1: Typical user interaction within a virtual environment, here by the example of the CAVE-like environment at RWTH Aachen
University. Objects can easily be inserted, modified and removed using an intuitive gesture-driven input device.

stochastic ray tracer [9], which determines the energy envelope
of the reverberant sound field. The computational costs of both
methods are dominated by the large number of required inter-
section tests between ray segments and the polygonal scene
model due to the sound wave discretization into energy rays.
Regarding real-time simulations, these tests have to be signifi-
cantly accelerated, which can be done by encoding the scene
geometry into spatial data structures.

SPATIAL DATA STRUCTURES

Spatial data structures aim at encoding a given geometric scene
in an efficient way in order to significantly accelerate common
operations such as intersection tests, collision detection and
culling algorithms [7]. Most methods are based on a space sub-
division that is encoded in tree-like or cell-like data structures
following either an object-oriented or space-oriented partition-
ing strategy.

Bounding Volume Hierarchies (BVH)s, BSP- trees and Octrees
(in 2D space Quadtrees) belong to the group of hierarchical
tree data structures. Here, BVHs wrap all geometric objects in
bounding volumes, such as spheres and (axis-aligned) bounding
boxes, that are then enclosed within larger bounding volumes
in a recursive way until the whole geometry fits into exactly
one bounding volume. Octrees subdivide a 3D-space by means
of planes as partitioners that recursively subdivide the space
evenly along all three axes resulting in 8n new subspaces for
n iterations. BSP-trees, on the other hand, can be generated in
three basic variants, either with an arbitrary, axis-aligned or a
polygon-aligned space partitioning. A space partitioning with
no constraints on the choice of the dividing planes apparently
yields the best possible encoding of the geometry. The crucial
part is to find partitioners that produce a balanced tree of mini-
mum height which is the most efficient tree structure in terms
of search operations. As there is an infinite number of possible
partitioners, heuristic approaches are commonly used to opti-
mize the space partitioning. Computation times vary here in the
range from minutes to hours, to weeks. In contrast, axis-aligned
BSP-trees and Octrees can be computed much faster as they
follow a given subdivision pattern. Axis-aligned BSP-trees are
created similar to Octrees, but with only one instead of three
partitioning planes. Contrary, polygon-aligned BSP uses planes
spanned by the geometry’s polygons as it makes the BSP-tree
creation much more efficient and transparent. The latter type of

BSP-trees is applied in RAVEN for very fast intersection tests
of ray segments with the geometric scene [8].

Another strategy of spatial subdivision is called Voxelization
which belongs to the group of cell data structures. Similar to
the rasterization of a 2D scene, voxelization (non)-uniformly
subdivides the 3D space into box-shaped subspaces that are
organized in a 3D data grid where each grid cell contains the
geometry that is enclosed within the respective subspace. As a
matter of principle, search operations on this type of data struc-
tures can never compete with the performance of a balanced tree
data structure. Instead, voxelization supports another important
operation, that is the fast insertion, manipulation and deletion
of polygonal scene objects. It should be kept in mind that hierar-
chical tree data structures always require a recomputation when
the geometry has changed while only a few subspaces have
to be updated in a voxelized space. The most efficient method
for addressing such a cell data structure is called SH, which
reduces the complexity of a change in geometry significantly.
More details on SH are given in the next subsection, as this
concept is used in RAVEN to handle scene modifications in
real-time.

Spatial Hashing originates from Computer Graphics and has
lately been applied to speed up applications such as the real-
time collision detection of huge deformable objects [10]. The
concept of SH is based on the idea of subdividing the space by
primitive volumes called voxels and map the infinite voxelized
space to a finite set of one-dimensional hash indices, i.e., a HT,
which are en/decoded by a hash function [11]. Using a hash
function for spatial subdivision is a very efficient strategy. Each
voxel contains the respective encapsulated scene polygons and
is addressed by the corresponding hash index. These indices
can be computed as follows: Considering an axis-aligned cu-
bical voxel with edge length a as the subdividing volume, the
coordinates (x,y,z) of an arbitrary point are quantized to the
voxel coordinates (u,v,w), in particular, the coordinates are
subdivided by the voxel’s edge length a and floored to the next
integer with

u =
⌊ x

a

⌋
,v =

⌊ y
a

⌋
,w =

⌊ z
a

⌋
. (1)

Then the voxel coordinates (u,v,w) are mapped to a hash index

2 ICA 2010

Proceedings of 20th International Congress on Acoustics, ICA 2010 23–27 August 2010, Sydney, Australia

2

1

5

4

3

2

 Voxel

AABB

Pmin

Pmax

5 6 7 8 9 10
0

1

2

3

4

5

Voxel Indices (X)

V
ox

el
 In

di
ce

s
(Y

)

(8,0,Z)

(8,1,Z)

(8,2,Z)

(8,3,Z)

...
...

Hash Cell

Hash Table

H
as

h
Fu

nc
tio

n

Voxel
 Index

Hash
 Index

39

...

2

...

...

28

...

17

...

6

2

...

2

 Polygon ID

Figure 2: Example of hashing geometrical objects in a voxelized space. Every voxel in space is mapped to an entry (hash index) in the
HT. The intersection of an object with these voxels is stored in the HT.

i using a special hash function. In this contribution two different
hash functions h1 and h2 are considered, which are defined to

i =
{

h1(u,v,w) = (u · p1⊕ v · p2⊕w · p3) mod n
h2(u,v,w) = (u · p1 + v · p2 +w · p3) mod n (2)

, where i is the hash index, p1, p2, p3 are large prime numbers,
⊕ denotes the logical XOR-operator and n stores the size of the
HT. As one can see, the modulo operation reduces the infinite
3D space to a finite 1D set, which unfortunately could result in
the mapping of two or more voxels to the same hash index, so-
called hash collisions. Hash collisions do not necessarily result
in a simulation error as they can easily be intercepted, though
this causes an additional computational effort and should be
kept at a low level– at least in real-time applications. To reduce
the number of hash collisions, three factors are important: 1)
the hash function should distribute the hashes uniformly over
the output space to avoid multiple mapping to the same index,
2) the HT size should be kept at a moderate level in terms of
memory management and 3) the voxel’s edge length in relation
to the scene’s dimensions should be optimized as it strongly
influences the overall performance of search operations. All
these factors will be thoroughly discussed in the Performance
section.

Fig. 2 illustrates the voxelization of the same simple geom-
etry that was used in the previous subsection. The concept
of SH will be demonstrated for polygon 2 using the second
hash function h2 that was described above. In this example,
the hash function’s prime numbers are indiscriminately set to
p1 = 7, p2 = 11, p3 = 13, the HT is n = 50 in size, and the
voxel’s edge length is assumed to be a = 2. At first the Axis-
Aligned Bounding Box (AABB) of polygon 2 is computed,
but only the AABB’s minimum and maximum coordinate val-
ues are actually of interest, denoted as Pmin = (17,0.5,0) and
Pmax = (17,6.5,3) in Fig. 2. These two points are then mapped
to the corresponding voxel coordinates Vmin and Vmax, with

Vmin = (
⌊

Pmin,x

a

⌋
,

⌊
Pmin,y

a

⌋
,

⌊
Pmin,z

a

⌋
) = (8,0,0) (3)

Vmax = (
⌊

Pmax,x

a

⌋
,

⌊
Pmax,y

a

⌋
,

⌊
Pmax,z

a

⌋
) = (8,3,1). (4)

All possible voxels between the discretized minimum Vmin and
the discretized maximum Vmax of the AABB have to be tra-
versed, but only the lowest voxel row (min(z) = 0.5) will be
further regarded, i.e., V1 = (8,0,0), V2 = (8,1,0), V3 = (8,2,0)
and V4 = (8,3,0), as the hashing procedure always follows the
same pattern. Here, the corresponding hash indices of the four
voxels are:

i1 = (8 ·7+0 ·11+0 ·13) mod 50 = 6
i2 = (8 ·7+1 ·11+0 ·13) mod 50 = 17
i3 = (8 ·7+2 ·11+0 ·13) mod 50 = 28
i4 = (8 ·7+3 ·11+0 ·13) mod 50 = 39

(5)

After computing the voxels’ hash indices, polygon 2 is sorted
into the respective cells of the HT and the next scene poly-
gon is proceeded in the same way. The advantage of SH over
other spatial data structures such as BSP-trees is that the inser-
tion/deletion of m vertices into/from the HT takes only O(m)
time. Thus, this method is perfectly qualified to efficiently han-
dle modifications of a polygonal scenery in order to enable a
real-time auralization of a dynamically-changing environment.

Intersection Tests

RAVEN’s hybrid room acoustics simulation approach is based
on the computation of audible ISs and stochastic ray tracing. As
a matter of principle, these methods of GA usually demand for
millions of intersection searches between ray segments and the
scene geometry, which usually builds a bottleneck for real-time
applications. At the moment, RAVEN features four strategies
of intersection searches using different types of search accelera-
tion: BF, BSP and SH. Here, the BF approach is the most simple
strategy, which tests a considered ray segment always against
all scene polygons on intersection. In contrast, the BSP-based
algorithm yields the best performance by testing only subsets of
convex polygon sets, where in case of balanced trees the search
complexity drops down from O(n) up to O(log2(n)) , where
n denotes the number of scene polygons. In this contribution,
further details on the BSP-based intersection search are omitted

ICA 2010 3

23–27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010

Existing Image Sources

Static & Audible Dynamic

Destroy corresponding
Dynamic Image Source

Create New
Dynamic Image Source

Operations on Dynamic Scene Objects

Insertion DestructionManipulation

Inaudible InaudibleAudible Audible

A
ud

ib
ili

ty
 T

es
ts

Figure 3: Concept of handling audibility tests in “dynamic mode”. Regarding the type of operation on a dynamic object not all image
sources have to be tested on audibility. It is assumed, that the “static” scene, as well as the source and the receiver position, are fixed in
“dynamic” mode, so that only dynamic objects can be manipulated.

due to space restrictions, though a complete description is given
in [8]. Two types of intersection search algorithms are currently
implemented in RAVEN that use the concept of SH, called ,
Voxel Tracing and Voxel Candidates. While Voxel Tracing uses
a smart identification of intersection candidates, Voxel Candi-
dates declares all voxels as potential intersection candidates that
are enclosed by the bounding box spanned by the starting- and
end point of the observed line segment (more details are given
in [12]). A brief performance analysis of each method is given
in the performance section.

HANDLING OF DYNAMIC SCENE OBJECTS

During a preprocessing step, a static room acoustical scene is
selected from a database, necessary parameters for ray trac-
ing and image source method are defined and the simulation
is initialized. At runtime, impulse responses for all possible
sound propagation paths are computed using BSP-accelerated
simulation algorithms [8],[13]. In the following, this type of
simulation is called static mode where no geometry manipula-
tions are allowed. In contrast, in the dynamic mode six basic
operations on dynamic objects are considered: insertion, de-
struction, and manipulation, which includes the translation, the
rotation, and the scaling of the object as well as the change of
surface materials. Here, the object’s initial geometry is either
imported from a database or sketched on-the-fly. It should be
pointed out, that the two modi operandi cause no restriction
on user interaction for the VR-simulation– it merely has to be
understood as a feature to reduce the computational complexity.
Simulation events are always distributed independently on a
computing cluster using a master scheduler application [14].

Regarding ray tracing simulations, it is sufficient to update
both the geometry and the corresponding spatial data structures,
and resimulate either in static or dynamic mode. In contrast, a
dynamic handling of IS simulation turns out to be more com-
plicated, as they have to be generated, destroyed and updated
(audibility and position) at runtime. For a convenient insertion,
manipulation and destruction of ISs, RAVEN uses hierarchical
tree data structures to organize ISs, where the tree height corre-
sponds to the reflection order (see Figure 4). Fig. 3 shows the
concept of performing IS audibility tests in the dynamic mode.
If a new dynamic object is created, an audibility test for all new
generated dynamic image sources must be performed. Assum-

ing that the sound source and the receiver position are fixed, the
audibility test of already existing ISs can be reduced to check
only currently audible static ISs and audible dynamic ISs of
previously inserted dynamic objects. In contrast, if a dynamic
object is destroyed, only the existing inaudible ISs, both static
and dynamic, have to be further checked, as already audible ISs
stay audible at any case. In case of object manipulation, such
as translation, rotation and scaling operations, no ISs can be
excluded from the audibility test, which makes these operations
the most time consuming events in terms of computational per-
formance. In general, algorithms based on SH cannot compete
with the performance of BSP-trees (see section Performance).
For this reason, RAVEN switches back to static mode as soon
as all geometric modifications are carried out, whereby BSP-
trees of modified rooms are recomputed and the set of currently
audible ISs is updated.

Insertion of a dynamic object

In case of inserting a dynamic object into the geometric scene,
new ISs have to be generated that relate to the newly inserted
geometry. As mentioned above, RAVEN organizes ISs in a hi-
erarchical tree structure, which therefore has to be expanded
accordingly. Fig. 4 illustrates this process where a single poly-
gon, i.e., an additional reflection plane is added to the scene. In
each subsequent branch of the primary source, i.e., the image
source of zeroth order, a new brother node is inserted into the
tree representing another IS (orange nodes). In order to compute
all possible ISs up to a given maximum order, the new gener-
ated nodes have to be expanded to the full tree (red nodes). The
position of each newly generated IS is always computed by mir-
roring the corresponding father node on the inserted reflection
plane.

Destruction of a dynamic object

Removing a dynamic object from the scene is a fast and simple
operation. The update of the HT does not affect other existing
objects and takes only O(n) time, where n is the total number
of the object’s vertices. In order to remove the corresponding
ISs from the IS tree, all subsequent trees of the object’s father
nodes (orange nodes) just have to be destroyed recursively from
down to top (see Fig. 4). After all ISs are removed from the
tree, a new audibility test is carried out testing only the formerly
inaudible ISs as sound propagation paths might be unblocked

4 ICA 2010

Proceedings of 20th International Congress on Acoustics, ICA 2010 23–27 August 2010, Sydney, Australia

Im
age S

ource O
rder

1

2

3

0

Figure 4: Handling of ISs using a hierarchical tree data structure.

Scene Model No. of Polygons No. of Planes Avg. Edge Length [m] No. of ISs (1st/2nd/3rd)
Classroom (CR) 391 81 0.79 82/6662/524962
Eurogress (EG) 391 142 3.93 143/20165
Lecture Room (LeR) 147 28 2.89 29/785/21197
Living Room (LiR) 67 31 1.43 32/962/28862
Metro Station (MS) 272 129 4.03 130/16642

Table 1: Information on geometry and number of corresponding ISs of the applied test scenarios.

Scene Model IS Order (No. of ISs Hash(VC)[ms] Hash(VT) [ms] BSP [ms] Brute [ms]
Classroom (CR) 2(6562) 33.3 (1.47) 37.6 (1.46) 26.7 193.0
Eurogress (EG) 2(20165) 195.9 (1.80) 126.7 (1.63) 76.1 510.2
Lecture Room (LeR) 3(21197) 177.1 (1.45) 129.2 (1.29) 62.1 293.7
Living Room (LiR) 3(28862) 218.3 (1.23) 174.2 (1.44) 66.7 215.4
Metro Station (MS) 2(16642) 165.0 (1.33) 118.2 (1.50) 59.5 346.3

Table 2: Averaged measurement results of IS audibility tests based on VC and VT, compared to the computation times of both, the BF-
and the BSP-algorithm. The corresponding average ratio between voxel size and average edge length of the scene polygons is given in
parentheses.

now (see section Handling of Dynamic Scene Objects).

Manipulation of a dynamic object

Each object manipulation goes along with a position update
of all corresponding IS, which is basically the reverse search
operation in comparison to an object destruction. Therefore, Fig.
4 can also be used to further illustrate this process. Contrary
to the object destruction, the IS tree is now traversed from
top to down, starting from the object’s father nodes (orange)
and following all underlying subbranches (red nodes) until the
leaves of the tree are reached. Thereby, the position of each
traversed IS (orange and red nodes) is updated according to the
modified geometry.

PERFORMANCE

In this section the performance of the single algorithms is in-
vestigated on real-time capability. Five different geometrical
scenes of different complexity and size are considered for this
performance analysis. In particular, these are a the models of
a classroom, the Eurogress in Aachen, a living room, a lecture
room, and a metro station in Warsaw. Information on geometry
and the number of image sources for all models is summarized
in Tab. 1. Due to a lack of memory on the test system, both
models, Eurogress and metro station, are considered only for
image sources up to second order. All tests were carried out
on an off-the-shelf desktop personal computer with an AMD
Athlon 2.7 GHz single core CPU, 4 GB RAM (800 MHz) and
Visual Studio 2005 SP1 as development environment. RAVEN
is completely written in C++. Although many functions are
usually computed in parallel using OpenMP, multi-core CPUs
are omitted in this analysis for the sake of comparability – some
methods (especially SH) would gain more from the usage of par-

allel computing than others. Computation times are measured
by performing ten iterations of each simulation method and
averaging the respective results. The IS audibility tests based
on SH were carried out for both methods, VT and VC, in each
case with a fixed HT size. The voxel size s was manipulated
in relation to the average edge length of all scene polygons aa
resulting in a factor f , with f = s/aa. In Tab. 2 the best results
for both approaches are summarized where the chosen values
for f are given in parentheses. Additionally, the computation
times of the BF- and the BSP-algorithm are given for a better
assessment of the results. A voxel size of one and one half of
the average edge length of the scene’s polygons provided good
results for all room models. More elaborated performance tests
and optimization techniques are presented in [12].

SUMMARY

In this contribution the concept of SH was adapted to the hy-
brid room acoustics simulation of virtual environments that
include dynamic objects that were insertable, destructible and
manipulable by a user at runtime. While this concept was eas-
ily embeddable to the applied stochastic ray tracing algorithm
where it was sufficient to update just both the geometry and the
corresponding spatial data structures, a dynamic handling of
ISs simulation turned out to be more complicated, as they have
to be generated, destroyed and updated (audibility and position)
at runtime. Therefore, a hierarchical tree data structure was
introduced that organizes ISs in order to enable a convenient
processing of ISs.

One of the main goals considering the handling of dynamic ob-
jects was to analyze if the new concept is applicable to real-time
applications. Performance analysis were carried out for five dif-
ferent scene models on an off-the-shelf personal computer that

ICA 2010 5

23–27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010

came with a single core AMD CPU with 2.7 GHz, 4 GB Ram
(800MHz) and Visual Studio 2005 SP1 as development environ-
ment. Here, the analysis of intersection tests of ray segments
with scene polygons has shown a strong dependency of the
achieved performance on the chosen voxel size where the opti-
mal size turned out to be scene dependent. Good results were
obtained for all scene models by setting the voxel size to one
and one half of the average edge length of the corresponding
scene polygons.

It cannot be denied that BSP-accelerated intersection tests are
much more efficient than the two introduced methods based
on SH, but each object manipulation requires an update of the
BSP-tree which results in additional computation time that – in
combination with the IS audibility test – cannot compete with
performance of SH. However, in cases of geometry and ISs of
high complexity and high order, respectively, a large number
of audibility tests has to be performed, where the combination
of BSP tree regeneration and fast BSP-based intersection tests
can exceed the performance of the SH approach – at least on
a single core CPU. Here, the computation time significantly
drops with any additional CPU core as the HT data structure
is perfectly computable in parallel. Approaches of SH will
therefore outperform hierarchical tree data structures on multi-
core CPUs.

ACKNOWLEDGMENTS

The authors would like to thank Ingo Assenmacher and Lenka
Jeřábková for their support and valuable discussions about the
concepts of Spatial Hashing. Furthermore, the authors would
like to thank the German Research Foundation (DFG) for fund-
ing this project.

REFERENCES

[1] T. Lentz, D. Schröder, M. Vorländer, and I. Assenmacher.
Virtual reality system with integrated sound field simula-
tion and reproduction. EURASIP Journal on Advances in
Signal Processing, 2007:19, 2007.

[2] D. Schröder, F. Wefers, S. Pelzer, D. Rausch, M. Vorlän-
der, and T. Kuhlen. Virtual Reality System at RWTH
Aachen University. In Proceedings of the International
Symposium on Room Acoustics (ISRA), Melbourne, Aus-
tralia, 2010.

[3] O. Deille, J. Maillard, N. No, K. Bouatouch, and J. Martin.
Real time acoustic rendering of complex environments
including diffraction and curved surfaces. In Proceedings
of the AES 120th Convention, Paris, France, 2006.

[4] R. Kajastila, S. Siltanen, P. Lunden, T. Lokki, and
L. Savioja. A distributed real-time virtual acoustic render-
ing system for dynamic geometries. Journal of the Audio
Engineering Society, 122:7160, 2007.

[5] P. Lunden. Uni-Verse Acoustic Simulation System: inter-
active real-time room acoustic simulation in dynamic 3D
environments. In 2nd ASA-EAA joint conference Acous-
tics, Paris, France, 2008.

[6] D. Schröder and I. Assenmacher. Real-time auralization
of modifiable rooms. In 2nd ASA-EAA joint conference
Acoustics, Paris, France. 2nd ASA-EAA joint conference
Acoustics, Paris, 2008.

[7] M. Vorländer. Auralization: Fundamentals of Acoustics,
Modelling, Simulation, Algorithms and Acoustic Virtual
Reality. Springer-Verlag Berlin, 2005.

[8] D. Schröder and T. Lentz. Real-time processing of im-
age sources using binary space partitioning. Journal of
the Audio Engineering Society (JAES), 54(7/8):604–619,
2006.

[9] D. Schröder, P. Dross, and M. Vorländer. A fast reverbera-
tion estimator for virtual environments. In Proceedings of
the 30th AES International Conference, Saariselkä, Fin-
land, 2007.

[10] M. Teschner, B. Heidelberger, M. Müller, D. Pomeranets,
and M. Gross. Optimized Spatial Hashing for Collision
Detection of Deformable Objects. VMV ’03, 2003.

[11] T. Akenine-Möller and E. Haines. Real-time Rendering.
A K Peters Verlag, Second Edition, 2002.

[12] D. Schröder, A. Ryba, and M. Vorländer. Real-time aural-
ization of dynamically changing environments. submitted
to Acta Acustica united with Acustica, May 2010.

[13] D. Schröder and M. Vorländer. Hybrid method for room
acoustic simulation in real-time. In Proceedings of the
20th International Congress on Acoustics (ICA), Madrid,
Spain, 2007.

[14] M. Schlütter. Parallelisation of Algorithms for Real-time
Room Acoustics Simulation (diploma thesis). Virtual Re-
ality Group of RWTH Aachen University, 2009.

6 ICA 2010

