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ABSTRACT

The vibrations of the soundboard of an upright piano in playing condition are investigated. It is first shown that the
linear part of the response is at least 50 dB above its nonlinear component at normal levels of vibration. Given this
essentially linear response, a modal identification is performed in the mid-frequency domain [300-2500] Hz by means
of a novel high resolution modal analysis technique (Ege, Boutillon and David, JSV, 2009). The modal density of the
spruce board varies between 0.05 and 0.01 modes/Hz and the mean loss factor is found to be approximately 2%. Below
1.1 kHz, the modal density is very close to that of a homogeneous isotropic plate with clamped boundary conditions.
Higher in frequency, the soundboard behaves as a set of waveguides defined by the ribs. A numerical determination
of the modal shapes by a finite-element method confirms that the waves are localised between the ribs. The dispersion
law in the plate above 1.1 kHz is derived from a simple waveguide model. Wepresent how the acoustical coincidence
scheme is modified in comparison with that of thin plates. The consequences in terms of radiation of the soundboard in
the treble range of the instrument are also discussed.

INTRODUCTION

The purpose of this study is to describe the vibration regime
of the soundboard of an upright piano in playing condition
in a large frequency range [300-2500] Hz with only a few
parameters. To this end, we have investigated the modal be-
haviour of the soundboard by means of a recently published
high-resolution modal analysis technique (Ege et al. 2009).
Compared to techniques based on the Fourier transform, it
avoids the customary frequency-resolution limitation and thus,
gives access to a larger frequency-range and to a better preci-
sion on damping determinations. In the first section, we study
the linearity of the board. Given the essential linear response,
we present in the second section the results of two modal iden-
tifications of the soundboard from which we derive the modal
density and the loss factor up to 2.5–3 kHz. The frequency evo-
lution of the modal density of the piano soundboard reveals
two well-separated vibratory regimes of the structure. The low-
frequency behaviour (homogeneous isotropic plate) is
presented in section 3 and the mid- and high-frequency be-
haviour (as exhibited by aset of waveguides) in section 4.

LINEARITY

Nonlinear phenomena (such as jump phenomenon, hysteresis
or internal resonance) appear when the vibration of a
bi-dimensional structure reaches amplitudes in the order of
magnitude of its thickness (Touzé et al. 2002). In the case of
the piano, the soundboard displacementw measured at the
bridge remains in a smaller range, even when playedff and
in the lower side of the keyboard. Askenfelt and Jansson re-
port maximum values of displacement at the bridgewmax≈ 6·
10−6 m in the frequency range [80-300] Hz
(Askenfelt and Jansson 1992). This maximum value is less than
10−3 times the board thickness. We can therefore assume that
large displacements are far to be reached and the vibrations
of the soundboard can be expected as linear to a high level of
approximation.

The technique

In order to quantify experimentally the (non)linearity, we per-
formed measurements on an upright piano soundboard. Anex-
ponential sine sweeptechnique proposed by Farina
(Farina 2000), mathematically proved by Rébillatet al.
(Rébillat et al. 2010), is used. It gives access both to the lin-
ear part of the impulse response of either system and to the
nonlinear part of the response, that is the distortion level in the
frequency-domain.

The technique goes as follows:
(a) Let’s consider first a linear system excited byx(t), a swept-
sine of durationT with initial and final angular frequenciesω1
andω2: x(t) = sin[φ(t)] with the instantaneous phaseφ(t) =

ω1t +
ω2−ω1

T

t2

2
. The impulse responseγimp(t) can be recon-

structed by a deconvolution process: the measured signalγmeas(t)
(acceleration for example) is convolved with the time-reversal
of the excitation signal, that isγimp(t) = γmeas(t)∗x(−t).
(b) For a system with a weakly non-linear behaviour, Farina
proposes to use a sine sweep for which the frequency varies
exponentially with time –exponential sine sweep– in order to
separate the linear and nonlinear parts of the impulse response:

x(t) = cos[φ(t)]

φ(t) =
ω1T

ln(ω2/ω1)

(

e
t
T ln(ω2/ω1) −1

)

−π/2
(1)

This signal verifies the fundamental property (Rébillat et al. 2010):

∀k∈ N
∗ , cos[kφ(t)] = cos[φ(t +∆ tk)]

where ∆ tk =
T lnk

ln(ω2/ω1)

(2)

Multiplying the phase of a logarithmic sweep by a factork
shifts it up in time by∆ tk. Rébillat et al. shown moreover
that a logarithmic sweep to the powern, xn(t) = cosn[φ(t)],
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can be written as a linear function of cos[kφ(t)] with k∈ [1,n]
(Rébillat et al. 2010). This property is at the basis of the method
for testing nonlinearity. The convolution product of the output
signaly(t) with the inverted excitation signalx(−t) yields the
linear impulse response preceded in time by the non-linear im-
pulse responses of successive orders. If the excitation timeT
is long enough, the responses do not overlap and can be sepa-
rated in time by simple windowing. The experimental problem
consists in separating the sources of nonlinearity.

Results

An upright piano of no particular merit has been put in a pseudo-
anechoic room (anechoic walls and ceiling, ordinary ground).
The piano was tuned normally but its strings were muted by
strips of foam inserted between them or by woven in two or
three places. Two configurations – {loudspeaker, room} and
{ loudspeaker, piano, room} – have been analysed with the fol-
lowing procedure. The electrical excitation of the loudspeaker
was a logarithmic swept-sine [50-4000] Hz with a 40 kHz sam-
pling frequency and aT = 26 s duration. The amplitude of the
loudspeaker was set at the beginning of the study in order to
obtain displacements of the soundboard corresponding to the
ff playing:≈ 10−6 m at≈ 370 Hz in this case.

In the first configuration {loudspeaker, room}, the response of
the room is measured with a microphone (prepolarised pressure-
field 1/2” – Brüel & Kjær 4947) placed in front of the loud-
speaker (Bose – 802 Series II). The spectrogram of the com-
plete pressure response of the room (without the piano) is shown
in Fig. 1. Some distortion is clearly visible which may safely
be attributed to the loudspeaker rather than to the microphone.
The spectra of the linear and nonlinear impulse responses sep-
arated with the method exposed above are shown in Fig.2. By
convention, the non-linear response of ordern as displayed at
frequency f in these spectra, is the response to a sinusoid at
f , measured at frequencyn f in a Fourier transform of the re-
sponse. In other words, what is common to points belonging to
different curves with the same abscissa is the frequency of the
excitation signal. Except below 500 Hz where the distortion of
the loudspeaker is large, the nonlinear response level is about
50-60 dB lower than the linear contribution.
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Figure 1: Spectrogram of the acoustical response of theloud-
speaker, roomsystem to an electrical signal. The distortion ap-
pears as successive harmonics of the swept-sine. The spectro-
gram is calculated with FFT over overlapping windows of 0.1 s
with an 50% overlap.

In the second configuration {loudspeaker, piano, room}, the
motion of the soundboard was measured with an accelerome-
ter (Brüel & Kjær 4393) put mid-way between two adjacent
ribs, at≈ 10 cm from the bridge, close to the F#4 strings (fun-
damental frequency of≈ 370 Hz). The spectra of the linear
and nonlinear contributions to the response in each configu-
ration (with and without the piano) are shown in Fig.3. The
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Figure 2: Spectra of the linear and the nonlinear responses
shown in Fig.1. Except below 500 Hz, the nonlinear part of
the response is≈ 50-60 dB less than the linear part.

distortion level appears to be approximately the same in both
configurations. This shows that the soundboard intrinsic non-
linearity (distrosion rate) is of the order of -60 dB.
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Figure 3: Nonlinearities of the two systems {loudspeaker,
room} and { loudspeaker, piano, room}. The distorsion rate is
comparable in both situations.

To conclude this preliminary study, it appears that a linear model
is sufficient to predict the vibratory behaviour of a piano sound-
board in playing situations, within the precision of customary
measurements. Given this essentially linear character of the re-
sponse, modal identifications of the soundboard have been per-
formed. When a loudspeaker was used to excite the piano, the
excitation level was comparable to the one used in this linear-
ity study and the linear contribution was extracted. The ordi-
nary impulse excitation does not permit to separate the linear
and nonlinear contributions. Nevertheless, in the light of the
results presented above, and considering the small amplitudes
of displacement caused by the impacts on the tables (typically
less than 8·10−6 m, mostly due to a very low-frequency dis-
placement and still less than 1/100 of the board thickness) we
consider the linear approximation is also verified.

MODAL IDENTIFICATION BY A HIGH-RESOLUTION
METHOD

The method

The modal behaviour of the upright soundboard is investigated
by means of a recently published high-resolution modal anal-
ysis technique (Ege et al. 2009) which avoids the frequency-
resolution limitations of the Fourier transform. This new tech-
nique is particularly well suited for structures made of mod-
erately damped materials such as spruce, and at frequencies
where the modal overlap is high (more than 30%). Based on
the ESPRIT algorithm (Roy and Kailath 1989), it assumes that
the signal is a sum of complex exponentials and white noise; it
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projects the signal onto two subspaces: the subspace spanned
by the sinusoids (signal subspace) and its supplementary (noise
subspace). Rotational invariance property of the signal sub-
space is used to estimate the modal parameters (frequencies,
damping factors and complex amplitudes). The dimensions of
both subspaces must be chosena priori and the quality of the
estimation depends on a proper choice for these parameters.
The best choice for the dimension of the modal subspace is the
number of complex exponentials actually present in the signal.
This number, called̃K, is twice the number of decaying sinu-
soids. It is therefore advisable to estimate this number prior
to the analysis. This is done by means of the ESTER tech-
nique (Badeau et al. 2006), recently developed: it consists in
minimising the error on the rotational invariance property of
the signal subspace spanned by the sinusoids. The block dia-
gram of the method given in Figure4 describes the three main
steps of the method: (a) reconstruction of the acceleration im-
pulse response (b) signal conditioning (c) order detection and
determination of modal parameters.

αk

Data acquisition and normalisation

Time-
reversal

Band-pass
filter

Frequency-
shift

Down-
sampling

Signal conditioning

Time-
reversal s(t)

s(t) ESTER ESPRIT
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bk
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zk

γimp(t)

γimp(t)
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K̃

Deconvolution
process

Figure 4: Block diagram of the high-resolution modal analysis
method (after (Ege et al. 2009))

Impulse excitation

The experimental study presented here aims at estimating the
modal parameters (modal frequencies, modal dampings and
modal shapes) of the upright piano soundboard in the [0-500] Hz
frequency range. The piano was put in a pseudo-anechoic room
and excited with an impact hammer (Kistler – type 9722A) at
the nodes of a rectangular mesh of 12× 10 points regularly
spaced (Figure5). The motion of the board is measured at
five points with accelerometers (two B&K 2250A-10 and three
B&K 4393) located in different zones of the board (Figure5).
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y′
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Figure 5: Rear view of the upright piano, with the mesh for
modal analysis (in red) and the locations of the five accelerom-
eters (in black).

For each of the 120×5 measures, the impulse response is re-
constructed and analysed with the high-resolution modal anal-

ysis method. Results are summarised in Figure6. In order to
measure the damping with some precision, it proved necessary
to band-filter the impulse responses prior to analysis, as shown
by the comparison between (a) and (b) of Fig.6 and as illus-
trated by Fig.7.

Except for the first four low-frequency resonances – for which
the rim probably adds non-negligible losses to the distributed
ones – modal dampings are very close of the loss factors of the
spruce (about 1-3%). The average modal spacing (inverse of
the modal density) is about 22 Hz for these 21 lowest modes, in
agreement with comparable low-frequency studies (≈ 24.8 Hz
for a similar upright piano (Dérogis 1997), ≈ 22.3 Hz for a
baby grand one (Suzuki 1986)). Above 550 Hz no cloud of
points is clearly identifiable in Fig.6(a) owing to a too-high
Signal-to-Noise Ratio (≈ 35 dB). Note that the modal over-
lap µ1 is around 30% at 150 Hz and reaches 70% at 550 Hz.
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Figure 6: High-resolution modal analysis for the [0-
600] Hz frequency-band (impulse excitation). Modal frequen-
cies/damping factors map. (a) firstrough analysis. (b) After
narrow band-pass filtering. (c) After suppression of the (low-
precision) estimations in nodal regions.◦ : retained modal pa-
rameters.× : weighted mean of the modal parameters esti-
mated at four points of the soundboard (acoustical excitation,
see following section). –·–: constant loss factors (η = 1 to
3 %).
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Figure 7: Necessity of the narrow band-pass filtering step. Re-
sults for five modes in the [230-330] Hz frequency-band before
filtering (top diagrams), after filtering (bottom diagrams).

Acoustical excitation

In order to improve the SNR and thus extend the estimation
of the modal parameters towards higher frequencies (higher
modal overlap, in fact), we have replaced the impulsive me-
chanical excitation by a continuous acoustical one (Fig.8).

1The modal overlap is the ratio between the half-power modal bandwidth and
the average modal spacing.
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Piano

Loudspeaker

Accelerometer

Figure 8: Acoustical excitation of the piano placed in a pseudo-
anechoic room. The acceleration of the board is measured at
four points.

The excitation of the loudspeaker is the same as in section 1 (a
logarithmic swept-sine [50-4000] Hz with a 40 kHz sampling
frequency and aT = 26 s duration). The impulse response of
the board is reconstructed by the deconvolution technique and
analysed with a filter bank (a typical bank filtering analysis is
displayed in Fig.9 between 550 and 1150 Hz). The cutoff fre-
quencies of the finite-impulse-response (FIR) filters were cho-
sen at local minima of the Fourier spectrum of the response. If
necessary, when there is a doubt on the number of components
in one frequency-band, two successive filters were occasion-
ally chosen to overlap.
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Figure 9: Typical bank-filtering analysis of a reconstructed im-
pulse response between 550 et 1150 Hz (acoustical excitation).
— : Fourier spectrum of the impulse response at pointA2. • :
modes estimated by ESPRIT (modal amplitudes and frequen-
cies).· · · : amplitude responses of the narrow pass-band filters.

The modal damping factors as identified up to 3 kHz are re-
ported in Fig.10, together with available bibliographical re-
sults (limited to≈ 500 Hz). The advantage of the acoustical
excitation technique in terms of frequency spanning is obvious.
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Figure 10: (•) : Modal damping factors estimated at pointA2
up to 3 kHz. Comparison with bibliographical results:
• (Suzuki 1986); • (Dérogis 1997); • (Berthaut et al. 2003).

Up to around 1200 Hz, loss factors range from 1% to 3% (mean
of η ≈ 2.3% for the 55 estimations, lowest in frequency). Be-
tween 1200 and 1500 Hz, damping increases from a mean
value of≈ 80 s−1 below 1200 Hz to≈ 130 s−1 in this domain.
This increase can be attributed to the acoustical radiation of the
structure since this frequency-band is thecritical domainof the
soundboard where modes radiate most efficiently. It is interest-
ing to note that these results (obtained on an upright piano)

coincide with the ones obtained by Suzuki (Suzuki 1986) on a
small grand of which he estimated the critical domain around
1400 Hz. Above 1.8 kHz the loss factors are of the order of the
internal losses of spruce and influence of radiation is no more
visible. A reason for this may be the alteration of the acoustical
coincidence phenomenon at those high-frequencies, due to the
localisation of the waves between the ribs (see last section).

Modal density

The modal densityn is a global descriptor of the vibratory be-
haviour of the structure in the mid- and high-frequency domain.
It is given as a function of frequency in Fig.11 at four points
of measurements (see Fig.5 for the exact locations), as derived
from an estimation of the modal spacing (moving average, six
successive modes retained for each estimation). The frequency
evolution ofn reveals two well-separated vibratory regimes of
the structure.

a. Below 1.1 kHz, the 4 experimental curves are almost
similar.n( f ) raises slowly and tends to a constant value
of ≈ 0.05 modes Hz−1 independently of the zones of
the board where the measure is done.The ribbed board
behaves as a homogeneous isotropic plate (see next
section). The slow rise confirms moreover that the bound-
ary conditions areconstraint.

b. For frequencies above 1.1 kHz, n( f ) decreases signifi-
cantly. Ribs confine the wave propagation:the sound-
board behaves as a set of waveguides (see last sec-
tion).
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Figure 11: Modal densities of the board measured at points
A1 (•), A2 (∆), A3 (∇), A5 (∗) and calculated for the first waveg-
uide mode (1,n) of the corresponding inter-rib space (—, with
the corresponding color). Asymptotic values of the modal den-
sities of the inter-rib plates (– –, with the corresponding color).
Theoretical modal density of the homogeneous isotropic equiv-
alent clamped plate (–·–), see next section.

MODELLING THE LOW-FREQUENCY BEHAVIOUR:
A THIN HOMOGENEOUS PLATE IN AN ISOTROPIC
EQUIVALENT MATERIAL

A simple finite-element model

The modal density of the soundboard below 1.1 kHz suggests
that a homogeneous isotropic plate represents a good model
in this frequency domain. In order to confirm this numerically,
we realised a two-dimensional finite-element model (FEM) of
the soundboard by means of the free software CAST3M (trian-
gular elements of 2 cm). The ribbed zone was replaced by an
isotropic plate with a dynamical rigidity equal to the one of the
orthotropic spruce plate in the direction of the grain:

DH/(ρH hH) = Dp
x/(ρ php) = 156 m4 s−2 (3)

where the constants of rigidity are genericallyD = Eh3/(12(1−
ν2)), with the Young’s modulusE and the Poisson’s ratioν .
The plate density and thickness areρ andh respectively. The
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superscriptp refers to the unribbed orthotropic spruce plate and
H refers to the homogeneous equivalent isotropic plate. The
x-axis corresponds to the direction of the grain of the wood,
orthogonal to the ribs (see Fig.5). In the numerical model,
the twodead zonesin the upper right and bottom left corners
of the soundboard are modelled as orthotropic spruce plates
with a constant thickness of 8 mm. The two bars delimiting
these two zones are made of fir. The mechanical characteris-
tics used in the numerical model for spruce and fir are sum-
marised in Table1, as derived from measurements made by
Berthaut (Berthaut 2004) on spruce and fir species selected for
piano soundboards.

EL ER GLR νLR ρ [kg m−3]
Spruce 11.5 0.47 0.5 0.005 392

Fir 8.86 0.54 1.6 0.005 691

Table 1: Mechanical characteristics of spruce and fir species
selected for piano soundboard, after (Berthaut 2004). The lon-
gitudinal and radial Young’s moduli (EL and ER) and shear
modulus (GLR) are given in GPa.

Results

The numerical solution of the eigenvalue problem is obtained
in the conservative case and forclampedboundary conditions.
The numerical average modal spacings is presented in Fig.12
together with the experimental estimations. The theoretical av-
erage modal spacing of an isotropic clamped plate is also in-
cluded. Numerical results match well the experimental estima-
tions in the frequency domain of interest. Moreover the first
numerical modal shapes for the isotropic plate – presented in
Fig. 13 – are remarkably similar to those obtained experimen-
tally, whereas the one obtains with a numerical model of the
ribbed boardwithout bridgesare less similar. This confirms
that on a typical piano soundboard, the ribs and the bridges
compensate globally the anisotropy of spruce.
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Figure 12: Average modal spacing of the piano soundboard:
measured at pointsA1 (•), A2 (∆), A3 (∇), A5 (∗), numeri-
cally calculated with a finite-element model of a homogeneous
isotropic clamped plate (�) and theoretical for the same plate
(—).

To conclude this section, we reproduce on figure14 the rela-
tion of dispersion of flexural waves in the isotropic plate. The
coincidence frequency (for which the dispersion curve in the
plate intersects the one in air) is≈ 1500 Hz which is con-
sistent with previous experimental conclusions. However, the
half-wavelengthλ/2 in the plate become equal or less to the
average distancep between two consecutive ribs (≈ 13 cm) at
≈ 1160 Hz so that beyond this frequency, the structure cannot
be modelled as a homogeneous plate any more (see next sec-
tion).

 

 

(a) (1,1)-mode (b) (2,1)-mode (c) (3,1)-mode

Figure 13: First three modal shapes of the upright piano sound-
board: measured (first line), numerical (FEM) after replace-
ment of the ribbed zone by a homogeneous isotropic equiva-
lent plate (middle line), numerical (FEM) for the ribbed board
without bridges (bottom line).
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Figure 14: Dispersion curves in the isotropic plate (—), and
in air (– –). The critical frequency of radiation of the plate is
≈ 1500 Hz. At≈ 1160 Hz, the half-wavelengthλ/2 is equal
to the average distancep between two consecutive ribs.

MODELLING THE MID- AND HIGH-FREQUENCY
BEHAVIOUR: SET OF WAVEGUIDES AND MOD-
IFIED COINCIDENCE PHENOMENON

Numerical observations

For frequencies above 1.1 kHz,n( f ) falls significantly. At 1.1
kHz, the transverse waves in a soundboard without ribs would
have a half-wavelength equal to the average distancepbetween
two consecutive ribs. Berthautet al. (Berthaut 2004) made the
observation that ribs confine the wave propagation. This is con-
firmed here by numerical simulations. Modal shapes obtained
through the finite-element model of the ribbed board (Fig.15)
exhibit a localisation of the waves for frequencies above 1.1 kHz.
The soundboard behaves as a set of waveguides.

The waveguide model

We adopt the simplest possible waveguide model (Fig.16) in
order to derive a dispersion law of this non-homogeneous plate
and to calculate its modal density.

The hypotheses are :

• The inter-rib region behaves like an orthotropic plate
with clamped boundaries.

• Wavenumberskxm in the directionx normal to the ribs2

are imposed by the inter-rib distancep: kxm = mπ/p

2The directionx is parallel to the grain of the spruce board and, by construc-
tion, perpendicular to the ribs (see figure5).
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(a) 32nd numerical modal shape,
fn = 776Hz

(b) 48th numerical modal shape,
fn = 1089Hz

(c) 74th numerical modal shape,fn = 1593Hz

Figure 15: Modal shapes obtained by a FEM of the ribbed
board. The positions of the ribs and of the two bars are indi-
cated in black. At 1593 Hz, the antinodes of vibration are lo-
calised between the ribs (nodes of vibration). This behaviour
is already visible for the modal shapes at 1089 Hz, but not at
776 Hz. In (c), the sign of the phase is represented: red and
blue zones denote regions vibrating with opposite phases.

p
x

Ly

y

Figure 16: The board between two consecutive ribs can be con-
sidered in the high-frequency range as afinitewaveguide.

with m∈ N
∗.

• Wavenumberskyn in the directiony parallel to the ribs
are imposed by the boundary conditions at rim.

According to the first hypothesis, the dispersion law is:

k4
y +k2

y
D2 +D4

D3
k2

xm
+

D1

D3
k4

xm
−

ρ hω2

D3
= 0 (4)

where theDi are the constants of rigidity of spruce, considered
as an orthotropic material (of main axesx andy):
D1 = Exh3/(12(1−νxyνyx)), D2 = νyxExh3/(6(1−νxyνyx)),
D3 = Eyh3/(12(1−νxyνyx)) andD4 = Gxyh3/3.

With A=
D2 +D4

D3
k2

xm
, B=

D1

D3
k4

xm
andC =

ρ h

D3
, the equation4

becomes a second order equation ink2
y: k4

y +Ak2
y +B−Cω2 =

0. Finally the dispersion law in each waveguide is:

ky = ±
(√

A2 +4Cω2−4B−A

2

)1/2

(5)

The pulsationωc,p,m =
√

B/C =

(

mπ
p

)2
√

D1

ρ h
is a low cutoff

pulsation for the transverse modesm in ribs separated byp.
Below this pulsation, there is no real solution and waves are
evanescent in they direction.

For a givenkxm, the modal density in the wave guide can be
calculated as follows. The wavenumberskyn are approximated
by nπ/Ly with n∈ N

∗. The number of modes of pulsation less
thanω is N(ω) = ky(ω)Ly/π and the modal density:

n(ω)=
dN

dky

dky

dω
=

Ly

π

√
2Cω

√
A2 +4Cω2−4B

(√
A2 +4Cω2−4B−A

)1/2

(6)

In the high-frequency limit, the waveguide has the same modal
density as that of a beam of lengthLy, with a ω−1/2 depen-
dency:

n(ω) →
ω→+∞

Ly

π
C1/4

2
√

ω
=

Ly

2π
√

ω

(

ρ h

D3

)1/4

(7)

The modal density of waveguides with different values ofp
andLy are reported in Fig.11.

The modified acoustical coincidence

The acoustical coincidence phenomenon is deeply modified
in comparison with the one occurring in a thin plate (see fig-
ure17). The dispersion curve of a waveguide can present one,
two, or no coincidence frequencies depending on the value ofp.
This creates a nonuniformity in the radiation of the soundboard
in the treble range of the instrument compared to the lower
range and this may explain the difference in timbre. For exam-
ple, for the keyD♯6 having a fundamental frequency around
1245 Hz, the damping factor due to the acoustical radiation of
the fundamental may be higher (supersonic waves) than the
damping factors of the next two partials (subsonic waves).
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Figure 17: Relations of dispersion for flexural waves in the or-
thotropic plate (· · · alongx and· · · alongy), in the air (—) and
for the two first waveguide modes (— and– –) of the waveg-
uide between the second and third ribs. We add the discretes
values corresponding to the waveguide modes(1,n) in • and
(2,n) in (◦), together with the supposed perfectly harmonic par-
tials of theD♯6 strings in⋄.

CONCLUSION

We have investigated the vibrations of the soundboard of an
upright piano in playing condition. At normal levels of vibra-
tion, the linear part of the mechanical response to an acous-
tical response is≈50–60 dB above the nonlinear component.
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Given the essentially linear response, a modal identification
was performed in the mid-frequency domain [300-2500] Hz by
means of a novel high-resolution modal analysis technique: the
modal density and the loss factor could be measured up to 2.5–
3 kHz. The frequency evolution of the modal density of the pi-
ano soundboard reveals two well-separated vibratory regimes
of the structure. Below 1.1 kHz, the modal density is very close
to that of a homogeneous isotropic plate with clamped bound-
ary conditions. Higher in frequency, the soundboard behaves
as a set of waveguides defined by the ribs. A numerical (FEM)
determination of the modal shapes confirms that the waves are
localised between the ribs. The measured modal density is con-
sistent with an estimation based on the dispersion law of waves
in each waveguide. The acoustical coincidence phenomenon
is deeply modified in comparison with that occurring in thin
plates. The dispersion curve of a waveguide can present one,
two, or no coincidence frequencies. This creates a nonunifor-
mity in the radiation of the soundboard in the treble range of
the instrument compared to the lower range and this may ex-
plain the difference in timbre.

Finally, we would like to notify the reader that the measure-
ments presented in this paper have been used to give a synthetic
description of the piano soundboard mechanical mobility (ad-
mittance): see the ISMA companion-paper (Ege and Boutillon
2010)).
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