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ABSTRACT

Ambisonics, a sound field synthesis and reproduction technique, has shown promising results in conveying
three-dimensional spatialized sound. Ambisonic encodings directly describe the spatial properties of sound fields without
reference to the reproduction system. Precise regeneration of a sound field requires a large number of loudspeakers
arranged so as to adequately sample all directions; this is referred to as a regular layout. It is not difficult to find a
decoding matrix to reproduce Ambisonic recordings using uniformly distributed loudspeakers. Nevertheless, evenly
locating a large number of loudspeakers is not feasible in most scenarios. Irregular arrays, however, are known to lead
to ill-conditioned and singular re-encoding matrices. We propose a method for accurate reproduction of high order
Ambisonic recordings over irregular loudspeaker arrays. Our approach consists of three stages which aim to exploit any
regularities of the array, while using asymmetrically located loudspeakers to expand the listening volume. We evaluated
our proposal using an irregular 157-channel loudspeaker array. Comparisons with mainstream decoding methods were
conducted. The proposed scheme results in an overall increase in the size of the listening volume.

1. INTRODUCTION

Humans are sensitive to the spatial features of sound fields.
We can accurately determine the direction from which sound
reaches our ears, judge the distance to a given source, perceive
the effects of obstacles in the sound propagation path, assess
the properties of listening rooms through reverberation, and, to
some extent, estimate the size and shape of sound sources [1].
A system intended to present a realistic auditory scene to its
users must be able to convey all this information.

The most natural way to reproduce a three-dimensional sound
space is to precisely recreate the original sound field. If the
physical variables that humans perceive are reconstructed, a
very realistic experience can be delivered. Unfortunately, sound
fields carry too much information for exact reproduction to
be practicable. A compromise must be made between the
reproduction system’s complexity and its accuracy. Since
different applications demand varying degrees of precision,
a scalable format for the characterization of sound fields is
desirable.

Ambisonics is a promising technique that manages to encode
a given sound field with arbitrary accuracy [2–4]. Ambisonic
encodings focus on the physical properties of sound fields,
making them independent of the reproduction system; they
can be reproduced over a variety of loudspeaker arrays. We
provide a brief introduction to the basics of Ambisonics and
outline the most common Ambisonic decoding methods in
Section 2. Standard decoders show excellent results when
targeting arrays with regular loudspeaker layouts; however,
the uniform distribution of many loudspeakers is often
impracticable. Mainstream acceptance of Ambisonics calls
for a decoder capable of using irregular arrays. Unfortunately,
naïve approaches to the decoding of Ambisonic recordings
for reproduction using irregular loudspeaker arrays can

lead to numerical instability and suboptimal results. The
difficulties of Ambisonic reproduction using irregular arrays
are summarized in Section 3. Following the trajectory of our
previous research [5–7], we present a method to decode high
order Ambisonic streams. Our proposal, detailed in Section 4,
integrates three decoding strategies for different loudspeaker
distributions, so that irregularities in the array will not introduce
significant numerical errors. A high order Ambisonic decoder
for an irregular 157-channel loudspeaker array was developed
using the proposed method. Section 5 compares its performance
with that of a standard Ambisonic decoder.

2. AMBISONICS

Ambisonics relies on multiple audio channels to encode and
reproduce a given sound field at the position of the listener.
Sound fields can be either synthesized by simulating the
propagation of sound from virtual sources or recorded using
microphone arrays. The spatial features of sound fields are
encoded as a set of expansion coefficients in an approach
similar to how smooth functions can be characterized by their
Taylor expansions or periodic functions by their Fourier series.
Ambisonic recordings can be reproduced using loudspeaker
arrays to reconstruct the encoded sound fields. An important
advantage of the Ambisonic format is its independence from the
particulars of the reproduction system. Any loudspeaker array
with a proper decoder can reproduce Ambisonic recordings;
however, the accuracy to which the sound field can be
reconstructed depends on the loudspeaker distribution. We refer
to arrays in which the loudspeaker positions regularly sample
all directions as regular loudspeaker arrays. Configurations
where all loudspeakers lie on the surface of a sphere centered at
the listening position are designated as spherical loudspeaker
arrays. Both properties are independent; an array can be regular
or irregular irrespective of its being spherical or not.
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2.1 Multipole expansion

Assuming an ideal propagation medium, a sound field p can be
mathematically described by the scalar wave equation[

∇
2− 1

c2
∂ 2

∂ t2

]
p(r,θ ,ϕ, t) = 0, (1)

where θ and ϕ stand for the azimuthal and polar angles,
respectively, r denotes the radial coordinate, t designates the
temporal coordinate and c represents the speed of sound.

By expressing the time dependence in terms of normal modes,
the general solutions to Eq. (1) can be written as [8]

p(~r,k) =

[
∞

∑
m=0

jl(kr)
m

∑
n=−m

Bmn(k)Ymn(θ ,ϕ)

]
ei(2πck)t (2)

for all wavenumbers k, assuming the magnitude of ~r to be
smaller than the distance to the closest sound source. The
symbol jl stands for the spherical Bessel function of order
l = m(m+1), and Ymn denotes the spherical harmonic function
of degree m and order n.

Eq. (2) is known as the multipole expansion of p(~r,k). The
expansion coefficients

Bmn(k) =
∫ 2π

0

∫ π

2

− π

2

p(~r,k)
jm(m+1)(kr)

Ymn(θ ,ϕ)sinϕdϕdθ , (3)

constitute an Ambisonic encoding of the sound field.

Since sound fields are characterized by real-valued functions, it
is useful to define the multipole expansion in terms of the real
part of the spherical harmonic functions:

Ymn(θ ,ϕ) =


N0

mP0
m(cosϕ) if n = 0,√

2Nn
mPn

m(cosϕ)cosnθ if n > 0,√
2Nn

mP−n
m (cosϕ)sinnθ if n < 0,

(4)

where Pn
m represents an associated Legendre polynomial and

Nn
m denotes a normalization constant.

The radial dependence of Eqs. (2) and (3) can be simplified if
all the sound sources are located at distances r � 1/k. The
asymptotic limit of the Bessel functions [9] yields what is
known as the plane wave approximation. Eqs. (2) and (3) can
be rewritten in this limit as

p+(r̂,k) =
∞

∑
m=0

m

∑
n=−m

Bmn(k)Ymn(θ ,ϕ), (5)

Bmn(k) =
∫ 2π

0

∫ π

2

− π

2

p−(r̂,k)Ymn(θ ,ϕ)sinϕdϕdθ , (6)

where p±(r̂,k) approximate the sound pressure field attenuated
by 1/kr and phase shifted by ±2πkr.

2.2 Decoding of Ambisonic recordings

Ambisonic encodings of sound fields, given by Eqs. (3) and (6),
are independent of the reproduction system. An Ambisonic
decoder is required to translate them into signals for a specific
loudspeaker array. Exact reconstruction of an arbitrary sound
field using Eq. (2) or Eq. (5) requires an infinite number of
expansion coefficients. In practice, the sum is truncated up to
a given degree, known as the Ambisonic order. Naturally, by
increasing the Ambisonic order, greater reconstruction accuracy
is attained.

Basic decoding of Ambisonic data for reproduction using a
loudspeaker array is achieved by computing a weighed sum of

all Ambisonic channels for each loudspeaker. Weights can be
calculated by first defining a re-encoding matrix

B(k) = Cp(k). (7)

The components of vector p(k) are the loudspeaker signals. The
re-encoding matrix C, therefore, has (N + 1)2 rows and one
column for every loudspeaker in the array. The elements of C
are given by the spherical harmonic functions evaluated at the
directions of the loudspeakers, (θs,ϕs), as follows:

c(m+1)2−m+n,s = Ymn(θs,ϕs). (8)

By comparison with Eq. (6), the re-encoding equation, Eq. (7),
can be interpreted as the Ambisonic encoding of the sound field
generated by the array when the loudspeakers are fed signals
p(k).

Loudspeaker signals corresponding to the Ambisonic encoded
sound field can be computed by solving the linear system of
Eq. (7). For the re-encoding matrix to be invertible, however,
the number of loudspeakers in the array must match the count
of Ambisonic channels to be decoded. In practice, it is desirable
to use larger arrays to improve the reproduction accuracy. It
is common to rely on the Moore-Penrose pseudoinverse when
designing an Ambisonic decoder. The decoding equation can
be written in terms of the pseudoinverse of C, denoted by C+,
as [10]

p(k) = C+B(k). (9)

If the number of loudspeakers in the array is larger than
the quantity of Ambisonic channels, Eq. (9) minimizes the
Euclidean norm of p(k). If the array has fewer loudspeakers
than the number of Ambisonic channels, accurate reconstruction
becomes impossible in general; however, Eq. (9) will result in
the loudspeaker signals minimizing the Euclidean norm of the
error vector Cp(k)−B(k) [11].

2.3 Loudspeaker distance compensation and near
field effects

Reproduction of Ambisonic recordings using Eq. (9) does not
take into consideration the finite distance between the listener
and the loudspeakers. When using non-spherical arrays, that
is, arrays where the loudspeakers are not equidistant from the
listening position, additional processing of the loudspeaker
signals is required.

By expressing the complete system’s amplification and
propagation time in terms of a reference distance rref, Eqs. (5)
and (6) show that the s−th loudspeaker requires its signal
to be amplified by a factor of rs/rref and phase shifted by
(rref− rs)ω/c. Causality is ensured by making rref greater than
or equal to the distance between the listening position and the
farthest loudspeaker in the array.

The plane wave approximation only holds for arrays where
the distance between the listener and the loudspeakers is much
larger than the wavelength of the sound signal. Particularly at
low frequencies, this requires very vast arrays. Furthermore, the
spherical Bessel functions approach their asymptotic limit more
slowly as the order is increased, compromising the accuracy of
high order Ambisonic systems. Relatively small arrays require a
compensation stage to cancel the near field effects, that is, those
effects that are not captured by the plane wave approximation.

Near field effects are contained in Eqs. (2) and (3). Radial
dependence can be introduced into the re-encoding matrix of
Eq. (7) as follows:

B(k) = F(krs)Cp(k). (10)
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Here, F(krs) is a diagonal, square matrix whose dimensions are
equal to the number of Ambisonic channels, and its elements
are given by

fi j(krs) = ji(i+1)(krs)δi j, (11)

where δi j denotes the Kronecker delta.

Near field effects can be suppressed by filtering the Ambisonic
stream with the filters F−1(krs) before the standard decoding
of Eq. (9). These filters are always stable [12], but depend
explicitly on the distance between the loudspeakers and the
listening position. Therefore, non-spherical loudspeaker arrays
must process the Ambisonic recordings using a filter bank with
filters for every distinct distance between the listener and a
loudspeaker.

3. DIFFICULTIES WHEN DECODING FOR
IRREGULAR LOUDSPEAKER ARRAYS

The decoding equation, Eq. (9), is completely general and
does not impose any restrictions on the geometry of the
loudspeaker array. However, by relying on the pseudoinverse,
its practical applicability is limited. There are two main
difficulties with this approach, particularly when decoding
for an irregular loudspeaker array: numerical instability and
suboptimal solutions. It is very difficult to build arrays
with loudspeakers evenly distributed in every direction. By
considering the full range of spherical harmonic functions up
to a given degree, the decoding equation might force the target
system to try to reconstruct a sound field it cannot physically
recreate.

3.1 Mixed-order Ambisonics

When building a loudspeaker array, distributing a large number
of loudspeakers horizontally is usually easier than positioning
them at varying elevations. Humans also show greater spatial
accuracy when localizing sound sources in the horizontal
plane [1]. It is, thus, useful to characterize sound fields with
more emphasis on their horizontal features.

An initial approach to improve the reproduction of Ambisonic
recordings using arrays with irregular configurations is to
ignore the expansion coefficients corresponding to spherical
harmonic functions that are not adequately sampled by the
positions of the loudspeakers. Decoding for arrays with different
horizontal and vertical spatial resolutions can be achieved by
considering the multipole expansion up to a given degree, and
complementing it with the expansion coefficients corresponding
to the horizontally oriented spherical harmonics of higher
degrees. This scheme is known as mixed-order Ambisonics.

There are exactly two horizontally oriented spherical harmonic
functions for every non-zero degree: those for which the
absolute value of the order is equal to the degree. The
re-encoding matrix given by Eq. (8) can be rewritten for a
mixed-order Ambisonic system as

c(m+1)2−m+n,s = Ymn(θs,ϕs) for m < NFS,

cN2
FS+2m,s = Ym,−m(θs,ϕs)

cN2
FS+2m+1,s = Ymm(θs,ϕs)

}
for m > NFS, (12)

where NFS denotes the Ambisonic full-sphere order, that is, the
degree up to which all of the multipole expansion terms are
considered.

Decoding for mixed-order Ambisonic systems can be done by
discarding the components of B(k) that are not represented in
the re-encoding matrix of Eq. (12) and applying the techniques
discussed in the previous section.

3.2 Numerical instability of the decoding equation

Mixed-order Ambisonics facilitates the use of arrays with
distinct horizontal and vertical loudspeaker distributions. The
mixed-order decoding process, however, still relies on the
pseudoinverse of a re-encoding matrix.

While the pseudoinverse provides least squares solutions to
underdetermined and overdetermined linear systems, it is not a
continuous operation. Slight changes to a matrix can drastically
alter its pseudoinverse. Such behavior can be understood from
the singular value decomposition [11]. A matrix with a singular
value equal to zero will be very slightly changed by turning it
into a small positive number; however, the pseudoinverse will
be modified by the reciprocal of this small value, resulting in
a very large change. When doing infinite precision arithmetic,
such problems can be generally ignored. Nevertheless, practical
implementation demands finite precision. A first approach
to overcome this difficulty is to discard values smaller than
a properly chosen threshold, dependent on the numerical
precision of the computation system, when evaluating the
pseudoinverse.

Replacing small singular values with zeros before evaluating
the pseudoinverse prevents the strong amplification of round-off
errors. There are, however, other sources of error in the
Ambisonic reproduction process. It is impossible to exactly
measure the layout of a physical array. Moreover, Ambisonic
recordings will invariably contain some level of noise,
audio systems such as DACs and amplifiers do not possess
ideal frequency responses, loudspeakers are not perfect
omnidirectional radiators, the most fundamental premise of
the Ambisonic strategy, Eq. (1), neglects non-linear effects,
dissipation and other properties of a real medium, and
perturbations due to the presence of the listener inside the array,
as well as room reverberation, are not considered.

Since it is impossible to eliminate every source of error, a
way to evaluate the feasibility of decoding through Eq. (9) is
needed. The numerical stability of solutions relying on the
pseudoinverse of a matrix C can be judged from its condition
number, defined as the norm of the ratio between the maximal
and minimal singular values of C. Alternatively, it can be
calculated as

cond(C) = ‖C‖‖C+‖, (13)

where ‖ · ‖ denotes a matrix norm. A large condition number
implies that C is ill-conditioned and least squares solutions are
numerically unstable.

In general, re-encoding matrices derived for regular loudspeaker
arrays possess smaller condition numbers [13]. This reflects the
fact that regular configurations can more accurately sample the
spherical harmonic functions. Therefore, accurate decoding of
Ambisonic data using Eq. (9) requires a loudspeaker array with
a sufficiently regular layout.

3.3 Suboptimal solutions

Decoding matrices derived using the pseudoinverse can result
in suboptimal reproduction of Ambisonic recordings. It is
common for loudspeaker arrays to possess more loudspeakers
than the number of available Ambisonic channels; thus,
their re-encoding matrices correspond to underdetermined
linear systems. The least squares solutions provided by the
pseudoinverse for underdetermined systems are those with
minimal Euclidean norm [11]. Minimizing the Euclidean norm
of the loudspeaker signals does not ensure the best results from
the perspective of a human listener.

The multipole expansion given by Eqs. (2) and (3) characterizes
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Figure 1: Block diagram of the proposed Ambisonic decoder for irregular arrays

the spatial dependencies of sound fields as seen from the origin.
The hearing experience of a human listener, however, is not
bound to a single spatial point. The listening volume, that is, the
region within the array where the reconstruction error remains
low, must be large enough to accommodate a human listener.
Furthermore, to ensure a comfortable experience, the listener’s
movement should not be restricted to a very small spatial region.
Perfect reconstruction of an Ambisonic-encoded sound field at
the origin is, therefore, not enough to guarantee the best results.

Loudspeaker signals calculated using Eq. (9) minimize the
reconstruction error at the center of the array; however, there are
no additional constraints on the spatial distribution of the error.
The approximate rotational invariance of loudspeaker arrays
with uniform layouts helps to maintain a low reconstruction
error around the origin, even if the decoding stage is based on
the pseudoinverse of a re-encoding matrix. The loudspeaker
distribution of an irregular array, however, does not consistently
sample all of the spherical harmonic functions. Reconstruction
accuracy over an extended region when using an irregular array
cannot be guaranteed by minimizing the error at a single point.

4. A NEW AMBISONIC DECODING METHOD
SUITABLE FOR IRREGULAR LOUDSPEAKER
ARRAYS

Decoding of Ambisonic data through the pseudoinverse of a
re-encoding matrix can lead to the drastic amplification of
errors when targeting an irregular loudspeaker array. Another
disadvantage of this method lies in its focus on a single
spatial point: the center of the array. Mixed-order Ambisonics
ameliorates the effects of distinct horizontal and vertical
arrangements of loudspeakers by eliminating high order
non-horizontal Ambisonic channels. Similar strategies can be
devised for irregularities along other directions.

There is no fundamental reason to favor a decoder which
simultaneously handles all Ambisonic channels or which uses
all of the available loudspeakers to recreate every degree and
order of the multipole expansion. Indeed, compensation for
near-field effects already demands a collection of separate
decoding stages when targeting non-spherical loudspeaker
arrays. We propose that by separately decoding subsets
of Ambisonic channels using adequate partitions of the
loudspeaker array the limitations of the pseudoinverse can be
surmounted.

Our proposal is summarized in the block diagram of Fig. 1.
Ambisonic decoding is performed in three stages. In the first
stage, an attempt is made to exploit any regular structure

available within the layout of the loudspeaker array. If
successful, the first stage allows decoding of the lower
Ambisonic orders. Components that could not be decoded in the
first stage are fed to a second decoder based on the mixed-order
Ambisonics approach. The underlying discrete symmetries
of the array are employed to decode as many terms of the
multipole expansion as possible while preserving numerical
stability. Finally, the asymmetric portions of the array are used
to stabilize the radial dependence of the reconstruction error,
increasing the listening volume.

Ambisonic recordings preserve the invariance under rotations
and boosts of Eq. (1). Additional discrete symmetries are
present in the Ambisonic data since the multipole expansion
is limited to a finite degree. Irregular loudspeaker arrays, by
definition, cannot be expected to possess such symmetries. The
decoder must decompose the Ambisonic stream in accordance
to the layout of the target loudspeaker array.

4.1 Decoding for regular frames

If the target array contains a set of loudspeakers arranged as
the faces of a Platonic solid, accurate reconstruction of low
Ambisonic orders can be achieved through Eq. (9). Specifically,
a tetrahedral, hexahedral or octahedral substructure allows for
the decoding of the first Ambisonic order using the full array. A
dodecahedral substructure permits the decoding to be extended
up to the second Ambisonic order. An icosahedral substructure
can be used to decode Ambisonic data up to the third Ambisonic
order.

4.2 Decoding for symmetric subsets of loudspeakers

The Ambisonic channels decoded thanks to a regular frame
within the array, if available, should be discarded. The target
array can now be scanned for discrete symmetries similar to
those possessed by the spherical harmonic functions of degrees
equal to the remaining Ambisonic orders. The symmetry
groups of high degree spherical harmonic functions contain as
subgroups the transformations that leave lower degree spherical
harmonics invariant. Therefore, it is convenient to scan the
array starting with the symmetries corresponding to the highest
Ambisonic order available.

Once a useful, symmetric subset of loudspeakers has been
found, a mixed-order Ambisonic re-encoding matrix is
generated for it. The re-encoding matrix should cover all of
the degrees and orders of the multipole expansion that are
adequately represented by the frame. Decoding can be done
using the procedures outlined in previous sections.
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Figure 2: (a) Layout of the 157-channel irregular loudspeaker array. (b) 157-channel irregular loudspeaker array inside an anechoic room.

4.3 Decoding for asymmetrically located
loudspeakers

Thus far, the proposed decoding method is just a generalization
of the mixed-order Ambisonics approach. By decoding only
those channels that correspond to properly-sampled spherical
harmonic functions, numerical instability can be avoided.
However, irregular arrays are seldom composed exclusively
of regular substructures. Decoding for asymmetrically located
loudspeakers cannot rely on the pseudoinverse.

Instead of seeking least squares solutions that minimize the
Euclidean norm of the loudspeaker signals, a useful constraint
on the solutions is to minimize the radial derivative of the
reconstruction error∣∣∣∣ ∂

∂ r

[
ψ̃(r,θ ,ϕ)−φ(r,θ ,ϕ)

−∑
s

N

∑
m=0

m

∑
n=−m

Gs
mn(k)

e−ik|r−rs|

|r− rs|
Ymn(θs,ϕs)

]∣∣∣∣∣ ,
(14)

where ψ̃(r,θ ,ϕ) represents the sound field encoded by the
Ambisonic stream, φ(r,θ ,ϕ) stands for the sound field
reconstructed by the previous two stages. The first sum runs
over all of the loudspeakers that are not part of a regular frame
or symmetric subset. Gains Gs

mn(k) minimizing Eq. (14) can be
used to decode the Ambisonic data for asymmetrically located
loudspeakers through the following decoding equation:

ps(k) = [Gs(k)]T B(k). (15)

Near field corrections can be made with filters defined by the
reciprocal of Eq. (11). By minimizing the radial derivative of
the reconstruction error, the proposed scheme increases the
listening volume.

5. IMPLEMENTATION

Two fifth order Ambisonic decoders for an irregular,
157-channel loudspeaker array were developed. The first one
is a conventional decoder based on Eq. (9), while our proposed
decoding method was employed for the second one. Both
decoders included a stage to correct for near-field effects.
Ambisonic encodings of plane waves were synthesized and
used to compare the performance of both decoders.

5.1 157-channel loudspeaker array

The target array used for demonstration purposes is the one
described in [5]. It consists of 157 loudspeakers arranged on
the walls and ceiling of a rectangular room. The array is 4.58 m
deep, 2.78 m wide and 1.72 m high. The listener is assumed to
be located at the center, facing in the direction of the positive
x−axis. The distribution of the loudspeakers is displayed in

Fig. 2a. The walls, floor and ceiling of the room housing the
array are covered by 3 layers of 5 cm thick sound absorbing
material made from a non-woven fabric [14]. The room presents
an almost anechoic response above 125 Hz. A photograph of the
array is shown in Fig. 2b. Conventional Ambisonic decoding
targeting this particular array is numerically unstable for orders
higher than five [7].

5.2 Proposed decoder for the irregular 157-channel
loudspeaker array

We developed an Ambisonic decoder for the 157-channel array
by applying the strategy described in Section 4. The decoding
for symmetric subsets of loudspeakers was restricted to the
cyclic groups defined over the horizontal plane and the two
planes of symmetry of the target array. This might not cover
all of the transformations leaving both, the arrangement of the
loudspeakers and the spherical harmonic functions invariant.
Further research into the symmetries of high order Ambisonic
streams might lead to performance improvements in this stage.

Decoding gains for asymmetrically located loudspeakers
were approximated by first calculating the residual sound
field [ψ̃(r,θ ,ϕ)−φ(r,θ ,ϕ)]ei(2πck)t through a computer
simulation. Specifically, φ(r,θ ,ϕ) was derived by assuming the
loudspeakers to be ideal monopole radiators. The reconstructed
sound field was evaluated at 36 points lying over a sphere
located in the center of the array. The radius of the sphere
was chosen in terms of a sampling frequency of 48 kHz, as
rsphere = c/ fs≈ 7.08 mm. The sampling points were distributed
in a Fliege geometry [15]. An Ambisonic encoding of the
reconstructed sound field was calculated using Eq. (3). The
residual sound field was then obtained by subtracting the
original and reconstructed Ambisonic encodings and using them
to evaluate Eq. (2). The residual sound field was time reversed
and propagated from the sampling sphere to the locations of the
loudspeakers. A second time reversal was performed to derive
new loudspeaker signals which compensate for the residual
sound field. While this approach does not ensure gains Gs

mn(k)
minimizing Eq. (14), it offers a good approximation if the
sampling frequency used in the simulation is assumed to be
much larger than the frequencies present in the sound field.

5.2 Results

The reconstruction accuracy of both decoders was calculated
over a region spanning 30% of the total volume of the
loudspeaker array. All results were obtained through a
computer simulation, assuming the loudspeakers to be ideal
omnidirectional radiators. Four different sound fields, consisting
of single plane waves, were reconstructed. Two frequencies
(500 Hz and 1 kHz) and two incident angles (θ = 0 and
θ = 30◦) were considered. Simulation results are shown in
Figs. 3 to 10. Overall, the new decoding method outperforms
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the pseudoinverse method from the listener’s perspective. While
the proposed decoder is less accurate at the precise center of the
array, the reconstruction error remains low throughout a larger
volume.

Figs. 3a to 3c show the simulation results when reconstructing
a 500 Hz plane wave incident from the right (positive x axis).
Both decoders perform acceptably in this scenario; however, the
wavefront produced by the new decoding method has a smaller
curvature. Reconstruction error is shown in Figs. 4a and 4b.
Conventional decoding results in very high reconstruction
accuracy at the precise center of the array; nevertheless, slight
displacements result in significant error variations. Our proposal
shows reduced accuracy at the center, but the error is not
significantly large. On the other hand, the new decoding method
maintains low error levels throughout a larger volume.

Figs. 5a to 5c show the Ambisonic reconstruction of a 500 Hz
plane wave incident at an azimuth angle of 30 degrees.
The uneven distribution of the loudspeakers results in less
accurate reconstruction than that achieved for the right-incident
plane wave. Nevertheless, reconstruction error remains at an
acceptably low level. The difference between the conventional,
pseudoinverse-based decoder and the proposed decoding
method is very significant. Reconstruction errors are shown
in Figs. 6a and 6b. Different scales are used in each figure
in order to convey the structure of the error distributions;
using equal scales, with light and dark regions denoting
large and small errors respectively, would result in an almost
completely black image for the error achieved by our proposal,
or a blank figure for the reconstruction error when using the
pseudoinverse method. Not only is reconstruction accuracy
significantly improved by our decoding scheme, a considerably
large listening volume is also observed.

Figs. 7a to 7c show the results for a right-incident, 1 kHz
plane wave. Ambisonic reconstruction of high frequency
sources requires greater spatial resolution. Since the number
of loudspeakers in the array is fixed, the reconstruction error,
shown in Figs. 8a and 8b, is greater than that of the 500 Hz
examples. The performance of the pseudoinverse decoder
suffers considerably from the increase in frequency, resulting
in a very limited listening volume. Our proposal also shows
significant performance degradation; however, the listening
volume can be seen to be significantly larger than that attained
by the pseudoinverse decoder.

Finally, Figs. 9a to 9c show the reconstruction of a 1 kHz plane
wave incident at an azimuth angle of 30 degrees. The accuracy
of both decoders is inferior to that achieved in the other three
scenarios. The reasons for the performance degradation are
the higher spatial resolution required to characterize higher
frequencies and the uneven layout of the loudspeaker array.
The reconstructed wavefronts show curvatures similar to
those observed for the 1 kHz right-incident plane wave. The
differences between the original and reconstructed sound fields
are shown in Figs. 10a and 10b. Reconstruction based on the
pseudoinverse results in a considerably small listening volume,
even as the reconstruction error at the center remains low. Our
method results in a more extended region over which the error
does not vary significantly.

6. CONCLUSIONS

A new Ambisonic decoding method for irregular loudspeaker
arrays was proposed and evaluated. Starting from the wave
equation, and specifying the usual decoding techniques, two
important drawbacks to the reliance on the pseudoinverse for
decoding were identified. An alternate method, free of these
drawbacks, was advanced. The proposal was evaluated using an

irregular 157-channel loudspeaker array. The proposed method
outperforms the conventional decoder from the perspective of
the listener, due to an increased listening volume.
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(a) Ideal plane wave.

(b) Reconstruction using the pseudoinverse method.

(c) Reconstruction using the proposed method.

Figure 3: 5th order Ambisonic reconstruction of a 500 Hz plane
wave incident from the right.

(a) Reconstruction error when using the pseudoinverse method.

(b) Reconstruction error when using the proposed method.

Figure 4: Reconstruction error for a 500 Hz plane wave incident
from the right.

(a) Ideal plane wave.

(b) Reconstruction using the pseudoinverse method.

(c) Reconstruction using the proposed method.

Figure 5: 5th order Ambisonic reconstruction of a 500 Hz plane
wave incident at an azimuth of 30°.

(a) Reconstruction error when using the pseudoinverse method.

(b) Reconstruction error when using the proposed method.

Figure 6: Reconstruction error for a 500 Hz plane wave incident
at an azimuth of 30°.
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(a) Ideal plane wave.

(b) Reconstruction using the pseudoinverse method.

(c) Reconstruction using the proposed method.

Figure 7: 5th order Ambisonic reconstruction of a 1 kHz plane
wave incident from the right.

(a) Reconstruction error when using the pseudoinverse method.

(b) Reconstruction error when using the proposed method.

Figure 8: Reconstruction error for a 1 kHz plane wave incident
from the right.

(a) Ideal plane wave.

(b) Reconstruction using the pseudoinverse method.

(c) Reconstruction using the proposed method.

Figure 9: 5th order Ambisonic reconstruction of a 1 kHz plane
wave incident at an azimuth of 30°.

(a) Reconstruction error when using the pseudoinverse method.

(b) Reconstruction error when using the proposed method.

Figure 10: Reconstruction error for a 1 kHz plane wave incident
at an azimuth of 30°.
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