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ABSTRACT

The fast multipole boundary element method (FMBEM), which is an efficient BEM with the use of the fast multipole
method (FMM), is known to have instability at low frequencies when the well-known diagonal form for translation
of multipole/local coefficients is employed. To overcome this problem, we have already developed a low-frequency
FMBEM (LF-FMBEM), which is based on the original multipole expansion theory with translation techniques pro-
posed by Gumerov and Duraiswami for avoiding the low-frequency instability. In the present paper, the degenerate
boundary formulation, which is often referred to as the dual BEM, is discussed in the framework of the LF-FMBEM.
The degenerate boundary formulation enables not only analyzing degenerate boundary models which have unknowns on
both sides of the boundaries, but also avoiding well-known fictitious eigenfrequency difficulties for exterior problems.
A concrete computational procedure of the LF-FMBEM based on the degenerate boundary formulation is described in
details, which results in O(N) operation counts and memory requirements. The computational accuracy and efficiency
are validated through numerical experiments. Moreover, practically appropriate numerical settings on truncation num-
bers for multipole/local expansion coefficients and the lowest level for the hierarchical cell structure used in the FMM
are investigated. Numerical results and computational efficiency of the LF-FMBEM are compared with those of the
high-frequency FMBEM (HF-FMBEM), in which the diagonal form is employed.

INTRODUCTION

The boundary element method (BEM), which has been widely
used in the field of acoustics, has a well-known drawback with
computational efficiency. The BEM requires O(N3) operation
count with direct solvers or O(N2) with appropriate iterative
solvers, and O(N2) memory requirement, where N is the de-
gree of freedom (DOF), because of the linear system with the
dense matrix. This makes the BEM hardly applicable to large-
scale problems. To overcome this problem, many studies have
been conducted on the use of the fast multipole method (FMM)
[8, 18]. In the field of acoustics, today we can see many stud-
ies and applications of the FMM to the BEM for the Helmholtz
fields [1, 3, 7, 10, 20–22, 25–27]. This advanced BEM, known
as the fast multipole BEM (FMBEM) can reduce both the op-
eration count and the memory requirement to O(Na logb N),
where 1 ≤ a ≤ 2 and b ≥ 0 depending on the geometry of the
problem and the implementation.

In the FMM or the FMBEM, efficient translations of multipole
and local expansion coefficients are much important. For three-
dimensional Helmholtz fields, the diagonal form proposed by
Rokhlin [17] has been widely adopted for efficient translation
of multipole and local expansion coefficients. However, it is
well known that this diagonal form causes numerical instabil-
ity at low frequencies. Hence, the FMBEM with the diagonal

form (high-frequency FMBEM: HF-FMBEM) gives inaccu-
rate results when the dimensionless wavenumber normalized
by the representative size of the analysis object is too small.

To avoid this instability at low frequencies, some techniques
not based on Rokhlin’s diagonal form have been proposed for
translation of expansion coefficients [4, 9, 11, 12]. In recent
years, not only the FMBEM with the use of these efficient
translation techniques (low-frequency FMBEM: LF-FMBEM)
[1], but also hybrid FMBEMs using both of the HF-FMM and
the LF-FMM [3, 10] have been developed. However, the appli-
cability of the LF-FMM to various formulations has not been
fully discussed. Application of the LF-FMM to the degenerate
boundary formulation, which is referred to as the dual BEM [6,
23], will be especially significant because the dual BEM can
analyze degenerate boundary models which have unknowns
on both sides of the boundaries, and avoid well-known ficti-
tious eigenfrequency difficulties for exterior problems [14, 16].
Moreover, it has been reported [16] that the convergence of it-
erative solvers for the dual BE formulation is much faster than
the formulation by Burton and Miller [2].

In the present paper, we provide concrete computational pro-
cedures for the degenerate boundary formulation of the LF-
FMBEM for the Helmholtz fields. Through the formal estima-
tion of the computational efficiency, we clarify the effects of

ICA 2010 1



23–27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010

vibration boundary

absorption boundary
rigid boundary

Γ 0

Γ1

Γ2

observation point

z

v

source point  q

Γ

total boundary

sound field

nq

p

Figure 1: A sound field with three kinds of boundary.

the DOF, the truncation number of multipole and local expan-
sions, and the lowest level of the hierarchical cell structure, on
the entire computational efficiency of the LF-FMBEM based
on the degenerate boundary formulation. The findings from the
estimation are confirmed through numerical experiments.

OUTLINE OF BEM

Boundary conditions

Figure 1 shows a sound field satisfying the three-dimensional
Helmholtz equation. Three kinds of locally-reactive boundary
conditions are assumed as follows:

∂p(rq)
∂nq

=


0 q∈Γ0 (rigid)

jωρv(rq) q∈Γ1 (vibration)
− jkp(rq)/z(rq) q∈Γ2 (absorption)

, (1)

where p is the sound pressure, v is the normal component of
the surface velocity, z is the acoustic impedance ratio, ρ is the
medium density, k is the wavenumber, ω is the angular fre-
quency, and ∂/∂nq is the normal derivative at a point q on the
boundary.

Singular formulation

In a field satisfying the three-dimensional Helmholtz equation,
the sound pressure at a point p on a smooth boundary Γ is rep-
resented using the Kirchhoff-Helmholtz integral equation

1
2

p(rp) =
∫
Γ

(
p(rq)

∂G(rp,rq)
∂nq

−
∂p(rq)
∂nq

G(rp,rq)
)
dS . (2)

Here we omit the sound pressure by direct sources in the field.
G is the three-dimensional free-space Green’s function given
by

G(rp,rq) =
exp( jkrpq)

4πrpq
, (3)

where rpq = |rq − rp| is the distance between points p and q.
Discretization of Eq. (2) with the boundary conditions Eq. (1)
leads to the following system of linear equations:

(B+C−E)p = jωρAv, (4)

where p is the sound pressure vector (unknown), v is the ve-
locity vector (given). The entries of the coefficient matrices are
represented by

Ei j =
1
2
δi j, (5)

Ai j =

∫
Γ1

N j(rq)G(ri,rq)dS , (6)

Bi j =

∫
Γ

N j(rq)
∂G(ri,rq)
∂nq

dS , (7)

Ci j =
jk

z(ri)

∫
Γ2

N j(rq)G(ri,rq)dS , (8)

where δ is Kronecker’s delta, ri is the position vector of the i-th
node, N j is the interpolation function of the j-th node. Sound
pressures on the nodes are obtained by solving Eq. (4). Since
the system matrix (B+C−E) is dense, the operation count to
solve Eq. (4) is of O(N3) with direct solvers, where N is the
number of nodes. Even if an efficient iterative solver is used,
the count of O(N2) is required due to matrix-vector multiplica-
tions (B+C−E)p. The memory requirement is also of O(N2)
to store the dense matrices. All the remaining formulations de-
scribed in this section have the same drawback of efficiency,
which is a serious obstacle for solving large scale problems.

Hypersingular formulation

The following hypersingular-type integral equation is obtained
by differentiating Eq. (2) with respect to the normal at a point
p on the boundary.

1
2
∂p(rp)
∂np

=

∫
Γ

p(rq)
∂2G(rp,rq)
∂np∂nq

−
∂p(rq)
∂nq

∂G(rp,rq)
∂np

dS .

(9)
Discretization of the above equation with the boundary condi-
tions Eq. (1) leads to the following system of equations:

(B′ +C′ +H)p = jωρ(A′ +F)v, (10)

The entries of the coefficient matrices are represented by

Fi j =
1
2
δi j

∣∣∣∣∣
Γ1

, (11)

Hi j =
jk

2z(ri)
δi j

∣∣∣∣∣
Γ2

, (12)

A′i j =

∫
Γ1

N j(rq)
∂G(ri,rq)
∂ni

dS , (13)

B′i j =

∫
Γ

N j(rq)
∂2G(ri,rq)
∂ni∂nq

dS , (14)

C′i j =
jk

z(ri)

∫
Γ2

N j(rq)
∂G(ri,rq)
∂ni

dS . (15)

Sound pressures on the nodes are obtained by solving Eq. (10).

Degenerate boundary formulation

All of the above formulations with standard boundary elements
having values only on one side present some difficulties for
the analysis of thin bodies, such as plates. A boundary of zero
thickness Λ called the degenerate boundary is introduced to
overcome this problem. Integral equations Eqs. (2) and (9) can
be rewritten with the degenerate boundary as follows:

1
2

p̂(rp) =
∫
Λ

(
p̃(rq)

∂G(rp,rq)
∂nq

−
∂ p̃(rq)
∂nq

G(rp,rq)
)
dS , (16)

1
2
∂p̂(rp)
∂np

=

∫
Λ

 p̃(rq)
∂2G(rp,rq)
∂np∂nq

−
∂ p̃(rq)
∂nq

∂G(rp,rq)
∂np

dS ,

(17)
where p̂ = p++ p−, p̃ = p+− p−, p+ and p− are the sound pres-
sures on the both sides of the degenerate boundary. In this for-
mulation np and nq denote the normals for the p+ side. The
following two systems of equations with unknown vectors of
both sides of the boundary p+ and p− are obtained by discretiz-
ing Eqs. (16) and (17) with boundary conditions for both sides.

(B+C+ −E)p+ − (B−C− +E)p− = jωρA(v+ +v−), (18)

(B′ +C′+ +H+)p+ − (B′ −C′− +H−)p−

= jωρ
(
(A′ +F)v+ + (A′ −F)v−

)
, (19)
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where the superscripts + and − denote values for the p+ and p−

sides, respectively. Sound pressures on both sides of the degen-
erate boundary are obtained by solving the following system
composed of Eqs. (18) and (19).[

B+C+ −E −B+C− −E
B′ +C′+ +H+ −B′ +C′− −H−

] [
p+
p−

]
= jωρ

[
A A

A′ +F A′ −F

] [
v+
v−

]
. (20)

This formulation is often referred to as the dual BEM [6]. It has
been reported that this formulation enables avoiding fictitious
eigenfrequency difficulties for the analysis of exterior prob-
lems [14, 16]. For this purpose, the characteristic impedance
of the propagation medium has to be given to the imaginary
surface inside of the body. This technique is similar to that
proposed by Hirosawa, et al.[13] In the latter technique, how-
ever, an analyzed body is treated as a shell with finite thickness
using standard boundary elements, and fictitious eigenfrequen-
cies are controlled not to be in the analysis frequency region by
reducing the thickness of the shell. Hence there is a limitation
that the size of boundary elements cannot be so large compared
to the thickness of the shell to ensure the computational accu-
racy. On the other hand, the dual BEM does not have such a
limitation because it uses boundaries of zero thickness. More-
over, it has been reported that when an iterative method was
used to solve the system of equations, the convergence of the
dual BEM was much faster than that of Burton-Miller formula-
tion [16], which generally produces an ill-conditioned matrix.

When neither side of the degenerate boundary is absorptive,
Eq. (19) can be simplified to the following system [23]. The
DOF of this system is half of that of Eq. (20).

B′p̃ = jωρ
(
(A′ +F)v+ + (A′ −F)v−

)
, (21)

where p̃ is the sound pressure difference vector (unknown).
Sound pressure differences between both sides of the boundary
are obtained by solving Eq. (21).

Hereafter, we refer to the formulation of Eq. (20) as the dual
degenerate boundary formulation, and that of Eq. (21) as the
single degenerate boundary formulation.

LF-FMBEM WITH DEGENERATE BOUNDARIES

Outline of FMBEM

Here we briefly describe the general outline of the FMBEM.
Refer to Refs. [11, 15, 20], etc. for more details.

Matrix-vector multiplication using multipole/local expansions

The FMBEM accelerates the matrix-vector multiplications which
appear in the iterative process of the BEM matrix solution by
replacing the multiplications with the multipole and local ex-
pansion operations. The replacement is possible because what
the multiplications do is physically a summation of potentials
contributed from all boundary elements. As will be shown in
the subsequent sections, the summation can be performed ef-
ficiently by calculating multipole and local expansions in con-
junction with coefficient translations for hierarchically grouped
boundary elements. The translation technique, which is the key
to an effective LF-FMBEM algorithm, will be paid a special at-
tention.

Translation of coefficients

Translation of the expansion coefficients at a point r1 to those
at another point r2 can be expressed in matrix-vector forms as
follows:

M2M translation : M(r2) = (R|R)(t)M(r1), (22)

M2L translation : L(r2) = (S|R)(t)M(r1), (23)

L2L translation : L(r2) = (R|R)(t)L(r1), (24)

where t = r2 − r1, M and L are vectors of multipole and lo-
cal expansion coefficients with the truncation number Nc for
the infinite summation, respectively, (R|R) and (S|R) are dense
matrices for translation of expansion coefficients.

Grouping with hierarchical cell structures

A hierarchical cell structure is introduced for multilevel group-
ing of sources and observation points. Figure 2 shows a bound-
ary and a hierarchical cell structure in two dimensions. A cube
(a square in two dimensions) circumscribing the whole bound-
ary is determined as a root cell (level l = 0), which is divided
into eight child cubes (l = 1). Each divided cube is again di-
vided in turn (l = 2,3, · · · ,L). In this figure the lowest level
number L = 4. The concept of hierarchical cell structures is
common for LF- and HF-FMBEM, including definition of re-
lationship between cells. Refer to Refs. [11, 20], etc. for more
details.

Translation techniques

Since the matrices in Eqs. (22), (23) and (24) are dense, trans-
lations explicitly using these matrices (e.g. those using Wigner
3j-symbols [5]) require O(N5

c ) operation counts [12]. To avoid
this inefficiency, many researchers have used the diagonal forms
[17]. However, these forms have a problem of instability at low
frequencies. Various techniques have been proposed for effi-
cient translation of coefficients for low frequency problems.
Most of these techniques theoretically reduce the operation
counts to O(N3

c ) [3, 4, 9, 11, 12]. In the present paper, we
adopted a technique using the Taylor expansions [11] for M2M
and L2L translations, and the rotation - coaxial translation -
backrotation (RCR) technique [3, 9, 11, 12] with recurrence
relations [11, 12] for M2L translation, based on some numeri-
cal experiments [28].

Algorithm of LF-FMBEM based on degenerate boundary
formulation

Multipole expansions of matrix entries

Eqs. (6), (7) and (8) can be expressed as the following multi-
pole expansions at a point λ:

 Ai j
Bi j
Ci j

 = jk
Nc−1∑
n=0

n∑
m=−n

S m
n (rλi)


αm

n(λ j)
βm

n(λ j)
γm

n(λ j)

 , (25)

where

αm
n(λ j) =

∫
Γ1

N j(rq)R−m
n (rλq)dS , (26)

βm
n(λ j) =

∫
Γ

∂

∂nq
N j(rq)R−m

n (rλq)dS , (27)

γm
n(λ j) =

jk
z(ri)

∫
Γ2

N j(rq)R−m
n (rλq)dS . (28)

∂R−m
n /∂nq, which is required for computation of βm

n , can be
calculated using the following relation

∂

∂nq
R = kDtR, (29)

where Dt is a matrix representation of a differential operator
(Eq. (7.3.33) in Ref. [11], with the direction of derivative t =
nq).
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Figure 2: 2-D hierarchical cell structure (the lowest level number L = 4) and diagram of steps 1 to 5.

Computational procedures

Here we present concrete computational procedures for calcu-
lation of matrix-vector products for both of the dual and single
degenerate boundary formulations. The procedures consist of
six steps. Steps 2, 3 and 4 are completely the same as those for
the singular and hypersingular formulations. Also see Fig. 2.

Dual degenerate boundary formulation Here we deal with
Eq. (20).

Step 1. Compute the multipole expansion coefficients Mm
n (mL)

at the center point λmL of each cell mL at the lowest level L, by Mm
n

(p)
(mL)

Mm
n

(v)
(mL)

 = jk
∑

j∈GmL (βm
n (λmL j) +γ

m
n
+
(λmL j))p+j − (βm

n (λmL j) −γm
n
−
(λmL j))p−j

αm
n (λmL j)v̂ j

 , (30)

where GmL denotes the set of all elements in the cell mL, the su-
perscripts + and − denote the values on one and the other sides
of the degenerate boundary, v̂ j = v+j + v−j , and the superscripts
(p) and (v) denote that the coefficients are for the left and the
right hand sides of Eq. (4), respectively. In the following, we
omit these superscripts when the equations for both become
identical.

Step 2 (M2M). Compute the multipole expansion coefficients
Mm

n (ml) of each cell ml at the next higher level l, by the M2M
translation

M(ml) =
∑

ml+1∈Cml

(R|R)(rλml+1λml
)M(ml+1), (31)

where Cml denotes the child cell set, which consists of child
cells of the cell ml. This computation is executed at each level
in the upward order (l= L−1,L−2, . . .,2). Here we adopt sparse
matrix decompositions (the Taylor expansions) of the dense
matrix (R|R) [11], which allows the operation count of the
translation to reduce to O(N3

c ). Eq. (31) can be rewritten as:

M(ml) =
∑

ml+1∈Cml

Nt∑
n=0

(kt)n

n!
Dn

t M(ml+1), (32)

where Dt is the same as in Eq. (29), t = |t| and t = rλml+1λml
.

In the present paper we adopt Nt = Nc/2 based on a numerical
experiment [28].

Step 3 (M2L). Compute the local expansion coefficients Lm
n (Iml)

of each cell ml at each level (l = 2,3, . . .,L), by the M2L trans-
lation

L(Iml) =
∑

m′l∈Tml

(S|R)(rλm′l
λml

)M(m′l ), (33)

where Tml denotes the interaction cell set, which consists of
the cells which are not neighbors of ml but whose parents are
neighbors of the parent cell of ml. For computational efficiency,
Eq. (33) is decomposed to the following three steps by the RCR
technique [3, 9, 11, 12].

• rotation

M(coax)(m′l ) = Rot(Q(α,β,0))M(m′l )

= Rot(B(β))Rot−1(A(α))M(m′l ), (34)

• coaxial translation

L(m′l )
(coax)(Iml)

= (S|R)(coax)(rλm′l
λml

iẑ)M(coax)(m′l ), (35)

• backrotation

L(Iml) =
∑

m′l∈Tml

Rot(A(α))Rot(B(β))L(m′l )
(coax)(Iml)

, (36)

where Q(α,β,γ)= A(γ)B(β)AT(α) is the rotation matrix, Rot(Q)
is the translation matrix for rotation, (S|R)(coax)(t) is the trans-
lation matrix for coaxial translation, and iẑ is the unit vector
in z-axis. The direction of rλm′l

λml
that points from λm′l to λml

is referred to as (θ,φ) = (β,α) in the spherical coordinates. We
adopt techniques using recurrence relations to calculate trans-
lation matrices in Eqs. (34), (35) and (36) [11, 12]. The opera-
tion counts for calculation and multiplication of these matrices
are of O(N3

c ).

Step 4 (L2L). Compute the local expansion coefficients Lm
n (Uml+1)

of each cell ml+1 at the next lower level l+1, by the L2L trans-
lation

L(Uml+1) = (R|R)(rλmlλml+1
)(L(Iml) +L(Uml)), (37)

where Lm
n (Iml) is computed in Step 3, and Lm

n (Um2) = 0 if l = 2.
This computation is executed in the downward order at each
level (l = 2,3, . . .,L− 1). Here we adopt the same translation
technique as in Step 2. Eq. (37) can be rewritten as:

L(Uml+1) =

Nt∑
n=0

(kt)n

n!
Dn

t (L(Iml) +L(Uml)), (38)
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where t = rλmlλml+1
.

Step 5. Compute the far influences on each node within the cell
mL. The influences ϕSF

F,i in the singular formulation and ϕHF
F,i in

the hypersingular formulation are calculated by Eqs. (39) and
(40), respectively.

ϕSF
F,i =

Nc−1∑
n=0

n∑
m=−n

Lm
n (mL)R

m
n (rλmL i). (39)

ϕHF
F,i =

Nc−1∑
n=0

n∑
m=−n

∂

∂ni

(
Lm

n (mL)R
m
n (rλmL i)

)
=

Nc−1∑
n=0

n∑
m=−n

L̃m
n (mL)R

m
n (rλmL i). (40)

L̃(mL), which is a vector representation of L̃m
n (mL), can be com-

puted by
L̃(mL) = kDtL(mL), (41)

where the direction of derivative t = ni in Dt.

Step 6. Compute the near influences ϕSF
N,i in the singular formu-

lation and ϕHF
N,i in the hypersingular formulation on each node,

resulting from the effect of the elements in the neighbor cell
set at the lowest level L, by ϕSF,p

N,i
ϕSF,v

N,i

 = ∑
m′L∈NmL

∑
j∈Gm′L[

(Bi j +C+i j −Ei j)p+j − (Bi j −C−i j +Ei j)p−j
Ai jv̂ j

]
, (42)

 ϕHF,p
N,i
ϕHF,v

N,i

 = ∑
m′L∈NmL

∑
j∈Gm′L[

(B′i j +C′+i j +H+i j)p+j − (B′i j −C′−i j +H−i j)p−j
(A′i j +Fi j)v+j + (A′i j −Fi j)v−j

]
. (43)

where NmL denotes the neighbor cell set, which consists of mL
itself and neighboring cells of mL.

Finally, compute the total influence on each node by adding
the far and the near influences, ϕSF

i = ϕ
SF
F,i + ϕ

SF
N,i and ϕHF

i =

ϕHF
F,i +ϕ

HF
N,i , which give the matrix-vector products in Eq. (20).

Single degenerate boundary formulation Here we deal
with Eq. (21). Each step described above is simplified as fol-
lows.

Step 1. Eq. (30) is simplified as follows: Mm
n

(p)
(mL)

Mm
n

(v)
(mL)

 = jk
∑

j∈GmL

 βm
n (λmL j) p̃ j

αm
n (λmL j)v̂ j

 . (44)

Step 5. Same as Eq. (40).

Step 6. Eq. (43) is simplified as follows: ϕp
N,i
ϕv

N,i

 = ∑
m′L∈NmL

∑
j∈Gm′L

[
B′i j p̃ j

(A′i j +Fi j)v+j + (A′i j −Fi j)v−j

]
.

(45)

COMPUTATIONAL EFFICIENCY OF LF-FMBEM

Here we estimate the operation counts and memory require-
ments for the LF-FMBEM in accordance with the computa-
tional procedures for the dual degenerate boundary formula-
tion presented above. We focus the difference in computational
efficiency between singular and dual degenerate boundary for-
mulations, especially when the same boundary element mesh
is used for calculations. The DOFs for the singular formula-
tion and single degenerate boundary formulation are identical
to the number of nodes N, whereas that for the dual degen-
erate boundary formulation is 2N. In the following, N is the
number of nodes, M is the average number of nodes in a cell
at the lowest level L, Ml is the number of cells at a level l
(Ml ∼ (2a)l when nodes are a-dimensionally distributed in a
space), Nc is the truncation number for multipole and local
expansions (assumed to be constant independently of level l),
S =

∑Nc−1
n=0 (2n+ 1) = N2

c is the number of multipole and local
expansion coefficients, and Nt ∼ Nc [11] is the truncation num-
ber for the Taylor expansions in Steps 2 and 4. ML = N/M and
L ∼ log(N/M).

Operation counts

Setup process

To reduce total operation counts for the LF-FMBEM, coeffi-
cients unnecessary to be iteratively computed should be com-
puted before iterative matrix-vector multiplications. The oper-
ation counts only for steps 1 and 6 (Eqs. (30), (42) and (43))
are greater than those for the singular formulation. The estima-
tion results showed that the total operation count for the setup
process C is approximately O(N) and decreases as the lowest
level L increases, like the singular formulation. Here we omit
the estimation since the operation counts for this part is usually
smaller than those for iterative process.

Iterative process

Operation counts for steps in the iterative process are listed
below. Here Ci denotes the operation count for Step i.

• Step 1. C1 ∼ ebNS ∼ ebNN2
c .

• Step 2. C2 ∼
∑L−1

l=2 Ml+1N3
c ∼ N3

c
N
M .

• Step 3. C3 ∼
∑L

l=2 3IMlN3
c ∼ 3IN3

c
N
M , where I ≤ 63 −

33 = 189 is the average number of interaction cells.
• Step 4. C4 ∼C2.
• Step 5. C5 ∼C1.
• Step 6. C6 ∼ ebNMR.

eb is 1 for the singular formulation or 2 for the dual degenerate
boundary formulation. The total operation count for a single
iteration C is expressed as the following equation, which de-
pends on N, Nc and M.

C ∼
6∑

i=1

Ci ∼ N
(
ebb1M+b2N3

c
1
M
+ ebb3N2

c

)
, (46)

where bi are machine and implementation dependent. If N ≫
N3

c and if Nc and M are chosen independently of N, the opera-
tion count for the iterative process is O(N).

The value of M at which C is minimized, MCopt, is expressed
as follows, from ∂C/∂M ∼ 0:

MCopt ∼

√
b2

ebb1
N3

c . (47)

This indicates that the lowest cell level LCopt at which C is
minimized depends on the truncation number Nc for multipole
and local expansions, and that LCopt decreases as Nc increases.
If Nc is constant, MCopt is also constant independently of N.
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Hence, LCopt can be chosen beforehand based on the value of
MCopt.

Memory requirements

Like the HF-FMBEM, the LF-FMBEM stores coefficients com-
puted in the setup process on memory, instead of the dense sys-
tem matrix of the linear equations. Memory requirements for
these coefficients are listed below. Here Ea denotes the mem-
ory requirement for a.

• For p and v, Epv ∼ 2N.

• For α
λmL j
m,n and β

λmL j
m,n +γ

λmL j
m,n in Step 1, Eαβγ ∼ 2ebNS ∼

2ebNN2
c .

• For Rot(B(β)) and (S|R)(coax) in Step 3, ERot ∼ IrN3
c and

E(S|R) ∼ Ic(L−1)N3
c .

• For jn(krλmL i)Ym
n (θλmL i) in Step 5, E jY ∼ NS ∼ NN2

c .
• For Ai j and Bi j +Ci j in Step 6, EABC ∼ 2ebNMR.

The total memory requirement E is expressed as the following
equation, which depends on N, Nc and M.

E ∼ Epv +Eαβγ +ERot +E(S|R) +E jY +EABC

∼ N(c1M+ ecc2N2
c + c3)+N3

c

(
c4 log

N
M
+ c5

)
, (48)

where 1 < ec < 2, and ci are machine and implementation de-
pendent. If N≫ N3

c and if Nc and M are chosen independently
of N, the total memory requirement is approximately O(N).

The following relation can be obtained from Eq. (48):

∂E
∂M
∼ c1N − c4N3

c
M
. (49)

This value is minimized with M = 1. If N≫N3
c , then ∂E/∂M

∣∣∣
M=1>

0. In this case E is monotonically increasing within M ≥ 1 and
takes the minimum at M = 1. Namely, the total memory re-
quirement decreases as the lowest level L increases. This is the
same for the singular formulation.

NUMERICAL RESULTS

A sphere model

We investigate the relation of the truncation number Nc for ex-
pansions and the lowest cell level L to computational accuracy
and efficiency of the LF-FMBEM through numerical experi-
ments with a sphere model, for which the theoretical solutions
are known. An exterior problem of the sphere is calculated us-
ing the dual degenerate boundary formulation. The character-
istic impedance of the medium is given to the inside surface
of the sphere to avoid fictitious eigenfrequency difficulties [13,
14, 16].

Theoretical solution [24]

Consider a sphere the center of which is at the origin with a
radius a, as shown in Fig. 3. The vibration velocity v of the
surface is given as follows:

v(θ) =
{

v0 (0 ≤ θ ≤ α)
0 (α < θ ≤ π) , (50)

where θ is the angle from the positive direction of the z-axis.
The sound pressure p(r, θ) outside the sphere (a ≤ r) is ex-
pressed as:

p(r, θ) =
jρcv0

2

∞∑
n=0

[Pn−1(cosα)−Pn+1(cosα)]

· h(1)
n (kr)

h(1)
n
′
(ka)

Pn(cosθ), (51)

z

x y

a

v = v
0

v = 0 (rigid)

α

Figure 3: An analysis model of a sphere.

where c is the speed of sound, and Pn are the Legendre polyno-
mials. In this numerical experiment, ρ= 1.225 [kg/m3], c= 340
[m/s], a = 0.125 [m], v0 = 1 [m/s] and α = 20 [deg].

Numerical setup

Consider three boundary element meshes: the element sizes of
Cases 1, 2 and 3 are about 1/40, 1/20 and 1/10 of the analysis
wavelength of 5 kHz, respectively. Case n has about 4 times
as many nodes as Case n+ 1, where n = 1,2. The numbers of
nodes N are 126 628 for Case 1, 31 200 for Case 2, and 7 768
for Case 3. Constant elements are used. GPBiCG [29] is used
as the iterative solver with preconditioning ILUT(10−6,100)
[19]. The following equation is used as the stopping criterion:

||ri||2
||b||2

=
||b−Axi||2
||b||2

< ε, (52)

where A and b are the system matrix and the right hand side
vector, respectively, xi and ri are the approximate solution vec-
tor and the residual vector at i-th iteration, respectively, and
|| · ||2 is the 2-norm. Here ε = 10−9 is used. In the following,
Lmin = 2 and Lmax denotes the largest L, at which M < 10. The
computation is executed with DELL Precision690 (Intel(R) Xeon(R)
Processor X5355 2.66 GHz, 32.0 GB RAM, Windows XP Prefes-
sional x64 edition).

Results and discussion

Effect of the truncation number for expansions Fig-
ure 4 shows sound pressure level distributions on the exterior
surface of the sphere at 5 kHz. Results using the singular for-
mulation (SF) are also shown for reference. It can be confirmed
that the fictitious eigenfrequency difficulties are not seen with
the dual degenerate boundary formulation for all cases. Results
show some discrepancy from theoretical ones with Nc ≤ 10 in
all cases. Table 1 shows relative errors εr from theoretical re-
sults, calculated by the following equation:

εr =

√∑
n |pcal(θn)− pth(θn)|2∑

n |pth(θn)|2
, (53)

where pth(θn) and pcal(θn) are the theoretical and calculated
values of the surface sound pressure at an angle θn, respec-
tively. In all cases, the errors generally converge at Nc = 12.
This was the same for interior problems of the same sphere.
Hereafter, we adopt Nc = 12 based on this investigation.

Effect of the lowest cell level Table 2 shows computa-
tional time and required memory at 5 kHz. Regarding the com-
putational time, it can be pointed out that the time for the setup
process decreases as the lowest cell level L increases, and that
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Figure 4: Sound pressure level distributions (Case 2, f = 5 [kHz], L = Lmax): (a) on the interior surface of the sphere, and (b) on the
exterior surface.

Table 1: Relative error εr of the exterior surface of the sphere ( f = 5 [kHz], L = Lmax).

Nc 8 10 12 14 16 20

Case 1 1.52×10−2 6.07×10−3 5.17×10−3 4.89×10−3 4.88×10−3 4.88×10−3

Case 2 1.59×10−2 6.15×10−3 5.26×10−3 4.91×10−3 4.90×10−3 4.90×10−3

Case 3 1.86×10−2 9.87×10−3 9.14×10−3 9.23×10−3 9.25×10−3 9.23×10−3

Table 2: Performance for the exterior problem of the sphere ( f = 5 [kHz], Nc = 12).

Time [sec]
Case N L M Memory Setup Iterative Total 1 iteration Iteration

[MB] (w. ILUT) (w.o. ILUT)

4 109 1.60×104 1 459 3 256 4 715 28.7 68
1 126 628 5 27 5.99×103 420 3 884 4 304 52.0 68

6 7 3.67×103 162 11 858 12 020 156.6 74
2 557 1.50×104 1 496 3 059 4 555 13.9 48

2 31 200 3 114 3.88×103 351 662 1 013 6.6 51
4 27 1.47×103 102 738 840 12.7 51
5 7 9.02×102 40 2 087 2 126 40.3 50
2 138 1.06×103 95 147 242 1.5 38

3 7 768 3 28 3.64×102 25 129 155 2.8 38
4 7 2.25×102 10 347 357 9.7 34

the time for a single iteration of the iterative process is the
shortest with M ≈ 100 independently of N. These findings ac-
cord with the conclusions of the previous estimation of com-
putational efficiency, and the same tendency was shown as the
interior problems of the same sphere. These facts indicate that
the optimum L for the time of a single iteration (LCopt) depends
only on M, not on the formulation or the number of nodes. If
M remains approximately constant across the cases, the times
of a single iteration approximately follow O(N), whereas the
total computational times do not. This is because the number
of iteration slightly increases with N. Since the time of the it-
erative process in general depends on the number of iteration,
the optimum L for the total time (LTopt) is between that for the
time of a single iteration (LCopt) and that for the setup process
(LCopt = Lmax), depending on the number of iteration. As for
the memory requirements, findings from numerical results ac-
cord with the conclusions of the previous estimation; the mem-
ory requirements for both of the interior and exterior problems
decrease as the lowest cell level L increases, and they follow
O(N) as long as M remains approximately constant across the
cases.

A train coach model

We analyze the exterior sound field around a train coach as an
example of large-scale noise problems with degenerate bound-
aries. We compare the results using the HF-FMBEM and the
LF-FMBEM.

Figure 5: A boundary element mesh of the analysis model
(DOF is 220 288).

Analysis model

Figure 5 shows a boundary element mesh of an analysis model.
A coach is located above an elevated bridge, which is 5 m
above an infinite rigid plane. A point source is located at the
position of a wheel. The length of the coach is 20 m. We use
148 544 constant degenerate boundary elements, 71 744 ele-
ments of which compose the coach with rigid outside surfaces
and absorptive inside ones (the acoustic impedance ratio is 1).
The rest of the elements are for the elevated bridge and both
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Figure 6: Calculation performance for the train model.

sides of them are rigid. Hence, the DOF is 220 288, and a
mixed formulation of the single and dual degenerate bound-
ary ones is used for this model. We analyze the sound field
below and at 60 Hz using the LF-FMBEM, and at and above
60 Hz using the HF-FMBEM. This problem is symmetrical be-
cause the image elements with respect to the infinite rigid plane
have to be included, which makes the DOF twice. Here we ef-
ficiently calculate this symmetrical problem using a technique
proposed in Ref. [25]. The computer and numerical settings
for the LF-FMBEM are the same as the sphere problems, ex-
cept for ε = 10−3. The lowest cell level for the LF-FMBEM
is L = 6, which approximately minimizes the computational
time. As for the HF-FMBEM, the lowest cell level L is set to
satisfy kDL > π/2, where DL is the diagonal length of the cell
at the level L, to ensure the computational accuracy. The other
numerical items are identical with those in Ref. [27].

Results and discussion

Table 3 shows sound pressure level distributions on the bound-
aries: at 30 and 60 Hz by the LF-FMBEM, and at 60 and 800
Hz by the HF-FMBEM. The results by both methods agree
well at 60 Hz. Figure 6 shows the computational time and the
required memory. The computational times for both methods
are compatible at low frequencies (below 100 Hz), and the
required memory for the LF-FMBEM is much smaller than
that for the HF-FMBEM, less than 7 GB. This indicates highly
good computational efficiency of the LF-FMBEM. The mem-
ory for the standard BEM is more than 776 GB only for the
system matrix.

CONCLUSIONS

We have discussed the computational procedures and efficiency
for the degenerate boundary formulation of the fast multipole
BEM for low-frequency problems (LF-FMBEM). We have es-
timated the operation counts and memory requirements based
on the presented computational procedures. Findings from the
estimation have been confirmed through numerical experiments.
We have investigated the effects of the truncation number Nc
for multipole and local expansions and the lowest level L of
the hierarchical cell structure on the computational accuracy
and efficiency. Main conclusions are as follows.

• Nc ≥ 12 was required to avoid computational errors caused
by the multipole and local expansions, at least for non-
absorptive sphere problems.

• The operation counts both for the setup and iterative

processes and the total memory requirement are of O(N),
like the singular formulation, where N is the number of
nodes.

• The average number MCopt of nodes in a cell at the low-
est cell level LCopt , at which the operation count for the
iterative process is minimized, is approximately con-
stant, independently of N. Hence, LCopt can be chosen
beforehand from MCopt .

• The total memory requirement decreases as the lowest
cell level L increases.

• The LF-FMBEM based on the degenerate boundary for-
mulation is a highly efficient method as well as the HF-
FMBEM based on the same formulation, especially at
low frequencies.
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