The Semi-Virtual Violin – A Perception Tool

Friedrich Türckheim, Thorsten Smit, and Robert Mores

Department of Media Technology,
Hamburg University of Applied Sciences, Hamburg, Germany
friedrich.tuerckheim@haw-hamburg.de

PACS: 43.75.De, 43.75.Zz, 43.66.Jh, 43.75.Yy

ABSTRACT

In this paper, a semi-virtual violin is presented which has been developed in the context of a research project on desirable violin sound properties. The method used here focuses on musicians’ perception of spectral components rather than on physical modeling properties. A silent violin which has been designed with particular emphasis on authentic haptic and visual properties is used as interface between musician and virtual body. Binaural transfer functions of real violins measured at the violinist’s hearing position serve as initial sound references for further spectral modifications. A filtering software enables highly-detailed modifications in the frequency domain, changing individual resonances or resonance areas while leaving other resonances unaffected. Implementation on an external signal processor provides for real-time sound processing. An application example demonstrates the tools capability: The presented tool can be used, inter alia, to manipulate the vowel quality in violin tones by modifying specific formant properties.

1. INTRODUCTION

String instruments in general and violins in particular have been of scientific interest for a long time. The complexity of the sound generation process in combination with the fascinating sound itself is very attractive for many researchers in different scientific fields. However, there still remains the question of a comprehensive explanation of what is essential for an instrument’s quality. In the course of their research works, many violin researchers and luthiers focus on the resonance profile, i.e. the acoustic fingerprint of an instrument or more precisely, of an instrument’s resonance body [1], [2], [3]. The idea behind this approach is that the body is mainly responsible for the specific sound character of an instrument and can approximately be considered as a linear and time invariant system (LTI system).

The source-filter separation allows for a complete description of the body properties on the basis of its impulse response or frequency response (Fig. 1). The so called resonance profile is the magnitude spectrum of the frequency response:

\[
H(j\omega) = \frac{Y(j\omega)}{X(j\omega)}, \quad \omega = 2\pi f,
\]

where \(Y(j\omega)\) and \(X(j\omega)\) are the acoustic radiation of the body and the string oscillation, respectively, both in frequency domain.

Scientists and violin makers nowadays infer physical properties from instruments’ resonance profiles [4], [5], [6] but there is also a rising interest for synthesizing violin sounds, e.g. in [7], [8]. Virtual modeling of specific body properties allows—depending on the modeling technique used—a kind of backward reasoning which, in turn, can be helpful for a better understanding of the sound process, or for building instruments. This is the approach on which the present paper is based on. In order to identify the acoustic impact of modified resonance constellations an electronic platform has been developed. Therefore, similar to an approach of Mathews et al. in the 1970s [9] and other attempts, e.g. [10], [11], and [12], the sound process of a violin has been divided into two components: the excitation signal or string signal (source) and the resonance body (filter).

Here, the excitation signal is generated with a specially designed silent violin and the resonance body is realized virtually [13].

\[
x(t) \xrightarrow{H(j\omega)} y(t)
\]

Figure 1: The violin body treated as an LTI system.

Due to a strict focus on authentic acoustical, visual and haptic properties the presented platform has been designed for the dialog with violinists and investigations of luthiers. Besides the reason mentioned above, the separation of string excitation and resonance body has been chosen to enable an authentic playing situation for musicians. This fact is necessary for drawing reliable conclusions from playing tests.

In the following section, the main components of the violin model are described, including the methods for achieving high level quality source signals, binaural HRTFs, and the process for virtually modeling the violin body. Also, the software interface and the implementation on an external DSP board will be briefly explained. Afterwards, a specific application example is described: the presented tool can be used to manipulate the vowel quality of violin tones by specifically changing formant properties. In concurrent research work, the authors seek for a relationship between perceptible vowel properties in violin tones and the instruments’ quality [14].

2. METHOD

Fig. 2 shows the signal chain of the violin platform. The dashed box includes the computer-based elements, mainly the syn-
tersized body and a standard room reverberation effect. The acoustic feedback path is realized with closed headphones. Fig. 3 shows the complete violin tool.

Figure 2: Main components of the semi-virtual violin platform.

The virtual body bases on binaural impulse responses of real violins. These reference impulse responses are generated with a special technique [15], [16]: the damped strings are pulled aside by means of a thin copper wire until the wire breaks. A near-field dummy head microphone placed at the playing position records the instruments’ acoustic radiation in an anechoic chamber (Fig. 4). This high reproducible impulse excitation is closer to the natural instrument excitation than conventional impulse response methods, e.g. the impact hammer method.

Figure 4: Dummy head microphone at the playing position in an anechoic chamber for impulse response measurements.

For modifying the virtual resonance profile, a MATLAB-based control software has been developed which enables resonance modifications with arbitrary high resolution. Modifications, for instance, can be shifting, boosting, attenuating, broadening, etc. of individual resonances or resonance areas. The filter technique is based on a recursive peak filter system [13].

The string signals for the excitation of the virtual body are generated on a special silent violin, hereafter called generator violin. Tests with violinists have shown that musicians clearly prefer a familiar responsiveness which is often not given by a common silent violin [17]. So the instrument designed here has similar haptic and visual properties like conventional violins and is nearly silent as it features no own wood or air resonances. These properties are achieved by damping with light polyurethane foam and silicone. The string signals are recorded via a piezo pickup integrated in the bridge (Fig. 5) and routed to an impedance converter within the body (Fig. 6).

Figure 5: Bridge of the silent violin featured with piezo-electric sensors.

Even though body resonances are strongly damped, the generator violin still reveals some specific admittance behavior. So the undesirably remaining modes have to be compensated for. Due to the damped body, the duration of the impulse response of the generator violin—measured with an accelerometer at the side of the bridge—is very short (of about 1.5 ms). Thus, it is possible to equalize the admittance curve (Fig. 7) applying a simple inverse filtering process without taking account of a reverberation part. The implemented equalization filtering process also involves some other compensation steps. Fig. 8 shows the signal chain of the tool beginning with the string oscillation of the generator violin and ending with the violinist’s perception. Some of the blocks shown here represent individual transfer functions, e.g. headphones, and therefore have to be compensated. The complete magnitude frequency response of the equalization process can be written as

\[
|H(e^{j\Omega})| = \left| \frac{H_{BP}(e^{j\Omega})}{G(e^{j\Omega})} \right| \left| E_{DH}(e^{j\Omega}) \right| \left| A(e^{j\Omega}) \right|,
\]

(2)

where \(H_{BP}(e^{j\Omega})\) is a band pass filter curve, \(G(e^{j\Omega})\) is the admittance function of the generator violin, \(E_{DH}(e^{j\Omega})\) is the dummy head auditory canal frequency response, and \(A(e^{j\Omega})\) is the frequency response of the headphones (see also Fig. 8 and Fig. 9). Here the equalization frequency response \(H(e^{j\Omega})\) is realized by means of an 256 tap FIR filter which has been designed using the frequency sampling method.

As mentioned above, the semi-virtual violin platform is developed for the use with violinists. So, a very low processing latency is required which is achieved by using an external DSP.
3. APPLICATION EXAMPLE

The presented platform can be used as a research tool for various topics. The most obvious application is the manipulation of individual resonances. The impact of modifications on the sound is immediately perceptible while playing the instrument. This allows doing basic violin sound research in a simple, perception-based way. Furthermore, previous studies on optimal resonance constellations or energy distributions in certain frequency bands can be verified.

Here, a further, more specific field of application is briefly in-

4. SUMMARY

A perception tool has been developed which allows detailed modifications of violin resonance profiles. The semi-virtual violin is designed for the use by professional musicians. In the future, it will be applied to identify desirable violin sound properties. Real-time capability, natural haptic properties of
The authors thank the German Federal Ministry of Education and Research for funding.

5. ACKNOWLEDGEMENTS

The authors thank the German Federal Ministry of Education and Research for funding.

REFERENCES

Figure 11: Difference spectrum of spoken vowel and bowed violin tone LPC spectra as initial reference for resonance profile modifications (dotted). Black: difference between original resonance profile and modified resonance profile.

Figure 12: LCP spectrum of order p = 47 of a bowed violin tone (G#3) which results from a modified resonance profile of the semi-virtual violin compared to the LPC spectrum of a spoken [a]-vowel (male voice); black: violin, dotted: voice.

the generator violin and binaural reference impulse responses are designed to work with the violinists’ perception. Besides studies on the impact of changing specific resonance constellations, the tool can be used for several research tasks regarding violin sound properties. In this paper, an application has been introduced with which resonance profiles can systematically be modified in order to achieve more vowel related sounds. In upcoming playing and listening tests, the semi-virtual violin tool will be used to identify the relationship between the musicians’ perception and instrument properties.

Figure 13: Original resonance profile of the semi-virtual violin (top) and modified resonance profile, separated with a −30 dB offset for a better comparison.