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ABSTRACT 

Time Domain Topological Energy (TDTE) is a new method of imaging that comes from the field of shape 
optimization under constraints and corresponds to an approximate resolution of the inverse problem. TDTE has been 
first developed for Non-Destructive Testing where its performances have shown a better ability for imaging defects in 
complex materials than classical tools. For acoustic imaging purpose, the rationale utilizes the following steps: an 
inspected medium is compared to a numerical reference where geometrical and physical properties can be iteratively 
modified. This comparison is realized using the ultrasonic field recorded by an array of transducers. A forward field 
is numerically obtained by simulations of the acoustic propagation in the reference medium where properties of 
velocity and density are chosen to be close to those of the inspected medium. That means the whole ultrasonic field is 
known inside the whole reference medium and at the location of the transducer array during the recording time. 
Under the constraint of the wave equation, an adjoint problem coming from an optimization process in time domain 
leads to a time reversal formulation where a signal difference is time reversed and propagated through the reference 
medium, giving the complete adjoint field. As the comparison involves the minimization of a cost function, the first 
term of the asymptotic expression of this function often called topological derivation or topological gradient can be 
used to draw an acoustical image of the medium. A more stable quantity called “topological energy” is computed by 
integrating the product of the squared, the forward and the adjoint fields. This modified version of the topological 
gradient avoids processing an iteration to limit instabilities and to improve the convergence. 

A. INTRODUCTION 

Quantitative ultrasonic imaging is mainly based on 
ultrasound propagation in time domain and aims at 
determining the physical parameters of the medium like 
elasticity [1], wave velocity and mass density, through the 
response of an inspected medium to an ultrasound pulse and 
the resolution of the inverse problem of wave propagation. 
Such inverse problem is difficult to solve because the 
response of the medium is only known on the limited surface 
of observation of the transducer array.  

In order to improve the processing of the information 
contained in the recorded signal, several technics have been 
developed in recent years such as Time Reversal Mirrors 
TRM [2,3]. Through the invariance of the wave equation by 
time reversal, TRM has shown a remarquable ability to 
perform adaptative or iterative focusing through 
inhomogeneous media.  

To solve inverse problems, the topological gradient coming 
from shape optimization has been developed by Schumacher 
[4]. It has been been applied by Masmoudi et al. [5,6] to the 
case of electromagnetism waves and then to the case of 
elasticity in frequency domain.  

Dominguez et al. [7] has defined a new imaging method 
coming from this concept to solve numerically the inverse 
problem in Non Destructive Testing (NDT) in time domain 
for composite materials. This approach using Fubini’s 
theorem and Parseval identity leads to a formulation where 
Time Reversal appears naturally. In this paper, the acoustical 
numerical simulations necessary to obtain images are coming 

from a Difference Time Domain (FDTD) solver. They could 
be obtained with any other numerical solver as well. It is 
worth noting that the same approach has been also performed 
by Bonnet [8] independently but in a very similar form. An 
important difference is that Dominguez has used a new 
quantity called topological energy instead of topological 
gradient (also known as topological derivative). The Time 
Domain Topological Energy (TDTE) gives a better dynamic 
of the resulting image and a better stability without any 
iterative process. 

The topological energy determination needs steps in the same 
virtual medium: 1) to solve the forward problem, namely the 
reference propagation of an acoustic wave and 2)  to solve 
the adjoint problem, namely the adjoint propagation linked to 
the ultrasound measurement of the response of the 
“unknown” inspected medium. In other words, these two 
problems present two different time domain excitations of the 
same virtual domain. For the adjoint propagation, the 
constraints of the wave equation in frequency domain lead to 
a formulation in time domain where time reversal clearly 
appears. This formulation has been obtained for objects 
presenting Neumann or Dirichlet boundary conditions but 
can easily be extended to any reflective object. 

TDTE method has been first applied in Non Destructive 
Testing (NDT) of composite materials, where the aim was to 
detect and to localize well defined defects. TDTE applied on 
these defects presenting a high impedance contrast [7,9] has 
given very good results. Then TDTE has been tested on 
biological tissues [10] presenting low impedance contrasts. 
Whereas the method has been developed for Neumann or 
Dirichlet conditions, this application has given good results.  
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In section 1, we briefly summarize the principle of the TDTE 
method and ask the interested reader to use references for 
more detailed approach. In section 2, we present numerical 
results to study the ability of the method to detect a defect, to 
determine its position and to give hints of the physical 
properties of an inspected medium mimicking the low 
impedance contrasts present in biological tissues. Finally, a 
conclusion and prospects are given. 

B. PRINCIPLE OF TDTE METHOD 

B.1. Cost function in topological optimization 

The rationale of the TDTE imaging method is described on 
figure 1 and comes from topological optimization. The 
spatial distribution of physical properties on a numerical 
domain (Ω) is optimized to tend toward the unknown domain 
(Ωm). These two media are submitted to the same transient 
ultrasonic excitation and their responses (pressure fields) are 
recorded on a transducer array noted Γm. The optimization is 
based on these responses and is derived from the calculation 
of the cost function (1) that quantifies the distance between 
the trial domain Ω (also named reference) and the real one 
Ωm: 
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where ( )trU m ,Γ∈
r

 and ( )trU mm ,Γ∈
r

 are respectively the 
acoustic fields recorded during the interval [0,T] by the 
transducer array mΓ of known Ω  and unknown mΩ  media 
excited by the same ultrasound pulse, corresponding to the 
propagation in the expected realistic reference medium and 
the inspected medium.  

 

Figure 1. Principle of topological optimization with the cost 
function j(Ω) : comparison of the acoustic fields obtained on 

a transducer array between the reference medium and the 
inspected medium. 

Practically, during the first step of optimization, the physical 
properties of the reference medium are chosen homogeneous 
and expected to be as close as possible to those of the 
inspected medium. This means that only the excitation of Ω 
is recorded by the transducer array on the contrary to Ωm for 
which the signals coming from the heterogeneities are also 
recorded. The difference between these two signals extracts 
the response of the heterogeneities that corresponds to the 
distance between the two media.  

Then, the optimization is realized by an iteration process on 
Ω to find spatial distributions that minimize the cost function. 
The spatial distributions of the tested medium are built by 
including geometrical or physical “holes” in the numerical 
reference domain. The term of hole is used to refer to an 
abrupt impedance contrast such as Neumann or Dirichlet 
conditions. In NDT of composite materials, the impedance 
contrast corresponds to defects in the materials and 
consequently to a high impedance contrast. In this case, an 
iterative process on the reference medium can be used with 
the holes to find the spatial distribution of defects. 

Nevertheless, in biological ultrasound imaging, the contrast 
between media is low. Therefore, the term of hole 
corresponds in our case to low contrast heterogeneities. The 
iteration process then needs a quantification of the impedance 
distribution that is not evident to obtain. 

B.2. Topological gradient  

B.2.1. Forward problem 

The cost function uses a forward propagation to solve the 
inverse problem linked to the response of the inspected 
medium. This forward problem corresponds to the pressure 
field in the reference domain. With a numerical FDTD 
solver, the solution ( )trU ,Ω∈

r
of the propagation fields is 

known in the whole domain Ω and on the transducer 
array ( )trU m ,Γ∈

r
.  

The more the trial reference domain is near to physical 
properties of the inspected medium, the more the distance 
represented by the cost function is minimized. This 
minimization can be obtained by an iteration of the process 
through the study of a variation Ωd  produced by the 
introduction of an infinitesimal “hole” in the reference 
domain Ω , as described in figure 2. We determine the 
sensitivity to the variation Ωd  of the domain Ω  through an 
asymptotic expansion (2) of the cost function (1): 

( ) ( ) ( ) ( ) ( )[ ]Ω+Ω+Ω=Ω+Ω dfrgdfjdj ο
r

 (2), 

where Ω∀d , ( ) 0>Ωdf and ( ) 0lim
0

=Ω
→Ω

df
d

. 

 

Figure 2. Principle of topological optimization with the 
topological gradient: comparison of the cost functions 
between the reference medium and a variation in this 

reference medium. 
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We verify that the cost function decreases if the 
heterogeneity has a closer description of the inspected 
medium using the condition (3): 

( ) ( ) ( ) ( ) ( )[ ] 0>Ω+Ω=Ω−Ω+Ω dfrgdfjdj ο
r

 (3), 

with Ω∀d ,  the boundary conditions ( ) 0>Ωdf .  

The first order term, only function of the space variable, is 
the topological gradient ( )rg

r
. If the insertion of a hole Ωd  in 

Ω  corresponds to the real shape of mΩ  so ( )Ω+Ω dj  
decreases and ( )rg

r
 verifies the following condition: 

( ) 0<rg
r

 (4). 

The locations where the condition (4) is true correspond to 
heterogeneities (holes). After successive iterations, the 
reference medium is close to the inspected medium and the 
resulting cartography identifies the position and the shape of 
the interfaces of the heterogeneities present in the inspected 
medium. 

B.2.2. Adjoint problem 

Dominguez et al. [5,7] have shown that the topological 
gradient uses two numerical problems of propagation in  
virtual medium: the one named forward and the other named 
adjoint. The adjoint problem is the second numerical problem 
of ultrasound propagation linked to the ultrasound 
measurement ( )trU mm ,Γ∈

r
 in the unknown medium mΩ . 

The source of the adjoint field is given by (5):  
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where T  is the recording time period of the acoustic fields on 
the transducer array mΓ and ( )trV ,Ω∈

r
 is the adjoint acoustic 

field. For the initial condition (eq. 5a) at Tt = , the adjoint 
field is equal to zero in the whole medium. In equation (5b), 
the excitation source of the domain during the computation is 
equal to zero in the whole medium outside of mΓ . In 
equation (5c), the source emitted through mΓ , corresponds to 
the comparison of the measurement ( )trU mm ,Γ∈

r
 and the 

reference ( )trU m ,Γ∈
r

. This signal ( )( )t,TrUU mm −Γ∈−
r

, 
only containing the response coming from inhomogeneities, 
is time reversed [2,3] and propagates numerically through Ω  
during [T,0], giving the whole field ( )trV ,Ω∈

r
, solution of 

the adjoint problem. By this way we show the link between 
the topological optimization and time reversal giving a 
physical meaning to the mathematical solution of shape 
optimization. 

The topological gradient: 

( ) ( ) ( )dttrVtrUrg
T

,,
0

Ω∈Ω∈= ∫
rrr

   (6), 

is equal to product of the forward and adjoint acoustic fields 
integrated with respect to the recording time. In the equation 
(6), the adjoint field propagates during [0,T] in the direction 
of the transducer array on the contrary to the reference field. 

In the vicinity of defects, the topological gradient oscillates 
around zero that indicates the localization of the defects 
present in the inspected medium. The iterative process of the 
topological gradient can be performed on equation (6) with 
the negative values (4) and gives a map of the interfaces of 
the heterogeneities present in the inspected medium. 

B.3. Topological energy  

B.3.1. From topological gradient to topological energy 

A modified version (7) of the topological gradient uses the 
square of forward and adjoint fields integrated as follows: 

( ) ( ) ( ) dttrVtrUrET
T

2

0

2 ,, Ω∈Ω∈= ∫
rrr

    (7). 

Consequently, integrated squares of the acoustic fields in 
pressure give the image named Topological Energy. In only 
one computation, this new quantity gives a good 
representation of the medium with a minimization of the 
oscillation compared to the topological gradient. Instead of 
iterating the process to obtain the cartography including holes 
of the inspected medium, in one computation, TDTE images 
is providing a good detection of the impedance contrast of an 
inspected medium. 

B.3.2. From NDT to biological imaging 

TDTE method has shown efficient results on composite 
materials [5,7]. Defects in these materials present an 
important impedance contrast and are localized. Accordingly, 
this contrast is easy to detect from an ultrasonic measurement 
and provides an important value of the topological energy 
and then a good detection of defects.  

The use of TDTE in the case of biological media implies the 
detection of low impedance variations and continuously 
variable properties. Accordingly, these contrasts are lower in 
an ultrasonic measurement and provide a lower value of the 
topological energy than in NDT. This is why, it seemed 
easier with TDTE to detect significant defects in NDT than 
variable biological medium. However, the results obtained on 
synthetical and real biological media [10] have shown a good 
ability of the methods to image these media.  

The iterative process of the method applied to the biological 
medium requires the creation of acoustic impedance 
cartographies instead of holes. A quantitative approach of the 
topological energy must be realized on these media to find 
their physical properties and iterate the process.  

B.3.2. Link with a reflection coefficient 

The physical properties of the reference medium are taken as 
closer as possible to the inspected medium mΩ  except the 
heterogeneities. The source Γm is the same both for reference 
and for inspected media so the incident fields are also the 
same. Since the forward field is computed in a homogenous 
medium, we can consider this field as the incident field 

( )trUi ,Ω∈
r

of the inspected medium before being modified 
by the heterogeneities. Then, in the inspected medium, these 
heterogeneities create reflected waves propagating in all 
directions of the space depending on their shape and their 
orientation with respect to the transducer array. The reflected 
signals recorded by the transducer array only contain a part of 
the whole reflected field. Therefore the adjoint field can been 
also considered like the reflected fields ( )trUr ,Ω∈

r
 

repropagated in the reference medium during [0,T].  
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The topological energy sums the incident field ( )trUi ,Ω∈
r

 
multiplied by the reflected fields ( )trUr ,Ω∈

r
 in the time 

domain. However, ( )trUr ,Ω∈
r

 is the recorded and reflected 
part of the incident field and can be written for plane waves 
like ( ) ( )trUrR i ,Ω∈×Ω∈

rr
 with ( )Ω∈rR

r
 the reflection 

coefficient in intensity of the heterogeneities of the inspected 
medium. Equation (7) is proportional of these two acoustic 
intensity fields and can be linked to the reflection coefficient 

( )Ω∈rR
r

 of the heterogeneities in the first simplified 
approach of the topolological energy formulation like it is 
shown in (8): 

( ) ( ) ( ) ( ) dttrUtrUrRrET i
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i
2
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2
,, Ω∈Ω∈Ω∈= −+∫

rrrr
 (8), 

where the signs + or – point out the direction of the 
propagation of the field: + for the fields moving away and – 
approaching the transducers.  

This topological energy of the incident field can be 
considered like a totally reflecting object with a reflection 
coefficient ( )Ω∈rRi

r
 (9) localized in the reference domain: 

( ) ( ) ( ) dttrUtrUrR i

T

ii
2

0

2
, , Ω∈Ω∈= −+∫

rrr
    (9). 

With a theorical normalization of the equation (9) computing 
in each spatial point of the mesh the reflection coefficient 
(total reflection) of the whole reference medium ( )Ω∈rR i

r
1 , 

the reflection coefficient of heterogeneities (8) can be 
estimated by the following equation (10): 

( ) ( )
( )rR
rETrR

i
r

r
r

1
=     (10). 

C. QUANTITATIVE RESULTS 

C.1. Detection of an object 

The topological energy is computed from the acoustic 
propagation fields modelled with a finite difference solver. 
The simulation of the acoustic propagation is realized on a 
numerical domain Ω  discretized by a mesh in two spatial 
dimensions and time dimension. The performance of the 
method to detect a variation of the impedance depends on 
both the values of the spatial and time step. 

Indeed, the topological energy is computed in each spatial 
point of the mesh of the reference medium that determines 
the spatial discretization of the resulting image. Moreover, 
the sum of the topological energy should be computed with a 
value of a time discretization small enough to observe the 
crossing of the forward field with the adjoint field [7].  

Figure 3 shows the importance of the time step (Dt = 0.01 µs) 
in the detection of a low mass density variation (R = 0.074) 
in a simple medium: the more the value of the time pitch 
increases the more the sum of the topological energy 
decreases.  
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Figure 3. Study of the topological energy variation: upper 
image, the mass density variation of an inspected medium 

(constant celerity 1540 m.s-1) in spatial step (Dx = 0.03 mm). 
Middle image: topological energy of the medium in spatial 

step computed with a time step Dt = 0.01 µs. Bottom curves: 
the axial shape of the topological energy in spatial step 

computed at the center of the medium for three values of the 
time step: blue curve 1 Dt, green curve 3 Dt and red curve 10 

Dt. Implementation: PML boundary conditions, 64 
transducers of 3.5 MHz. 

C.2. Position and shape of an object 

The adjoint field corresponds to the reflected signals of the 
heterogeneities, the shape of this field depends on the 
duration and the wavelength of the incident field. In this way, 
the final axial shape of the topological energy is function of 
the duration and the wave length of the incident field.  

Figure 4 shows the result of the incident field multiplied by 
the reflected or adjoint field at each time step for the 
inspected medium studied in figure 3. The periodicity of this 
image is linked to the wavelength of the fields. The 
computation of the topological energy is realized with the 
square of the pressure acoustic fields. That means the 
periodicity of these variables corresponds to one half of a 
wavelength. When these variables are multiplied by each 
other, it appears they are in phase at each quarter wavelength. 
Accordingly, the sum gives a result with periodic oscillations 
of a quarter of wavelength.  
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Figure 4. Study of the topological energy axial shape in the 
middle of the inspected medium described in figure 3 before 
the sum with a computation using a time step Dt = 0.01 µs.  

The adjoint field is time reversed, that means the two fields 
cross at the interface location, so the topological energy is 
maximum at that place. The maxima in the image of 
topological energy indicate the position of the set of the 
impedance contrast variation. However, when the 
heterogeneities have variation in term of waves speed, the 
repropagation of the reflected signals is realized in a 
homogenous medium with constant velocity. That means the 
size of the heterogeneity determined in topological energy is 
modified compared to the real size in the inspected medium. 
This bias in topological energy appears on the second 
interface. As figure 5 demonstrated, if the heterogeneity has 
lower (resp. higher) celerity of propagation than the reference 
medium, the reflected signals will propagate faster (resp. 
slower) at the heterogeneity location and the maximum of the 
topological energy will moved in depth after (resp. before) 
the real position.  
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Figure 5. Example of a numerical medium mimicking 
inclusions surrounded by water. Upper image: map celerity 

of the inspected medium in mm.µs-1. Middle image : 
visualization of the shape of spherical objects in topological 

energy in logarithmic scale. Bottom curves: two axial 
sections of the topological energy centered on the objects. 

Implementation: constant mass density (1000 kg.m-3), PML 
boundary conditions, 64 transducers of 3.5 MHz. 

With the use of an array of transducers on one side of the 
medium and absorbing boundary conditions, it’s more 
difficult to obtain precisely the shape of spherical objects. In 
the figure 5, high values of the topological energy correspond 
to the specular reflection (forward echo) and the low 
topological energy coming from the side of the objects can 
inform on the shape of these objects. With this representation 
in logarithmic scale, the diffraction with numerical 
interference is also visible but differentiates from the objects. 

C.3. Determination of the reflection coefficient of an 
object 

The first localized high values of the topological energy give 
the position of the first interface of the objects and an 
estimation of their impedance variations with equation (10).  

In figure 5, the impedance contrast is almost the same for the 
two objects (Zleft = 1.359 MRay, Zright = 1.745 MRay and 
Zmedium = 1.540 MRay). That means their reflection 
coefficient in intensity is also the same (Rleft/medium = 0.0040 
and Rright/medium = 0.0039). The last part of the figure 5 shows 
that the first area of the topological energy is the same for the 
two objects. Indeed, the axial sum of the topological energy 
in the image gives the reflection coefficient of the object 
(ETleft/medium = 0.0038 and ETright/medium = 0.0039). Knowing 
the reflection coefficient in intensity and the impedance of 
the surrounding medium, the impedance of these 
heterogeneities can be found. However, the question is 
whether the physical parameters of the objects correspond to 
low or high impedance. With the computation of the 
topological gradient added to the topological energy, it is 
possible to determine the sign of the reflection coefficient in 
pressure. At the location of the topological energy maximum, 
the sign of the topological gradient, presented in figure 6, is 
positive for the right object and negative for the left object.  

17 18 19 20 21 22

-0.01

0

0.01

Depth (mm)

A
m

pl
itu

de

Topological gradient for two sections in depth at the 
center of the objects

 

 c = 1.359 mm/µs
c = 1.745 mm/µs

 

Figure 6. Topological gradient for two sections centered in 
depth on the objects presented in figure 5.  

In this case, we can determine if the objects have an 
impedance higher (positive reflection coefficient) or lower 
(negative reflection coefficient) than the environment 
medium.  

The celerity computed for the left object (figure 5) is 1.362 
mm.µs-1 instead of 1.359 mm.µs-1 and the celerity computed 
for the right object is 1.745 mm.µs-1 for the same value. In 
this numerical test, the celerity of right object is perfectly 
retrieved and the error made for the left object can be 
considered as negligible. Knowing the respective velocities 
of the objects, the errors of localization of the second 
interface of the objects can be corrected. 

Figure 7 shows the impedance contrast of successive plane 
objects in mass density (Z1 = 1.540 MRay, Z2 = 1.848 MRay 
and Z3 = 2.156 MRay). The reflection coefficients in 
intensity are R1/2 = 0.0083 and R2/3 = 0.0059. Each axial sum 
of the topological energy at the defects location in the image 



23-27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010 

6 ICA 2010 

is equal to the reflection coefficient of the objects and are 
ET1/2 = 0.0083 and ET2/3 = 0.0058. Accordingly, the equation 
(10) is validated for successive impedance variations for the 
determination of reflection coefficients. 
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Figure 7. Study of the topological energy variation for 
successive plane objects: upper image, the mass density 

variation of an inspected medium (constant celerity 1540 m.s-

1). Middle image: the topological energy of the medium 
computed with a time step Dt = 0.01 µs and a spatial step Dx 
= 0.03 mm. Bottom curves: the axial shape of the topological 

energy computed at the center of the medium. 
Implementation: PML boundary conditions, 64 transducers of 

3.5 MHz. 

The main difficulty of this quantitative approach is the choice 
of physical parameters because heterogeneities can present 
both mass density and velocity variation. 

D. CONCLUSION AND PROSPECTS 

TDTE method uses the topological optimization to solve 
numerically the inverse problem for ultrasound imaging. 
With a normalization of the topological energy equation, 
reflection coefficients of the heterogeneities present in a 
inspected medium have been retrieved. These coefficients are 
low like in the biological tissues. 

With a good spatial and time discretization of the domain, 
this method is able to detect, to position, and to determine 
impedance variation of an inspected numerical medium with 
a good accuracity. Even if this medium presents 
heterogeneities with a low impedance contrast, their 
determination is possible with the resulting image. 

The topological energy provides image with better dynamic 
and contrast than the topological gradient. Nevertheless, the 
topological gradient informs about the sign of the reflection 

coefficients, and thus completes the topological energy in the 
determination of the physical properties of objects.  

In prospect, an iterative process of the method can be 
considered to determine the physical properties of media 
presenting impedence variation both in mass density and in 
velocity. Cartography of both properties of the inspected 
medium can be expected. To achieve this goal, an 
improvement of the computation time of the adjoint field is 
necessary to increase the test amount for this quantitative 
approach. 

Another prospect will consist in testing this quantitative 
approach on synthetic tissues where properties are well 
known and finally apply it to real biological tissues. 
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