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ABSTRACT

Finite-difference methods are becoming increasingly popular in the acoustics community, and the importance of higher-
order methods has been acknowledged. However, the choice of an appropriate source for these methods has been
largely overlooked in the acoustics literature. Published literature acknowledges the importance of selecting a continuous
function, but it does not consider whether the function’s derivatives are also continuous. The error resulting from
discontinuous higher-order derivatives can contaminate a finite difference simulation with unnecessary, low-order,
dispersive error, diminishing the order of accuracy of the overall scheme. This problem is discussed in the context of
simple, wave equation solvers of various order with a variety of sources.

INTRODUCTION

For many acoustics problems, finite difference methods are
often dismissed for being too computationally intensive; how-
ever, with increasing computing power, they are starting to gain
tractability. These methods are advantageous for room acoustics
in that they directly solve the wave equation or an equivalent
linear system. Thus they are not limited by the high-frequency
assumptions of statistical or geometrical acoustics. Non-linear
formulations are also common, but this paper will focus on
simple, wave equations solvers.

In order to extend the utility of these methods, many have
explored techniques to increase stability and accuracy, using
implicit (Tam and Webb 1992, Zheng et al. 1999) or higher-
order schemes (Georgakopoulos et al. 2002, Sakamoto 2007).
In order to maintain numerical stability, limits are put on the
discretization of the problem, diminishing efficiency. Many
implicit methods are unconditionally stable, removing this re-
striction, but they must still overcome the issue of accuracy.
Higher-order methods afford coarser discretization while main-
taining accuracy, which generally improves efficiency.

While a variety of approaches have the potential to enhance
these methods, careful implementation is required. Many small
details have the capacity to contaminate the performance of
an entire scheme, and one often-overlooked detail is the im-
plementation of acoustic sources. Especially in the applied
finite-difference literature, improper source implementation re-
duces the potential accuracy of the scheme and could easily
be remedied. Attention has been given to the directivity of
sources (Escolano et al. 2009) or the scattering properties of
sources (Schneider et al. 1997), but not to their smoothness
and influence on accuracy. This paper will demonstrate that
acoustic source implementations introduce error as a result of
insufficient smoothness.

SIGNAL PROBLEM

To discuss the issue of source implementation, consider the
one-dimensional, linear wave equation

utt = c2uxx, 0≤ x≤ l, t ≥ 0, (1)

where the subscripts represent partial derivatives, and c is the
speed of sound. The solution u(x, t) could represent pressure,
particle velocity, or some other quantity that is described by
the wave equation. The problem is a simplified test problem
to simulate source signal propagation into a domain, perhaps
a waveguide. The solution, or sound field, is initially at rest,
u(x,0) = ut(x,0) = 0, and we prescribe Dirichlet boundary
conditions,

u(l, t) = 0, u(0, t) = s(t), (2)

where s(t) is the source function used to excite the domain. It
could be located at any grid point in the mesh, but again, for
simplicity, it is located on the left boundary. It should be noted
that several authors use an initial spatial distribution to excite
the mesh. For example, Tam (1995), Fung et al. (1996), and
Sakamoto (2007) utilize an initial spatial Gaussian distribution
to excite the mesh. This is equivalent to driving it with some
time function at a given point or set of points. Similar results
will apply since identical issues arise with both spatial and
temporal differencing.

SCHEMES

Since the focus of the paper is source implementation, simple,
second and fourth-order, explicit difference schemes are used.
Let the grid function be vn

j = v(x j, tn) = v( j∆x,n∆t) where j =
0,1, . . . ,N, n = 0,1,2, . . ., and ∆x and ∆t are the spatial and
temporal discretization steps respectively. The discretization
will be uniform for the purposes of this paper. The second-order
difference scheme in time-marching form is

vn+1
j = 2vn

j − vn−1
j +σ

2
(

vn
j+1−2vn

j + vn
j−1

)
, (3)

where σ = c∆t/∆x. This scheme is well-known and can be
shown to be neutrally stable for σ ≤ 1. The truncation error
can also be shown to be O

(
∆x2,∆t2). Since it is of even order,

the scheme is dispersive, and the error will evidence itself as
ripples behind and in front of the wavefronts.

For the fourth-order scheme, a correction term is added that
eliminates the second-order terms in the truncation error. In
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time marching form, the scheme is

vn+1
j = 2vn

j − vn−1
j +σ

2wn
n

+
σ2

12

(
σ

2−1
)(

wn
j+1−2wn

j +wn
j−1

)
,

where wn
j = vn

j+1− 2vn
j + vn

j−1. Proving stability and consis-
tency is straightforward; by using the wave equation to ex-
change temporal derivatives for spatial derivatives, truncation er-
ror can be shown to be O

(
∆x4). Since these are one-dimensional

schemes, when σ = 1, the numerical solution is exact to ma-
chine precision. As with all finite difference schemes, the initial
and boundary conditions must be implemented to the desired
accuracy, and in this case, it suffices to let all initial data be
zero. The only other issue to worry about is the accuracy of the
source implementation. If the source is sufficiently smooth, the
global error should be either second or fourth order, depending
on the scheme.

SOURCES

The types of sources discussed in this paper are those that
approximate an impulse. These are used because they are tem-
porally compact and have low-pass frequency characteristics,
which is a requirement of the differencing. High frequency con-
tent in a signal is generally transformed into dispersive error,
which may contaminate the calculations. A pulse is the most
efficient way to introduce the entire usable frequency content to
the problem domain. Extended signals could be used, but they
only exacerbate the issue of computational efficiency.

The two common source types that are typically reported in
the literature are based on sinusoidal and exponential functions.
Since they are to be impulse-like, only one half of the sinusoid
is used. The sinusoidal source is of the form

ss(t) = sinp(2πkct), (4)

where s(t) = 0 after one half-period, and p and q determine the
frequency range and smoothness of the source. The tempered
gaussian sources are of the form

se(t) = t p exp
(
−tq

2α2

)
, (5)

where α is related to the width of the pulse and thus the fre-
quency content of the signal. Each source is assumed to be
turned on at t = 0 for simplicity. This exponential source is
the most common type of source reported in the literature. In
Botteldooren (1994; 1995), and Bayliss et al. (1986), the source
is roughly in the form of this exponential source with p = 1 and
q = 2. This is proportional to the first derivative of a Gaussian
distribution. In order to model explosion pulse propagation,
Liu and Albert (2006) uses a similar source with p = 2 and
q = 1. Sakamoto (2007) shows that the initial Gaussian distri-
bution results in an equivalent exponential source with p = 1
and q = 2.

Clearly the sources start at zero to ensure continuity with the
onset and offset conditions, but the derivatives of s(t) are non-
zero and thus discontinuous especially for low values of p and
q. Usually, the highest value of p or q reported for these types
of sources is 2.

The important observation to make is that the higher-order
derivatives of these functions are non-zero when the source is
switched on, disrupting smoothness. Consider the sinusoidal

source with p = 2 as an example. Similar results can be de-
veloped for the exponential sources. The first few derivatives
are

s′(t)|t=0 = 4πkccos(2πct)sin(2πkct)|t=0 = 0 (6)

s′′(t)|t=0 = 2(2πkc)2 cos(4πkct)|t=0 = 2(2πkc)2 (7)

The odd derivatives will be zero, but the even derivatives will
contribute discontinuities.

s(4)(t)|t=0 =−8(2πkc)4 cos(4πkct)|t=0 =−8(2kπc)4 (8)

In order for these errors to be neglected, they must enter below
the order of the truncation error introduced by the differenc-
ing. This implies that higher-order difference methods require
smoother source functions. Upon closer examination, many pa-
pers that report higher-order methods use source functions that
likely introduce low-order error. The higher-order scheme will
then propagate the low-order error with greater accuracy. As
will be shown below, for an exponential source, p = 1, q = 2 is
insufficient to match the error of a fourth order scheme, yet this
type of source is reported in several references.(Bayliss et al.
1986, Fung et al. 1996, Sakamoto 2007)

Observing that high-frequency signal content is a large contrib-
utor to contaminating dispersion, one might consider a source
whose frequency characteristics approach a unit step function,
the ideal low-pass filter. The response of a high-order, low-pass
filter, convolved with a unit impulse is another source candi-
date. Unlike the other sources, these are not contained to single
pulses, but the frequency content drops off very quickly above a
certain target frequency. These sources do provide very specific
frequency content, but they do not serve to substantially reduce
the overall error of the scheme. Changing the order of the filter
does not necessarily change the smoothness of the time-signal,
so the error is not considerably improved as in the case of the
other sources.

This set of source types is certainly not complete, but it gives
insight into the issues involved with source implementation for
finite-difference schemes. Just as with finite-difference schemes
themselves, the most appropriate choice will depend on the spe-
cific problem. The performance of each source type is discussed
in the context of the signal problem described above.

NUMERICAL EXPERIMENTS

Description

First, the signal problem is used to show the properties of
sources within each class. We consider a simplified acoustics
problem, with parameters l = 50 m, c = 343 m/s, and ∆x = 50
m / 250 pts = 0.2 m. The calculation is allowed to run until
t = 0.13 s. For the sinusoidal and exponential sources, the ex-
act solution is known and compared to the numerical solution.
The maximum error is calculated and compared to the size of
∆x since the truncation error for both schemes is expected to
behave like powers of ∆x. Another measure of accuracy can
be obtained by refining the mesh and repeating the calculation.
The rate that the error decreases relative to the mesh refinement,
gives an indication of how the error is behaving with respect
to ∆x. Thus, the two measures of accuracy for each scheme are
the magnitude of the error in the infinity-norm and the rate of
error reduction with respect to mesh refinement.

The first set of calculations utilizes the second order scheme
with sinusoidal sources. The exponent, p, ranges from 1 to 8,
and calculations are done for both σ = 0.5 and σ = 0.99. The
size of σ directly influences the accuracy of the scheme, but
it does not affect the rate of decrease of error with respect to
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mesh refinement. As σ approaches 1, the numerical solution
approaches the exact solution, and when σ = 1, the error is on
the order of machine epsilon. Letting σ approach 1 lets the error
continually decrease, despite the accuracy of the differencing.

For these calculations, the parameter, k, affecting the width
of the pulse is adjusted so that the source has similar fre-
quency characteristics over all of the trials. It is chosen such
that the point where the frequency magnitude spectrum drops
below 10log10

(
∆x2) at 200 Hz. The particular threshold and

frequency range are relatively unimportant, but they serve to
standardize the problem. The 200 Hz wavelength should be
well-resolved on the grid introducing no unnecessary error.

Next, similar calculations are done with the exponential sources.
Since these sources depend on one more parameter, many more
combinations are possible. For brevity, one parameter is kept
constant while the other is varied. In this case, p is 2 while q
ranges from 1 to 32 logarithmically. Similar results are achieved
while holding q constant and varying p.. The third parameter,
α is adjusted exactly as k in the previous problem in order to
standardize the problem.

Finally, calculations are done with the fourth-order scheme
and the same sinusoidal sources used in the first problem. The
source function is implemented appropriately to fourth-order
accuracy on the boundary, assigning the necessary values to the
secondary grid function wn

0. Results from these three problem
sets are reported in the following section.

Results

The results from the first set of calculations are shown in Figure
1. Calculations are performed twice using σ = 0.5 and σ = 0.99.
The rate of error reduction is calculated using N = 250 points
and 2N = 500 points, denoted (N : 2N). The order of the error
relative to ∆x is determined from the maximum error on the
grid when the calculation is complete.
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Figure 1: Maximum order of error and rate of error reduction
with mesh refinement, both relative to ∆x, for calculations using
σ = 0.5, σ = 0.99, and sinusoidal sources.

The data in Figure 2 are produced using the second-order dif-
ference scheme, with σ = 0.99, and an exponential source. The
parameter, p, is fixed at 2, and q is varied. With the initial num-
ber of points, N = 250, the error rates are calculated using N,
2N, and 4N.

Figure 3 shows the data from calculations with the fourth-order
difference scheme, sinusoidal sources, and σ = 0.99. The rates
are calculated as described above.
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Figure 2: Maximum order of error and rate of error reduction
with mesh refinement, both relative to ∆x, for calculations using
σ = 0.99 and exponential sources.
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Figure 3: Maximum order of error and rate of error reduction
with mesh refinement, both relative to ∆x, for calculations using
σ = 0.99, sinusoidal sources, and the fourth-order difference
scheme.

DISCUSSION

Numerical Experiments

Figures 1 and 3 illustrate several points very clearly. It is appar-
ent that the largest factor determining the maximum error of the
calculation is the choice of σ . In both cases, when σ = 0.99,
the net order of error is considerably higher than when σ = 0.5.
With σ = 0.99, the error is higher than what is indicated by
the truncation error, but this is only because as σ approaches
1 the error approaches machine epsilon. This overall error can
be made arbitrarily small within the bounds of machine preci-
sion by adjusting σ . It should be noted that this is true only for
the special one-dimensional case where the characteristics may
exactly pass through the grid points.

The error rates, and not the maximum error, reflect the behavior
of the truncation error when other extraneous error does not
interfere. In this case the extraneous error is coming from in-
sufficient smoothness in the source. Consider once again the
example of the sinusoidal source with p = 2. The error from a
discontinuous second derivative dominates the error produced
only by the differencing, so when the mesh is refined, the error
does not behave like ∆x2; it is dominated by the lower-order
error from the source. This indicates that the error introduced
into the scheme by the source is unnecessarily high; a proper

ICA 2010 3



23–27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010

source should not introduce further error.

Using a sinusoidal source and p = 3, the second derivative is
now zero, and the lower-order error no longer dominates. The
error rate is then governed by the error of the differencing, not
the source. For the sinusoidal sources, if p= n, the nth derivative
will be non-zero at t = 0. This means that for a mth-order scheme,
in order for the error to be governed by the differencing, p must
be greater than m+1.

This is supported by the data in Figures 1 and 3. For the second
order scheme, the error rate for p< 3 is less than 2, but for p≥ 3
it is almost exactly 2. Similarly for the fourth-order scheme,
for p ≥ 5 the error rate is effectively four, the order of the
differencing.

Exponential sources have more parameters and consequently
their behavior is slightly more complicated. The data Figure 2
do not exhibit the same straightforward behavior as the sinu-
soidal sources where after a certain order the error levels off
to some maximum. It is apparent, however, that the error intro-
duced for small values of q substantially influences the accuracy
of the scheme. These data suggest that significant improvements
in accuracy can be achieved by selecting appropriate q.

These sources are typical examples used to illustrate the impor-
tance of source selection. The computational resources needed
to implement any of these sources in lieu of another is negligi-
ble, so careful consideration should be exercised. The following
section provides description of other properties of potential
sources that may also influence selection of sources.

Other source properties

The first property of these sources to see is the time response.
Figure 4 shows the three types of sources mentioned above: si-
nusoidal, exponential, and filter impulse-response. All sources
are designed to have roughly the same frequency content. The
Gaussian and sinusoidal sources are pulse-like while the fil-
ter response exhibits some ringing. Though nearly all of the
frequency content of the filter source is well-resolved on the
grid, the smoothness of its time response is no greater than that
of low-order sinusoidal or Gaussian sources. It is also slightly
more difficult to implement which will often make it less useful
than the others.
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Figure 4: Three typical source functions of the types described
in this paper.

The error indicators above do not necessarily give the complete
picture of error introduced by sources. It is helpful to visualize
the error at each grid point in space. Figure 5 shows typical error
distributions for a sinusoidal source with high and low p. For
high p, the maximum error is lower, as is the error everywhere
in the domain; much of it is approaching zero, or machine

epsilon. The acoustic analogue is increasing the signal to noise
ratio of the problem by reducing the noise floor. High-order
Gaussian and sinusoidal sources exhibit this behavior, but the
filter sources generally do not. The filter source error behaves
much like low-order sinusoidal or Gaussian sources.
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Figure 5: Spatial error distributions for a high and low-order
sinusoidal source.

All of these properties can influence the performance of a
source, given a specific problem. In addition to maximum error
and error rate, these other more qualitative properties should
also be kept in mind.

CONCLUDING REMARKS

In acoustics finite-difference problems, source choice as a source
of error is often overlooked. Improper implementation has been
shown to substantially reduce the accuracy of a scheme. A sim-
ple, one-dimensional problem provided illustration of common
source error types. Future work should seek to identify source
types that introduce minimal error.
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