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ABSTRACT 

Sandwich structures such as composite skins-Honeycomb core (NIDA) and Metal skins–Polymer core (MPM) panels 

are increasingly used in the aeronautics and automobile industries, respectively. It has been shown that this class of 

structures enables manufacturers to cut weight and cost while providing vibration and harshness performance. These 

materials induce however increased sound radiation which unfortunately leads, in some instances, to higher interior 

noise levels. In consequence, there is a need for accurate and reliable low cost numerical tools to efficiently estimate 

and optimize the vibroacoustic behaviours of such structures. This paper deals with the prediction of the vibroacous-

tic behaviour of curved orthotropic sandwich panels. A sandwich finite element is first presented and its ability to 

predict accurately and efficiently the structural response for such structures demonstrated by comparison with classi-

cal 3D solid modeling. Next, the element is used within a mixed boundary element/finite element approach 

(BEM/FEM) to illustrate the effect of curvature and orthotropy on the airborne sound transmission performance of 

these panels. Examples are presented which consist of both sandwich honeycombs and MPM panels. 

INTRODUCTION 
The reduction of noise and vibrations of sandwich panels is a 

major requirement for performance, sound quality and cus-

tomer satisfaction in the automotive industry, construction of 

aircraft, spacecraft, and ships because of their high stiffness-

to-weight ratios. Sandwich structures such as composite 

skins-Honeycomb core (NIDA) and Metal skins–Polymer 

core (MPM) panels and cylinders are classically used to im-

prove the vibro-acoustic behaviour for structure airborne-

borne excitations. These materials are widely used to reduce 

noise and vibration and to improve interior sound quality. It 

has been shown that this class of materials enables manufac-

turers to cut weight and cost while providing noise, vibration 

and harshness performance [1, 2]. Detailed states of the art 

have been presented by Nashif et al. [3], Sun and Lu [4], 

Beranek [5], Allen [6] and Vincent et al. [7]. Although ini-

tially confined to the aerospace field, sandwich structures are 

now applied in almost all industrial fields. This motivated the 

development of prediction methods for their vibration and 

acoustic performance.  

Vibro-acoustic studies of these structures have been carried 

out both using classical analytical formulation [3-9] and nu-

merical approaches [10-14] such as finite element analysis 

based on first- and higher-order shear deformation theories. 

Analytical solutions are only appropriate for simple struc-

tures such as beams or plates with simple boundary condi-

tions. In practice it is often necessary to design damped struc-

tures with complicated geometry, complex loadings and non-

uniform features such as material discontinuities. Conse-

quently, it is natural to consider the finite element method 

(FEM) to represent correctly the physics of such problems. 

However, classical finite elements based methods rely on  the 

use of full solids and /or plate solid- plate models which are 

both computationally expensive [13,14]. Many authors critic-

ize theses approaches as being too complex and costly to use. 

Alternative models based upon sandwich beam/plate theory 

[15-20] have been developed consequently. The authors cited 

above consider only the structure-borne excitation; however 

it is often necessary to consider the acoustic excitation to 

study sound transmission through such panels and its control 

that are of interest in several practical problems. Particularly, 

acoustic engineers need analysis methods and tools allowing 

accurate predictions and optimization of dynamic and acous-

tic responses of sandwich panels.  

Several authors have investigated analytical methods to com-

pute the sound transmission loss of sandwich structures [21-

25]. However, they limited their studies to the case of infinite 

plate and a plane wave excitation. Recently, Ghinet et al. 

extended their work [25] to predict the diffuse field sound 

Transmission Loss (TL) of infinite sandwich composite and 

laminate composite cylinders [26]. Tang et al. [27,28] studied 

the sound TL through one and two infinite concentric cylin-

drical sandwich shells with a honeycomb core subjected to an 

incident oblique plane wave. They derived a closed-form 

expression of TL based on a modal analysis. The later are 

well suitable for the high frequency domain of large struc-

tures. However, for the low-frequency domain, where modal 

behaviour is predominant, prediction methods are still limited 

to rectangular simply supported plates and far-field acoustic 

assumption. Assaf et al. [17] uses a numerical model based 

on a finite element formulation for a sandwich structure cou-

pled to a variational boundary element method to account for 
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fluid loading. Zhou et al. [29] studied the sound transmission 

characteristics of an aluminum panel and two composite 

sandwich panels by using two boundary element analyses. 

Both boundary element analyses were used to study the 

sound transmission loss of orthotropic symmetric sandwich 

panels excited by a random incidence acoustic field. Both 

authors neglected the curvature effect. This study deals with 

the prediction of the vibroacoustic behaviour of curved 

orthotropic sandwich panels. A sandwich finite element is 

first presented [30-32] and its ability to predict accurately and 

efficiently the structural response for such structures is dem-

onstrated by comparison with classical 3D solid modeling. 

The finite element model is based on a discrete displacement 

approach and account for the unsymmetrical and the curva-

ture effect. The rotational influence of the transverse shearing 

in the core on the skins behaviors, ensure a displacements 

consistency over the interfaces between the viscoelastic core 

and the elastic skins; thus resulting in an accurate representa-

tions of the physics. Next, the element is used within a mixed 

boundary element/finite element approach (BEM/FEM) [33] 

to illustrate the effect of curvature and orthotropy on the air-

borne sound transmission performance of these panels. Nu-

merical examples dealing with both sandwich honeycombs 

and MPM panels are presented. 

FINTE ELEMENT FORMULATION 

Figure 1 describes the geometry of the developed element 

[30]. The displacement field of the skins is built using the 

Love-Kirchhoff’s assumptions but is corrected to account for 

the rotational influence of the transversal shearing in the core. 

The Mindlin model is used to describe the displacement field 

of the core. The rotation effects of the transversal shearing in 

the core as well as the bending of the panel are described by 

the rotations x  and y  angles and the transversal dis-

placement W. 

The displacements fields of each of the three layers are writ-

ten as follows (Figure 2): 
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Where the following notations are used: xx
x

W
 




  and 

yy
y

W
 




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.

 

z2 and z3 and  are the core’s top and bottom layers z-

coordinates calculated from the reference axis as shown in 

Figure 1 ( 2/232 hZZ   in the case of symmetrical sand-

wich). 

W: transverse displacement, 

W,x and W,y : two rotations of the face sheets related to the 

transversal shearing in the core, 

U20 and V20 : in-plane displacements of the middle planes of 

the face sheets. 

 
Figure 1 : Geometry of the sandwich plate 

Using expressions (1), the linear displacements-strains rela-

tions of each layer are written as follows: 
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With: 

m  : Strain due to the membrane effect. 

  : Strain due to the rotational effect. 

  : Strain due to the bending effect. 

  : Strain due to the shearing effect in the core. 

 

Figure 2 : Displacement field of the sandwich plate 

Within the framework of linear elasticity, the internal strain 

energy of the plate reads: 

 
v
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   (4) 
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i V
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1

 (i=1:3) (5) 
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Where C(i) is the behaviour matrix of the elastic material of 

i-th layer. For orthotropic material with respect to x, y and 

z axes, the matrices are given by: 
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They are related to the the constitutive matrix [Cij] at the 

lamina level (defined, with respect to the principal axis 

making an angle   THEta with the x-y axis), by: 
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       )5,4j(i, 
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2
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2  TCTC ijij   (9) 

[T1] and [T2] are transformation matrices.  
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 is the lamination angle, Ex and Ey are the Young’s Moduli 

in the two directions; 

Gxy, Gxz and Gyz are the shear moduli; 
xy and yx are the Poisson ratios.  

For details see Ref. [7].  

Using the displacement fields described above, rectangular 

and triangular elements for unsymmetrical three layer sand-

wich plate are developed and described in Figure 1 [32]. 

Each node of both elements contains seven degrees of free-

dom (dofs). These are the transverse displacement W, the in-

plane displacements U, V and four rotations x, y, x, y. 

The generalized displacements field of the four node ele-

ment,  T
yx WVUu 0202 , are discretized with 

Lagrange bi-linear shape functions for the in-plane displace-

ment and rotations, 
0202,VU ,

x  and y  and Hermite cubic 

shape functions for the transverse displacement W. This lead 

to a 28 degrees of freedom vector  Tl

e

k

e
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where  T
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n
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lkjin ,,, .  

The formulation of the bending terms for the 3-noded trian-

gular element is based on the same concept as the Discrete 

Kirchhooff triangular element (DKT) developed by Batoz 

and al. [34]. The DKT element is a thin plate element based 

on Kirchhoff assumptions introduced in discrete form. To 

obtain the strain energy due to the membrane and shear ef-

fects, Lagrange bi-linear functions are used to interpolate the 

displacement field  
yxVU 0202 . On the other hand, 

the transverse displacement W is interpolated using the shape 

functions for the nine dofs triangle discussed in Zienkiewicz 

[35].  This leads to a 21 degree of freedom element  
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ee qqqq   vector where 
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shown in Figure 1.  

To take into account the curvature effect, a sandwich plate is 

approximated as a faceted surface, formed by connecting 

together flat rectangular or triangular sandwich elements at 

vertex nodes. This element uses 7 degrees of freedom of the 

flat plate element plus 2 degrees of freedom in rotation 
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  d.o.f. per node. The  rectan-

gular and triangular elements have 36 and 27 d.o.f. respec-

tively.  

BOUNDARY ELEMENT FORMULATION 

The geometry of interest is depicted in Figure 3. The curved 

sandwich structure is fixed in a rigid baffle separating two 

semi-infinite fluids.  The formulation negelecting Fluid-

structure coupling is given first. The structure is in conse-

quence supposed to vibrate with a known displacement field 

us(y) and radiate acoustically in an infinite fluid (V) with 

density f and sound speed cf. The radiated field can be ex-

pressed as the solution of the direct Helmholtz Integral Equa-

tion.  
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Where S is the coupling surface between the structure and the 

fluid, G(x,y) is the free-field Green’s function, which can be 

expressed as: 
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k is the wavenumber in the fluid (/cf) 

For a baffled structure: 
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and its normal gradient: 
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Where r denotes the distance from x to y and r’ is the dis-

tance from x to y’ (the image of y with respect to baffle plane 

SH) as shown in figure 3.  

 

Figure 3. Half space limited by an infinite rigid plane SH and 

boundary S 

C+ is the Green’s constant given by [33]:  
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For a regular surface: 2/1)(  xC . 

To compute the surface pressure, the normal derivative of eq. 

(15) should be carried out.  

To eliminate the resulting Hadamard’s finite part, a varia-

tional form is preferred. It is given by [36]: 
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FLUID-STRUCTURE COUPLING 
If one is interested in solving the coupled problem of the 

sandwich structure radiating in an infinite fluid, an additional 

variational form of the equation for the structure has to be 

written down [33]: 
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Then, the governing vibroacoustic algebraic system of the 

coupled structural-acoustic problem is then given by: 
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With: 

K: Stiffness matrix of the structure 

M: Mass matrix of the structure 
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By condensing the pressure variable P, one obtains: 
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The solution of (20) leads to the nodal displacements field in 

the sandwich plate and to the radiated parietal acoustic pres-

sure: 
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The radiated power is given by: 
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NUMERICAL VALIDATIONS 

Free vibration analysis of a sandwich plate with 
honeycomb core 

This example deals with a three layer rectangular simply 

supported sandwich plate with honeycomb core. The plate 

has elastic isotropic face sheets and a thick soft core made 

from orthotropic polymer material. This sandwich plate has 

been analysed by a number of authors using various methods 
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[37-41]. Its dimensions and material properties are summa-

rized in Table1. 

Table 1: Plate configurations and materials properties 

used for the numerical validation. 

Lx=1.83mm; Ly=1.22mm; h1=0.406 mm; h2=6.4mm; 

h3=0.406 mm; 

E1 (Pa) = E2 

= 68.98 x 109 
1 = 0.3 

ρ1(kg/m3) = 

2768  
Face layer 

G13 (Pa) = 

0.134 x 109 

G23 (Pa) = 

0.052 x 109 

ρ2(kg/m3) = 

122  
Core layer 

The eigen frequencies of the structure calculated using the 

present model are presented in Table 2 for the first nine 

modes. They are compared to another numerical model pro-

posed by Reddy and based on higher-order shear deformation 

plate theory (HSDT) [38], analytical results [37] and experi-

mental data [37]. The plate was divided into 6 by 6 elements 

for both numerical models.Taking the analytical results as the 

reference, it can be seen that the presented finite element is 

more accurate than HSDT model for the same number of 

elements. 

Table 2. Plate’s configurations and the material’s proper-

ties used for the numerical validation. 

Modes 

Analyti-

cal Test 

HSDT 

(6x6 ele-

ments) 

FES  

(6x6 elements) 

1 23 - 23 23 

2 45 45 46 44 

3 71 69 74 69 

4 80 78 86 78 

5 91 92 96 86 

6 126 129 136 116 

7 129 133 149 126 

8 146 152 164 142 

9 165 169 186 155 

10 174 177 197 160 

Dynamic analysis of honeycomb sandwich panel 

A square honeycomb sandwich panel of area 1.365 m2 is now 

considered. A 19.05 mm thick Nomex core is sandwiched 

between two aluminum face sheets, similar to honeycomb 

panels found in aircraft applications. Selected material prop-

erties of the aluminum face sheets and the Nomex core are 

listed in Table 1. 

Table 1. Material properties for the aluminum honeycomb 

face sheet and the Nomex core. 

Aluminum face sheet Nomex honeycomb core 

h (mm) 0.508 h (mm) 19.05 

E (N/m2) 7.1e10 Gxy (N/m2) 4.482e7 

  Gxy (N/m2) 2.344e7 

 (kg/m3) 2700  (kg/m3) 48.06 

For the numerical modeling, two approaches are compared. 

The first is usual and uses a plate-solid-plate model with 

offsets (MSC/NASTRAN is used with Cquad4 elements for 

the skins and hex-8 solid elements for the core). The second 

used the proposed Finite Element Sandwich (referred to as 

FES in the figures).  

The present model uses a mesh of 10x10 of quad4 elements. 

Nastran’s model uses 50 x 50 CQUAD4 elements for each 

face sheet and 50 x 50 HEXA8 elements for the core. 

Figure 4 shows the comparison of the honeycomb panel 

mean square normal velocity calculated using both ap-

proaches. Excellent agreement is seen between MSC/Nastran 

and developed sandwich element. The resonance frequencies, 

the resonance amplitudes and width (damping) of the first 

four modes are accurately estimated. 

 

Figure 4: Quadratic velocity of honeycomb panel: FES vs 

Nastran 

Sound transmission loss computation 

The sound transmission loss of orthotropic honeycomb 

sandwich plate is investigated in this section using boundary 

element method described above. It is evaluated using the 

following formula:  

t

iLogTL



10     (26) 

where i  and t  are the incident and the transmitted 

acoustic power respectively. For an incident progressive 

plane wave with angles of incidence (,) (see figure 5) , 

))cossinsincossin(exp(  zyxiktiPP ii  (27) 

and  the incident sound power is given by: 


S

niii dSvP *

,Re
2

1
   (28) 

in which Pi and vi,n represent the incident sound pressure and 

the normal particle velocity respectively (*denotes the com-

plex conjugate).
 
 

The transmitted sound power is given by: 

dSPwdSvP
S

n
S

nit   ** Im
2

Re
2

1 
  (29) 

Where P is the sound pressure applied as an external loading 

to the finite element model, given by (24). 

For a flat plate embedded in an infinite rigid plane baffle and 

radiating in a semi infinite fluid, P is given by (15).  


S

bn dSyxGwP ),(2    (30) 

Where reG ikr

b 2/  is the half-space free field Green’s 

function satisfying 0/  nGb  on the baffle. For this case, 

the impedance matrix given by (23) reduces to: 

)(2)( 10 kMjkZ     (31) 
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The governing vibroacoustic algebraic system of the coupled 

structural-acoustic problem is given by (22), where F is the 

source vector resulting from the acoustic excitation: 


s

T

b dSNPF     (32) 

Pb is the blocked pressure which is the total pressure on the 

incident side when the plate is considered as acoustically 

rigid (on the plate Pb=2Pi). N is the vector of the shape func-

tion associated with the transverse displacement W. 

 
Figure 5: baffled sandwich plate excited by plane wave 

Using the above development, the predicted sound TL of the 

honeycomb panel considered previously (see table 1) for 

diffuse sound field excitation is given in Fig. 6 and compared 

to experimental and existing numerical results [42], Reason-

able agreement is found between the three results.  

An illustration of the effect of curvature and orthotropy on 

the airborne sound transmission performance of the studied 

panels will be presented during the oral presentation. 

 

Figure 6: Transmission Loss of the honeycomb sandwich 

panel 

Conclusion 

A sandwich finite element was presented and its ability to 

predict accurately and efficiently the structural response of 

curved orthotropic sandwich panels, such as composite skins-

Honeycomb core (NIDA). The element is coupled to a 

boundary element method to account for fluid loading. Com-

parisons of the presented element versus both tests and clas-

sical 3D solid modeling prove its accuracy for the modeling 

of the vibro-acoustic behaviour of the studied laminated 

steels. The element can be used to illustrate the effect of cur-

vature and orthotropy on the airborne sound transmission 

performance of these panels. 
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