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ABSTRACT

Broadband fan interaction noise can be simulated using synthetic turbulence as a source of sound in the linearised
Euler equations solved in the time domain. In this work synthetic turbulent velocity fields are generated by a random-
vortex-particle method able to generate two-dimensional isotropic turbulent flows by filtering white noise. The filter
is expressed in terms of either the correlation function or the energy spectrum. Non-Gaussian spectra can also be
considered such as Liepmann and von Karman energy spectra. Simulation results are presented for a two-dimensional
flat plate interacting with homogeneous isotropic turbulence. The linearised Euler equations are solved with a multiblock
finite-difference code where particles are launched upstream of the airfoil and convected with the mean flow following
a purely Lagrangian approach. Temporal correlation is included in the random-vortex-particle method using first and
second-order Langevin models. Far-field results are compared against the analytical solution derived by Amiet for
airfoils interacting with homogeneous isotropic frozen turbulence. It is shown that the standard Langevin equation can
lead to spurious noise sources and that a second-order model is able to provide accurate predictions.

INTRODUCTION

Due to increasingly higher bypass-ratio aircraft engines, and
the associated reduction in jet noise, fan noise has become a
major source of noise on modern aircrafts. Whilst tonal noise
can be reduced relatively efficiently by tuning the properties of
the acoustic liners, broadband fan noise remains more difficult
to predict and to reduce due to its stochastic nature and wide
frequency content.

Due to the large range of spatial and time scales present in
turbulent flows, Direct Numerical Simulation (DNS) or Large
Eddy Simulation (LES) are still too expensive to be used regu-
larly to predict broadband fan noise in an industrial context. An
alternative approach is to split the problem between the source
mechanisms and the propagation of sound. The latter is solved
using for instance Lighthill’s analogy or the linearized Euler
equations. Although this approach is cheaper than complete
fluid dynamics simulations, the calculations in the source re-
gion using standard CFD techniques still remain expensive for
industrial applications.

Stochastic computational methods provide a way to synthetise
random turbulent fields that are not exact solutions of the fluid
dynamics but that capture the key features of the turbulent
sound sources, such as the energy spectrum and the length and
time scales. The resulting synthetic fields is then combined
with an aero-acoustic propagation model. This approach can
result in accurate predictions of the generation and propagation
of aerodynamic sound [5]. Originally, stochastic methods to
generate turbulent flows were used mainly to simulate scalar
dissipation and to obtain inflow turbulence for DNS and LES.
Early attempts relied on a finite sum of Fourier modes whose
parameters such as amplitudes, wavenumbers and phases are
chosen randomly following certain distributions [13]. In aero-

acoustics this lead to the SNGR method [4; 3; 5]. It was found
however that Fourier mode models have difficulties representing
inhomogeneous turbulence [15].

Stochastic methods generating synthetic turbulence by filtering
random data have also been developed [6; 12; 10]. The filter
is chosen so that the statistical properties of the synthetic ve-
locity field matches the statistical properties of the turbulent
flow. A significant effort to develop filter-based methods for
computational aero-acoustic is due to Ewert and co-workers
[9; 11].

In the present work, a filter-based stochastic method is used to
generate synthetic two-dimensional, homogeneous, isotropic
turbulent flows. It requires as input several statistical properties
of the turbulent flow including the energy spectrum, correla-
tion, integral length scale or kinetic energy. We will focus on
the description of the time correlation in the numerical model.
A common way to model the time-dependence present in tur-
bulent flows is to use a Langevin equation [16]. However, it
will be shown here that the standard Langevin model is not
well suited when coupled with a finite-difference solver for the
linearised Euler equations. A second-order Langevin model
is proposed to remedy the issues observed with the standard
Langevin equation. The target application is the prediction of
broadband fan noise and results will be presented for the case
of a two-dimensional flat plate interacting with homogeneous
isotropic turbulence.

In the next section the random-vortex-particle method used in
this work is introduced and we discuss the use of two Langevin
models to generate evolving synthetic turbulence with pre-
scribed time correlations. Then, numerical results are presented
for a flat plate in a uniform turbulent flow and compared against
analytical results.
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RANDOM-VORTEX-PARTICLE METHOD

The random-vortex-particle method used in this work is a filter-
based model that builds upon the work of Careta et. al. [6]
and Ewert et. al. [9; 11]. One of the distinctive features of the
present model is to use a fully Lagrangian formulation for the
discretisation which leads to a meshfree vortex-particle method.

Description of the model

Assuming a two-dimensional incompressible flow, the turbu-
lent velocity field uuu′ can be expressed in terms of the stream
function uuu′ = (∂η/∂y,−∂η/∂x)T . Following Ewert’s et. al.
[11] approach, a two-dimensional turbulent flow is generated
by defining η as a filtered random field

η(rrr, t) =
∫

G(rrr− rrr′, t)U(rrr′, t)drrr′, (1)

where the filter G controls the spatial statistics of the synthetic
turbulence while the random field U controls the temporal prop-
erties of the flow. Assuming isotropic turbulence, the statistics
of the turbulent velocity field and those of the stream function
can be related so as to define η in terms of known parameters
of the turbulent flow. An appropriate expression for the filter,
G, is obtained through its relation with the correlation tensor of
the flow, Ri j , or with the energy spectrum function, E(κ):

G(r) =
1√
2π

∫
∞

0
R̂(κ)1/2J0(κr)dκ , (2)

G(r) =
1√
π

∫
∞

0

(
E(κ)

κ

)1/2
J0(κr)dκ , (3)

where κ is the wavenumber corresponding to the wavevector κκκ ,
R̂ stands for the Fourier transform of R, J0 is the Bessel function
of zeroth order and R(r) = Rii(r)/2. The stochastic field U is a
zero-mean white noise with < U(rrr1, t) U(rrr2, t) >= δ (rrr2− rrr1).

For small spatial and temporal separations U satisfies the fol-
lowing properties:

< U(rrr, t) >= 0, < U(rrr1, t1) U(rrr2, t2) >= δ (rrr− tuuuc)RU (t),
(4)

where uuuc is the convection velocity along the stream lines and
RU (t) =< U(rrr, t1) U(rrr, t2) > is the time correlation of U .

If the turbulence is assumed to be frozen then the stochastic
field U seen in a frame of reference moving at the convection
velocity is independent of time. Therefore

D0

Dt
U = 0, (5)

where D0/Dt = ∂/∂ t +uuuc ·∇ with uuuc the convection velocity.
Hence, the time correlation of U is constant, RU (t) = 1. Note
that in this case only convection effects are represented by the
model.

To summarise, the synthetic velocity field uuu′ can be defined in
terms of a prescribed energy spectrum or a prescribed correla-
tion function by

u′x(rrr, t) =
∂

∂y

∫
R2

G(|rrr− rrr′|)U(rrr′, t)drrr′ , (6)

u′y(rrr, t) =− ∂

∂x

∫
R2

G(|rrr− rrr′|)U(rrr′, t)drrr′ , (7)

where G satisfies either of the expressions (2) or (3) and U is a
zero-mean stochastic field satisfying Eq. (4).

The velocity field of an incompressible and isotropic turbulent
flow is therefore given by the random-vortex-particle method
when the correlation tensor or the energy spectrum of the flow
are provided. For each choice of these functions a different
filter will be obtained. We begin by discussing the advantages
and disadvantages of selecting different energy spectra in a
two-dimensional turbulent flow. Then we will describe how the
stochastic field U can be generated to account for the temporal
properties of turbulent flows.

Application to different energy spectra

So far, most models using filtered random data have been based
on Gaussian filters yielding Gaussian correlation and Gaussian
spectra. The use of Gaussian filters do not however restrict
completely the synthetic velocity field to have Gaussian energy
spectra. As shown by Siefert et al. [17] by superimposing a
collection of Gaussian filters with different length scales non-
Gaussian energy spectra can be recovered. Note that this pro-
cedure implies a higher computational cost when reproducing
non-Gaussian spectra instead of Gaussian spectra since a much
larger number of vortices are required.

In the context of broadband fan noise Liepmann and von Kar-
man turbulence spectra are more common [2]. And in this work
a different approach from that of Siefert et al. is considered
whereby non-Gaussian filters are directly used.

The Gaussian shape spectrum proposed by Kraichnan [13],
Liepmann and von Karman spectra are respectively given by

Eg(κ) =
2

π2 Kλ
4
κ

3 exp
(
−λ 2κ2

π

)
, (8)

El(κ) =
16
3π

Kλ
5 κ4(

1+λ 2κ2
)3 , (9)

Ek(κ) =
110
27π

Kλς
4 κ4(

1+ ς2κ2
)17/6

. (10)

K is the kinetic energy, λ the integral length scale of the tur-
bulence and ς = Γ(1/3)√

πΓ(5/6) λ where Γ stands for the Gamma
function.

Analytical expressions of the filters corresponding to each of
the three spectra under investigation are found by substituting
the expressions above for the energy spectra in the right-hand
side equation of Eq. (3).

Temporal properties of the synthetic turbulence

The effects of time correlation are included in the random-
vortex-particle method (6)–(7) through first and second-order
Langevin models. First-order Langevin models are commonly
used to represent Brownian motions and also turbulent dissi-
pation at large Reynolds numbers. It will be shown here that,
due to numerical problems, a standard Langevin equation is not
well suited as a source to the linearised Euler equations. As
proposed in [17] a second-order Langevin model is considered
to overcome the numerical issues observed with the Langevin
equation. But note that we use here a different second-order
model than that used proposed in [17].

Langevin equation

The temporal properties of the turbulence can be included in
the method to generate synthetic turbulent (6)–(7) by defining
the time evolution of the stochastic field U through a Langevin
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equation of the form

D0

Dt
U =−αU +βζ , (11)

with initial condition U(0) = U0 where U0 is a random variable.
ζ is a zero-mean white noise source such that

< ζ (rrr1, t1) ζ (rrr2, t2) >= δ (rrr1− rrr2)δ (t1− t2), (12)

The coefficients α and β of the Langevin equation can be
related to the statistical properties of the turbulence.

The rate of change over time of the vortex-particles along the
streamlines defined by the convection velocity uuuc can be derived
from the Lagrangian version of Eq. (11):

∂

∂ t
U(rrr′(rrr0, t)) =−αU(rrr′(rrr0, t))+βζ (rrr′(rrr0, t)). (13)

The material derivative in the base flow, D0/Dt, is the deriva-
tive taken along a path moving with the base flow, hence in a
Lagrangian formulation it simply becomes the derivative with
respect to time.

In order to ensure that the random process U is statistically
stationary, its energy < U(t)2 > must remain constant in time.

This condition yields a unique definition for β =
√

2α < U2
0 >.

A second constraint to be imposed on the stochastic field is
concerned with the time correlation of U . Experimental results
support an exponential time correlation of the velocity field of
turbulent flows behaving as exp(−t/τ) where τ is the integral
time scale of the flow [18]. It is therefore sensible to define the
stochastic field U so that its correlation in time also decays as
exp(−t/τ). This condition yields α = 1/τ .

Therefore, the effects of evolving turbulence can be modelled
by a Langevin equation if defining the rate of change of U in
time as

D0

Dt
U =−1

τ
U +

√
2
τ

< U2
0 > ζ . (14)

In order to ensure that there is a unique solution, an initial
condition for U must be provided. U0 is a random variable
following a zero-mean Gaussian distribution with unit standard
deviation.

The stochastic field U defined through the Langevin equation
Eq. (14) satisfies the properties in Eq. (4):

< U(rrr1, t1) U(rrr2, t2) >=< U2
0 > δ (rrr− tuuuc)exp(−t/τ) ,

(15)
where rrr = rrr2 − rrr1. Note that in this case RU (t) =< U2

0 >
exp(−t/τ). When assuming frozen turbulence, the time corre-
lation tends to infinity, τ → ∞, and hence the right-hand side of
Eq. (14) vanishes meaning that the model is only representing
convection effects, D0U/Dt = 0.

The source term ζ in the Langevin equation Eq. (14) is a white
noise field independent of U0. Due to the rapidly fluctuating
behaviour of ζ , the resulting stochastic field U is continuous
but not differentiable in time. This lack of differentiability is
thought to introduce spurious sources of noise. To overcome
this problem the Langevin equation Eq. (14) is generalised
so that the source term is continuous and in consequence the
resulting stochastic field U is a smoother function in time.

Second-order Langevin model

In this work the approach proposed by Krasnoff et al. [14]
is followed to formulate a second-order Langevin model that
produces stationary isotropic turbulence with time correlation
decaying as exp(−t/τ). In contrast, with the second-order
Langevin model proposed by Ewert et al. [17] only the stochas-
tic source term is modified with respect to the Langevin equa-
tion in Eq. (14).

The generalised Langevin equation is given by:

D0

Dt
U =−1

τ
U +W, (16)

with initial condition U(0) = U0 where U0 is a random variable.
In contrast with the noise source ζ in the Langevin equation
Eq. (14), the forcing term W is now assumed to be continuous
(so it is not pure white noise) and it is also assumed to be
correlated with U .

The rate of change over time of the random field U along the
streamlines defined by the convection velocity, uuuc, can be de-
rived from the Lagrangian version of Eq. (16):

∂

∂ t
U(rrr′(rrr0, t)) =−1

τ
U(rrr′(rrr0, t))+W (rrr0, t)). (17)

It can be shown that to ensure the random process U is stationary
one has to use

RW (t) =< W (t1) W (t2) >=< W 2
0 > exp(−γt) , (18)

with < W 2
0 >=< U2

0 > /(ττd) and γ = (1/τd−1/τ) where we
have introduced an additional time scale τd such that τd � τ ,
see Ref. [14].

The resulting time correlation is

RU (t)= exp(−t/τ)
< U2

0 >

τ−2τd

{
τ− τd − τd exp

[(
2
τ
− 1

τd

)
t
]}

.

(19)
It converges to < U2

0 > exp(−t/τ) as τd → 0 satisfying the
properties in Eq. (15). The influence of the additional parameter
τd will be described later.

The stochastic source W in the Langevin equation Eq. (16) can
be generated using an auxilliary Langevin equation:

D0

Dt
W =−α

′W +β
′
ζ , (20)

where ζ is a white noise source verifying

< ζ (rrr, t)>= 0, < ζ (rrr1, t1) ζ (rrr2, t2)>= δ (rrr1−rrr2)δ (t1−t2).
(21)

Following the same analysis as for the Langevin equation
Eq. (11), the random source W is statistically stationary with
time correlation RW (t) =< W 2

0 > exp(−γt) if one defines β ′ =√
2α ′ < W 2

0 > and α ′ = γ . The initial condition W (0) = W0

is a random variable following a zero-mean Gaussian distribu-
tion with variance < W 2

0 >=< U2
0 > /(ττd). W0 and U0 are

correlated verifying < U0 W0 >=< U2
0 > /(τ < W 2

0 >). These
constraints can be met by defining W0 such that:

W0 =
1
τ

U0 +
√

γ

τ
ξ , (22)

where ξ is an independent zero-mean random variable with
unit variance. Note that Eq. (22) verifies W0 = 0 for the case of
frozen turbulence (τ,τd → ∞).
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To summarise, the combination of Eq. (16) and Eq. (20) forms
a second-order Langevin model given by:

D0

Dt
U =−1

τ
U +W,

D0

Dt
W =−γW +

√
2γ < W 2

0 > ζ ,

(23)

with γ = 1/τd −1/τ . ζ is a stochastic field following a Gaus-
sian distribution with zero mean and unit standard deviation
independent from W and U . The forcing term W is now a con-
tinuous function in time which yields a smoother stochastic field
U than that obtained with the Langevin equation in Eq. (14)

For the case of frozen turbulence, both time scales τ and τd tend
to infinity. Hence the right-hand sides in the system Eq. (23)
are equal to zero and the model is only representing convection
effects, D0U/Dt = 0 and D0W/Dt = 0.

Numerical implementation

Dicretisation

The random-vortex-particle method introduced in (6)–(7) is dis-
cretised in a fully Lagrangian approach. The following notation
is introduced in order to rewrite (6)–(7) in a Lagrangian for-
mulation. Each fluid element in the region S0 at an initial time
t0 follows a trajectory given by rrr′(rrr0, t), where rrr0(rrr′, t) is its
starting point and J = |drrr′/drrr0| is the corresponding Jacobian.
The fluctuating component of the turbulent velocity field for a
fix frame of reference (6)–(7) can be rewritten in a Lagrangian
formulation yielding

uuu′(rrr, t) =
∫

S0

GGG(|rrr− rrr′(rrr0, t)|,λ (rrr′))U(rrr0, t)Jdrrr0, (24)

where GGG = ∇× (0,0,G). Note that here we are making explicit
the dependence of the filter on the integral length scale of the
fluid, λ .

By splitting S0 into the partition {S0n}N
n=1, Eq. (24) can be

discretised

uuu′(rrr, t) =
N

∑
n=1

∫
S0n

GGG(|rrr− rrr′(rrr0, t)|,λ (rrr′(rrr0, t)))U(rrr0, t)Jdrrr0.

(25)
Each element S0n can be understood as a small fluid element
whose trajectory is given by rrr′(rrr0, t).

If the fluid elements S0n are small compared to the the integral
length scale λ (rrrn), it is possible to consider that GGG is almost
constant over each S0n, yielding the following approximation

uuu′(rrr, t) =
N

∑
n=1

GGG(|rrr− rrrn(t)|,λ (rrrn))
∫

S0n

U(rrr0, t)Jdrrr0, (26)

where rrrn is the position of S0n as it moves across the domain.
rrrn can be defined as the barycenter of S0n

rrrn =
∫

S0n

rrr′(rrr0, t)drrr0. (27)

Finally, Eq. (26) can be rewritten as

uuu′(rrr, t) =
N

∑
n=1

GGG(|rrr− rrrn(t)|,λ (rrrn))Un(t), (28)

by defining Un as the weighted average of U over the nth fluid
element S0n

Un(t) =
∫

S0n

U(rrr0, t)Jdrrr0. (29)

Therefore, the synthetic turbulent velocity field at rrr can be
interpreted as the sum of N vortices such that the nth vortex is
located at rrrn, the velocity distribution depends on the distance
between the vortex and the observer and has strength Un.

Strength of the vortex-particles

Three different methods to model the time correlation of the
synthetic turbulence were described. For the case of frozen
turbulence, U(rrr0, t) is constant with respect to time yielding a
constant strength of the vortices in time, see Eq. (5). Therefore,
from Eq. (29), the strength of each vortex-particle, Un, can be
picked from a zero-mean random Gaussian distribution with
variance ∫

S0n

J2drrr0. (30)

Note that for incompressible flows J = 1 and Un has unit vari-
ance. Note also that by frozen turbulence we are not just stating
that the statistics of the turbulence are frozen, but also the turbu-
lent velocity field is frozen with respect to an observer moving
with the base flow.

If the loss of correlation in time is included in the model to gen-
erate synthetic turbulence by the Langevin equation in Eq. (14),
then the stochastic field U(rrr0, t) is time dependent. Integrat-
ing Eq. (13) over the fluid element S0n, we get that the rate of
change in time of each vortex-particle is given by

∂

∂ t
Un =−1

τ
Un +

√
2
τ

ζn(t), (31)

where ζn is the random source averaged over the fluid element
S0n:

ζn(t) =
∫

S0n

ζ (rrr′(rrr0, t))Jdrrr0.

Equation Eq. (31) can be discretised using:

Un(t +1) =
(

1− ∆t

τ

)
Un(t)+

√
2∆t

τ
ζn(t), (32)

where ζn is the weighted average over the fluid element S0n of
the discrete random source ζ with zero mean and unit variance
(for incompressible flows). Note that in order to accurately dis-
cretise a Langevin equation a Wiener process as source term, an
increment of magnitude ∆t requires an increment of magnitude√

∆t for the source term [7].

In this work, a second-order Langevin model is also proposed
to describe the time dependence of the strength of the vortex-
particles. Following the same scheme as for the Langevin
equation, the second-order Langevin model Eq. (23) can be
discretised in a Lagrangian formulation yielding

Un(t +1) =
(

1− ∆t

τ

)
Un(t)+∆tWn(t),

Wn(t +1) = (1− γ∆t)Wn +
√

2γ∆t < W 2
0 > ζn(t),

(33)
where Wn and ζn are respectively the weighted average of W
and ζ over the fluid element S0n

Wn(t) =
∫

S0n

W (rrr′(rrr0, t))Jdrrr0,

ζn(t) =
∫

S0n

ζ (rrr′(rrr0, t))Jdrrr0.

Note that the rate of change of W is defined through a Langevin
equation and therefore the analysis performed for deriving
Eq. (32) applies.
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Initial conditions for Un and Wn and values for ζn at each time
step must be provided. Since U0 and ζ are random variables
following a zero-mean Gaussian distribution with unit standard
deviation, by definition Un(0) and ζn(t) follow a zero-mean
Gaussian distribution with variance:∫

S0n

J2drrr0.

W0 is a random variable following a zero-mean Gaussian distri-
bution with variance < W 2

0 >=< U2
0 > /(ττd).

BROADBAND FAN INTERACTION NOISE

We investigate broadband fan interaction noise in two dimen-
sions by combining the random-vortex-particle method with
the linearised Euler equations solved in the time domain. As a
benchmark problem, broadband noise generated by interaction
between isotropic homogeneous turbulence and a flat plate is
investigated.

Linearised Euler equation solver

The aero-acoustic sound propagation model consists of an in-
house parallel, multiblock finite-difference code in the time do-
main solving the linearized Euler equations. It uses seven-point
dispersion relation preserving schemes, with an optimised six-
stage Runge-Kutta method for time integration. Non-reflecting
boundary conditions are imposed on the boundaries of the sim-
ulation domain. Also implemented is a selective filter that re-
moves short wavelength components that are not well resolved.
Far-field results are obtained using the Ffowcs-Williams Hawk-
ings equation using a fixed control surface surrounding the
source region.

Vortex-particles are launched upstream with a random strength
and convected downstream with the mean flow. The turbulent
velocity field is computed at each point of the airfoil using
Eq. (28) and implemented as a slip condition in the hard wall
boundary condition.

Problem definition

The test case considered is that of a flat plate with zero angle
of attack interacting with homogeneous isotropic turbulence.
The problem is made non-dimensional using the half-chord b,
mean density ρ0 and sound speed c0. The parameters are taken
to be similar to the test case previously selected by Amiet [1]
to validate the analytical solution against experiments. The
turbulence is convected by a uniform mean flow with Mach
number 0.362 and characterised by an integral length scale
λ = 0.07. The kinetic energy, K, is normalised to unity.

In order to introduce the effects of the temporal correlation
in (6)–(7), the Lagrangian time scale of the turbulence, τ , is
required. τ is a function of the dissipation rate, ε , and a weak
function of the Reynolds number. Its value can be estimated by
the scaling procedure:

τ ≈ 2K
C0ε

, (34)

where ε is the dissipation rate and C0 an empirical constant
whose value is not yet exactly defined. In this work we use
C0 = 2.1 as proposed by Pope in [16].

The computational domain is given by [−1.5,1.5]× [−1,1] with
the airfoil at [−0.5,0.5]×{0}. The domain is divided into 6
blocks, each of them discretised by a Cartesian grid with 200
points in each direction. The time step is such that the CFL
number is 0.8.

Results for frozen turbulence

In this section the generation of broadband noise due to the
interaction of frozen turbulence with a flat plate is investigated.

Numerical results presented in this section for the far-field
sound pressure levels (SPL) are validated against a modified
version of the analytical solution proposed by Amiet [1] that
accounts for a fully two-dimensional acoustic far-field. The
derivation of the analytical solution can be found in [8].

The quality of the synthetic turbulence has been assessed by
evaluating two-point correlations and one-dimensional spec-
tra generated by the random-vortex-particle method along the
airfoil. An extensive parametric study has been performed for
Gaussian, Liepmann and von Karman filters in order to improve
the accuracy of the results.

Figs. (1-3) depict the two-point correlations computed with
respect to the centre of the flat plate and one-dimensional spec-
tra in the streamwise direction and in the normal direction for
the Gaussian, Liepmann and von Karman spectra respectively.
The statistical behaviour of the synthetic turbulence is in very
good agreement with analytical results for the three spectra.
Note that the shape of the correlation is determined by the filter.
Therefore, while the Gaussian spectrum yields correlations with
a smooth behaviour at small distances, a much sharper slope
is found for Liepmann and von Karman spectra. In addition,
note also that as the one-dimensional energy spectra for the
Gaussian case decays faster as the frequency increases than the
one-dimensional energy spectra corresponding to Liepmann
and von Karman filters.
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Figure 1: Analytical solution (—) against numerical results
(− −) obtained for Gaussian spectrum. Figures at the top corre-
spond with correlations R11 and R22 computed with respect to
the central point of the airfoil. Figures at the bottom correspond
to the one-dimensional energy spectra E11 and E22.
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Figure 2: Analytical solution (—) against numerical results
(− −) obtained for Liepmann spectrum. Figures at the top cor-
respond with correlations R11 and R22 computed with respect to
the central point of the airfoil. Figures at the bottom correspond
to the one-dimensional energy spectra E11 and E22.
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Figure 3: Analytical solution (—) against numerical results
(− −) obtained for von Karman spectrum. Figures at the top
correspond with correlations R11 and R22 computed with re-
spect to the central point of the airfoil. Figures at the bottom
correspond to the one-dimensional energy spectra E11 and E22.

Figure 4: Normalised analytical (—) versus numerical (− −)
SPLs for the Gaussian spectrum and an observer located at
30◦ (top left), 60◦ (top right), 120◦ (bottom left), 150◦ (bottom
right) of the airfoil.

Figure 5: Normalised analytical (—) versus numerical (− −)
SPLs for Liepmann spectrum and an observer located at 30◦

(top left), 60◦ (top right), 120◦ (bottom left), 150◦ (bottom
right) of the airfoil.

Fig. (7) shows a snapshot of the acoustic pressure field around
the airfoil for the Gaussian spectrum. It shows that most of the
noise is radiated from the leading edge and there is a secondary
acoustic scattering at the trailing edge. This also applies with
Lipemann and von Karman spectra.

The numerical power spectral density (PSD) in the far field
obtained form Gaussian, Liepmann and von Karman spectra
has been compared against Amiet’s solution for a fully two-
dimensional problem in terms of the frequency spectrum and

Figure 6: Normalised analytical (—) versus numerical (− −)
SPLs for von Karman spectrum and an observer located at 30◦

(top left), 60◦ (top right), 120◦ (bottom left), 150◦ (bottom
right) of the airfoil.

Figure 7: Snapshot of the acoustic pressure field for the Gaus-
sian spectrum.

directivity. The PSD has been computed on a circular arc cen-
tred on the airfoil where angles are measured from the trailing
edge. Sound pressure levels (SPL) in the far field presented in
this work are normalised by the distance between the observer
and the flat plate.

Fig. (4) shows the normalised sound pressure levels for Gaus-
sian turbulence compared against analytical results for ob-
servers located at 30, 60, 120, 150 degrees from the down-
stream direction. Figs. (5, 6) depict the SPL at same locations
but computed using synthetic turbulent velocity field generated
with the Liepmann and von Karman spectra respectively. Noise
levels are in good agreement with the analytical solution for the
three spectra at all the locations. The margin of error slightly
increases towards upstream directions (in particular for the von
Karman spectrum) having problems to capture the oscillatory
behaviour of the SPL for different Strouhal numbers.

Directivities for St = 2.03 and St = 4.06 are shown in Fig. (8)
for the Gaussian spectrum. Very good agreement is obtained
apart form upstream angles. Similar results in terms of accuracy
are obtained when considering either Liepmann or von Karman
spectrum due to the fact that the turbulence spectrum only
affects the absolute level of the directivity at a given frequency.

Results for evolving turbulence

In this section the generation of broadband noise due to the in-
teraction of evolving turbulence with a flat plate is investigated.
In contrast with the previous section, where results where ob-
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Figure 8: Analytical (—) versus numerical (− −) far-field
directivity using the Gaussian filter at St = 2.03 (top) and St =
4.06 (bottom).

Figure 9: Two-point space-time analytical versus numerical R11
(top) and R22 (bottom) correlations. Solid lines stand for ana-
lytical results and symbols for numerical correlations obtained
with the Langevin equation for points at distance: r/b = 0 (×),
r/b = 0.4 (o), r/b = 0.8 (∗), r/b = 1.2 (C), r/b = 1.6 (+), and
r/b = 2 (B).

tained by assuming that the synthetic turbulent velocity field
was a frozen pattern moving with the base flow, the effects of
loss of correlation in time are now taken into consideration.

The validation of the evolving synthetic velocity field char-
acterised by its integral time scale τ has been performed by
computing two-point space-time correlations. Since the syn-
thetic turbulent velocity field is used as a boundary condition
in the linearised Euler equations along the flat plate, we are
focussing on the two-point space-time correlation along the
airfoil, Ri j(r, t) =< u′i(r1, t1) u′j(r2, t2) >.

Fig. (9) shows numerical two-point space-time correlations for
points along the airfoil at distances r/b = 0, 0.4, 0.8, 1.2, 1.6
and 2 from the leading edge against analytical results. Good
level of agreement is obtained when comparing numerical and
analytical R11 and R22 correlations for the different locations.

In contrast with the case of frozen turbulence, the maximum
correlation decreases due to the influence of the temporal corre-
lation of U modelled by the Langevin equation as exp(−t/τ).
Therefore, for this test case, the integral time scale of the tur-
bulence τ provides about 12% loss of temporal correlation for
points that are one flat plate apart.

The acoustic pressure field surrounding the flat plate generated
by interaction with synthetic evolving turbulence is depicted
in Fig. (10). In comparison with the acoustic pressure field
generated by frozen turbulence, it shows a much larger content
of noise with small wavelengths radiating from the airfoil, see
Fig. (7). For the case with frozen turbulence, most of the noise is
radiated from the leading edge and there is a secondary acoustic

Figure 10: Snapshot of the acoustic pressure field for the Gaus-
sian spectrum generated with a first-order Langevin model.

Figure 11: Normalised analytical (—) and numerical (−·−)
SPL for frozen turbulence versus numerical (− −) SPL for
evolving turbulence. From top to bottom and left to right ob-
servers located at 30◦, 60◦, 120◦, 150◦ of the airfoil.

scattering at the trailing edge. However, in this case, there are
significant additional sources located mostly near the middle of
the flat plate.

Fig. (11) shows the normalised sound pressure levels compared
against numerical and analytical results obtained for the case
of frozen turbulence (τ → ∞) for observers in the far field at
30, 60, 120, 150 degrees from the downstream direction. For
observers located downstream, noise levels are similar to the
case of frozen turbulence for Strouhal numbers smaller than 3
but there are much higher noise levels for higher frequencies.
An even more significant increase between frozen and evolving
turbulence is observed at upstream locations. Noise levels at
120 and 150 degrees are larger for evolving turbulence than
those generated with frozen turbulence over the whole range of
frequencies. In particular, at 150 degrees an almost flat spec-
trum is found for Strouhal numbers larger than 2. Even though
the overall sound pressure levels in the upstream direction are
about 10 decibels lower that the levels downstream, the large
content of sound at high frequencies is significant.

At this point one might question whether the higher noise levels
observed at high frequencies are a genuine effect of introducing
time correlation in the synthetic velocity field or instead rep-
resent spurious sources introduced by the discretisation of the
Langevin equation. A possible explanation could be a lack of
numerical resolution in space or time, but this has been ruled
out. The smallest hydrodynamic wavelengths are resolved by
17 points per wavelength and the smallest acoustic wavelengths
by 35 points per wavelength in the frequency range of interest
(St = 0 to 5). In addition, the solution seems also independent
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Figure 12: Time evolution of the strength of a given vortex-
particle modelled by the Langevin equation (—) versus the
strength modelled by the second-order Langevin model (—).
Form top to bottom and left to right, τd = τ/709, τd = τ/442,
τd = τ/71, and τd = τ/18.

of the time step used in the numerical integration. This suggest
that the numerical results have fully converged.

The second-order Langevin model proposed in Eq. (23) requires
the knowledge of the time scale τd which is used here as a nu-
merical parameter to smooth the time evolution of the strength
of the vortices.

In Fig. (12) the time evolution of a given vortex-particle mod-
elled with the second-order Langevin model for different values
τd are compared against the time evolution of the same vortex-
particle modelled with the Langevin equation. We can see that
a much smoother behaviour is obtained with the second-order
model than with the Langevin equation. The largest the value
of the τd is, the smoother the solution until the point where the
strength is almost independent of time.

A parametric study was performed to select the value of τd . Its
value must be sufficiently smaller than the integral time scale of
the turbulence so that the resulting time correlation, Eq. (19) is a
good approximation of exp(−t/τ) and τd should be sufficiently
large compared to the time step so that the solution converges
at a reasonable computational cost.

From this parametric study we concluded that by selecting τd =
τ/71 the statistical behaviour of the turbulence is accurately
captured by the model and accurate far-field results can be
obtained using the same time step as for the case of frozen
turbulence.

Fig. (13) shows numerical two-point space-time correlations for
points along the airfoil at distances r/b = 0, 0.4, 0.8, 1.2, 1.6
and 2 from the leading edge against analytical results. Good
level of agreement is obtained when comparing numerical and
analytical correlations R11 and R22 for the different locations.

A snapshot of the predicted acoustic pressure field around the
flat plate is depicted in Fig. (14). Small acoustic wavelengths
radiating from the middle of the flat plate predicted by the
Langevin equation Eq. (14) are no longer present, see Fig. (10).
In contrast, most of the noise is radiated from the leading edge
as predicted by interaction with frozen turbulence, see Fig. (7).

Normalised sound power levels obtained by interaction with
frozen turbulence and with evolving turbulence modelled by
the second-order Langevin model are depicted in Fig. (15) for
observers in the far field at 30, 60, 120, 150 degrees from the
downstream direction. Numerical SPLs for evolving turbulence

Figure 13: Two-point space-time analytical versus numerical
R11 (top) and R22 (bottom) correlations. Solid lines stand
for analytical results, dashed line is the temporal correlation
exp(−t/τ) and symbols for numerical correlations obtained
with the Langevin equation for points at distance: r/b = 0 (×),
r/b = 0.4 (o), r/b = 0.8 (∗), r/b = 1.2 (C), r/b = 1.6 (+), and
r/b = 2 (B).

Figure 14: Snapshot of the acoustic pressure field for the Gaus-
sian spectrum generated with a second-order Langevin model.

are depicted against numerical and analytical SPLs for the
case of frozen turbulence. Similar results are obtained for
the four locations either by assuming that the turbulence is
frozen or by including the effects of time correlation through
the second-order Langevin model. The only discrepancy found
is at 150 degrees where when assuming evolving turbulence,
sound power levels do not fully account for the interference
pattern generated by interaction between the noise radiated from
the leading edge and the scattering at the trailing edge.

Directivities at the Strouhal numbers St = 2.03 and St = 4.06
are shown in Fig. (16) where angles are measured from the
downstream direction. Numerical results for evolving turbu-
lence are depicted against numerical and analytical results for
the case of frozen turbulence. Very good agreement is obtained
for both Strouhal numbers between frozen and evolving turbu-
lence apart from upstream directions where slightly different
trends are found. This disparity for upstream directions can be
related with the discrepancy found in the frequency spectra at
upstream locations, see Fig. (15).

In summary, noise levels generated by interaction of evolving
turbulence with the flat plate are similar to those obtained by
interaction with frozen turbulence. Note that a characteristic
time scale of a vortex passing through the leading edge is of
the order of λ/u0 which is more than a hundred times smaller
than the integral time scale of the turbulence. Therefore, the
strengths of the vortices vary very little as they pass near the
leading edge generating almost the same velocity field as if
their strength was kept frozen.
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Figure 15: Normalised analytical (—) and numerical (−·−)
SPL for frozen turbulence versus numerical (− −) SPL for
evolving turbulence. From top to bottom and left to right ob-
servers located at 30◦, 60◦, 120◦, 150◦ of the airfoil.

0 20 40 60 80 100 120 140 160 180

−60

−50

−40

Angle, degree

N
or

m
al

is
ed

 S
P

L,
 d

B

0 20 40 60 80 100 120 140 160 180

−70

−60

−50

−40

Angle, degree

N
or

m
al

is
ed

 S
P

L,
 d

B

Figure 16: Far-field directivity at St = 2.03 (top) and St = 4.06
(bottom). Analytical (—) and numerical (− ·−) directivity
for frozen turbulence versus evolving turbulence (− −) with
τd = 0.2941.

CONCLUSIONS

The random-vortex-particle model considered in this work is
capable of efficiently reproducing the two-point space-time cor-
relation tensor and a target value of the turbulent kinetic energy.
It requires either an energy spectrum or a correlation function
together with the kinetic energy and time and length scales. The
energy spectrum can be chosen to provide the velocity field
most suited for the specific problem under investigation. In
this sense, three different energy spectra have been considered
yielding different acoustic spectra and different computational
costs.

Broadband fan interaction noise has been investigated by com-
bining the linearised Euler equations with the method to gener-
ate synthetic turbulence. A general in-house finite-difference
solver was used to implement the linearised Euler equations.
The method was used to predict the broadband interaction noise
generated by interaction between a two-dimensional flat plate
and homogeneous isotropic turbulence.

The effects of generating the synthetic velocity field with the
Gaussian, Liepmann or von Karman filters have been investi-
gated for frozen turbulence. An extensive parametric study has
been performed for each of the three filters under consideration
in order to improve the accuracy of the synthetic turbulence
method. This accuracy has been measured in terms of statistics
along the flat plate and far-field spectra and directivities. Very
good agreement between numerical and analytical correlations
and one-dimensional energy spectra has been found. Regarding
far-field results, the sound power levels seen by an observer
at different locations around the airfoil are in good agreement

with the analytical proposed by Amiet that accounts for a fully
two-dimensional problem. Directivities are also well predicted
apart from upstream of the airfoil where the method is not able
to fully capture the sound power levels. As it was expected,
comparing far-field sound power levels at the same location but
computed using different filters different amplitude of the noise
levels at each frequency is found being the difference more
noticeable at higher frequencies.

The effects of loss of correlation have been introduced in the
random-vortex-particle method by modelling the rate of change
in time of the strengths of the vortices through two Langevin
models. The first of them is a Langevin equation with source
term given by a white noise field. The statistical behaviour of
the resulting evolving turbulence flow captures the loss of corre-
lation in time and reproduces two-point space-time correlations
along the flat plate accurately. However, it predicts spurious
sources radiating from the flat plate. In order to remove these
spurious sources a second Langevin model was proposed. In
this case the forcing term is a continuous function correlated
with the strength of the vortices so that the effects of viscous dis-
sipation are included in the model. The resulting second-order
Langevin model reproduces two-point space-time correlations
along the flat plate and predicts far-field noise levels noise sim-
ilar to those obtained by interaction with frozen turbulence.
These results are supported by the fact that a characteristic time
scale of a vortex passing through the leading edge is more than
a hundred times smaller than the integral time scale of the tur-
bulence. Therefore, the strengths of the vortices vary very little
as they move past the leading edge and in consequence almost
the same velocity field as if their strength was kept frozen is
generated.
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