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ABSTRACT 

The plant tissues, in particular the orange’s skin, are essentially aqueous-filled structures of varying density and elas-
ticity composed by fat and acids substances, as well as areas of intercellular air. In recent years many techniques have 
been developed for ultrasonic characterization of fruit and vegetables in postharvest processes. All have found com-
mon macroscopic acoustic parameters: a slow propagation speed and a large absorption. It is intended therefore to ob-
tain a prediction model of ultrasounds propagation in this viscoelastic heterogeneous media by FDTD (Finite Differ-
ence Time Domain) techniques. Thus, this paper presents a time domain numerical model for simulating acoustic 
propagation in plant tissue. This model correctly describes the special characteristics of wave propagation experimen-
tally detected in these biological tissues, emphasizing the need for elastic frequency dependent characteristics: a fre-
quency dependent elasticity modulus. These simulation results will be compared with measures obtained from an ex-
perimental device to validate the numerical model. Thus, the validation of a model of mechanical wave propagation 
in heterogeneous media has a great interest because it will deepen the understanding and development of new tech-
niques for characterization of complex materials, providing tools for predicting propagation processes in this kind of 
media. 

INTRODUCTION 

There are many techniques for monitoring the quality of hor-
ticultural products in post-harvest processes and each of them 
is based on the measurement of a physical-chemical parame-
ter in search of finding a correlation with a physiological 
index that correctly describes the physiological, biochemical 
and structure of the fruit. Nowadays, there are numerous 
methods of fruit quality monitoring, but most of them require 
a destructive test, so they cannot be applied to all fruits and 
vegetables in a production line [1]. 

In recent years, many articles have been published describing 
trials to develop non-destructive techniques for the genera-
tion and detection of ultrasonic waves in plant tissues as the 
proposed for avocado and mango [2], for apples [3, 4], for 
potatoes [5, 6], in carrots [7], or in oranges [8, 9]. Due to the 
special acoustic characteristics of these media, the experi-
mental set-up described in these papers has a very narrow 
bandwidth and a low ultrasonic resonant frequency that va-
ries between 37 and 100 kHz. At higher frequencys the ultra-
sonic wave are strongly attenuated [10]. The results of these 
tests provide two important conclusions about the propaga-
tion of acoustic waves in plant tissues. First, low propagation 
velocities detected in these kinds of media, below 200 m / s 
for surface measurements. The second one is a high wave 
attenuation, which varies between 1 and 7dB/mm depending 
on the type of tissue [10]. 

There are many simulation studys of acoustics waves in 
vegetable tissues on frequency domain. In this way, have 
been developed finite element numerical simulations to de-
termine acoustics resonances in pears [12] in melons [13, 14], 
and in apples [15]. These studies numerically estimate the 
resonance frequencies of the fruit in order to determine fruit 
firmness using the relationship proposed by J. R. Cooke [11] 
on spherical fruits. 

Other finite element simulations have also described the elas-
tic behavior of plant tissues on a microscopic scale, as in [16] 
where a model of cell blocks for simulations of stress-strain 
is implemented; or in [17], where the mechanical modeling of 
epidermal cells of onion is considered.  

In this work, a finite difference time domain method (FDTD) 
is applied in order to simulate the ultrasonic wave propaga-
tion through the orange fruit tissue (Citrus Sinensis (L.) Os-
beck). 

DYNAMIC ELASTIC PARAMETERS OF THE 
ORANGE FRUIT 

The orange tissue can be divided from an elastodynamic 
point of view in three different layers. The outermost part of 
the fruit peel is the orange pigmented shell namely flavedo 
where there are many volatile oil glands in pits. Inward this, 
there is a porous white color layer, the albedo. Finally, the 
waterlike tissue core of the orange is composed with fluid-
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filled vesicles called carpels containing the orange juice and 
seeds. 

Due to the complexity of the inner structure of vegetal tis-
sues, different approaches can be considered to model the 
propagation of elastic waves through the orange tissue. The 
elevated content of water in fruits suggests that it may be 
appropriate to apply a fluid model for wave propagation stu-
dies. Besides, as transverse waves are not allowed to propa-
gate in Newtonian fluids, it is necessary to incorporate the 
shear elasticity in the model. In order to do that, the well 
known model for linear elastic solid is proposed: that is a 
solid for which the strain is fully determined by the stress. As 
the cell structure of the orange is very small compared to the 
typical wavelength of ultrasounds on these media, it can be 
assumed that the tissue can be homogenized and can be fully 
described by its linear elastic properties. The model describes 
wave propagation in a linear elastic solid, which is isotropic 
and without damping. Later, viscous losses are added to the 
model. 

The elastic properties of these heterogeneous media had been 
studied for many authors with stress-strain experimental 
techniques [19, 20]. Some of these studies conclude that the 
orange peel shows a viscoelastic behavior, so that the elastici-
ty proprieties may vary with the frequency. In fact, the ultra-
sound speed of the longitudinal, shear and Rayleigh surface 
waves calculated from these stress-strain elastic constants is 
approximately of 20-30 m/s, too low compared with meas-
ured values with the ultrasonic studies [9].  

To explain these higher values of propagation speed obtained 
with ultrasonics techniques, we suppose that the elastic con-
stants at higher frequencies are higher than the ones meas-
ured with stress-strain mechanical techniques (at very low 
frequencies or constant stress). In order to take into account 
this elastic behavior we use higher elasticity values than the 
cited in bibliography. Because the fruit peel is a waterlike 
tissue we suppose that the pressure wave speed cp is similar 
than in water. In addition, the Poisson’s ratio of these tissues 
is in the range 0.49-0.5 [21], so the measured Rayleigh wave 
speed is about cR≈0.95cs [22]. Finally, the elasticity values of 
the orange peel are such that holds: 

 2
,2 waterpcρμλ =+  (1) 

 ( )2,95.0 measuredRcρμ =  (2) 

where λ and μ are the elastic constants (Lamé’s constants) 
and ρ is the density of the solid, cp is the longitudinal propa-
gation speed of the waterlike media (1500m/s) and cR is the 
experimental ultrasonic measured Rayleigh wave speed. The 
empirically deduced elastic parameters are listed in table 1. 

Table 1. Empirically deduced media parameters 

Parameter Air Flavedo Albedo Inner core 

Density, ρ 
(kg/m3) 1.21 903 820 978 

Lame’s 1ºλ 
(MPa) -0.142 1,95·103 0,62·103 -2.2·103 

Lame’s 2º, μ 
(MPa) 0 36 10,8 0 

Young Modulus, 
E (MPa) - 107,3 22,2 - 

Poisson’s Ratio, 
v - 0,491 0. 25 - 

For the fruit’s fluid inner core, the value of the Bulk modulus 
is similar than water, neglecting for this media the action of 
fluid-shear stresses of this biological structure. The values for 

the Bulk density are measured with the Archimedes principle. 
The values for the resistance coefficients (ηP, ηS; see equa-
tions 5-7) for the longitudinal and transverse waves are de-
rived from the empirically measured attenuation coefficient. 

SURFACE WAVE FDTD SIMULATION 

Equations of the model 

The main equations of the problem can be deduced from the 
second Newton’s law and the Hooke’s law [23], in velocity-
stress formulation can be written as: 

 ( ) ( )∇+∇+⋅∇=
∂
∂ vvvτ μλI

t
 (3)

 τv
⋅∇=

∂
∂

t
ρ  (4) 

where τ is the stress tensor, and v is the first time derivative 
of the strain. This model accounts for the propagation of two 
kind of volumetric waves. The first is a longitudinal wave or 
compression waves (p-wave), analogue to the waves present 
in fluids. They have the same direction of oscillation along 
their direction of travel, which means that the oscillation of 
the medium (particle) is in the same direction or opposite 
direction as the motion of the wave. The speed cP of this 
wave can be calculated as cP= ((λ+2μ)/ρ) 0.5.The second is a 
transverse wave or shear wave (s-wave). In this case, oscilla-
tions are perpendicular to the direction of energy transfer. 
The speed cS of this wave in a solid is cS= (2μ/ρ) 0.5. It is im-
portant to remark that other kind of waves can propagate 
because of the interface of two elastic solids. Hence, a Ray-
leigh wave can propagate as a surface wave between both 
two elastic media. Particles disturbed by a Rayleigh wave 
oscillate with an elliptical polarization in the sagittal plane 
respect to the propagation direction of the wave. 

In order to incorporate the attenuation of the ultrasonic wave, 
a damping term is added, which on a 3D cartesian coordinate 
system leads to a 9 equations set: 
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where (ξ, ψ, ζ = x, y, z) and ηP, ηS are the resistance coeffi-
cients related to the attenuation coefficient of the longitudinal 
and shear wave respectively [24]. 

Numerical Scheme 

An explicit finite difference method was used for the elasto-
dynamic behavior simulation of the orange fruit. Thus, the 
linear solid equations are discretized using central-difference 
approximations to the space and time partial derivatives, 
which lead to a spatially staggered discretization of the veloc-
ity, normal and shear stress fields, and a temporal staggered 
discretization of particle velocity vector and stress tensor 
(Figure 1). In addition, with this numerical method it is poss-
ible to implement fluid heterogeneities inside the elastic solid 
media making the λ and μ values in this region to be –k and 0 
respectively; where k is the Bulk modulus of the fluid media. 

For implement the numerical model of the orange, the do-
main has been divided into three concentric spherical shells. 
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The surrounding outer layer of the orange domain is air. The 
first layer is the fruit external orange shell, the flavedo, of 2 
mm thick, 50 mm curvature radius and whose properties are 
listed in Table 1. Inland is the albedo layer, 3 mm thick and 
48 mm curvature radius. The inner fluid core of the fruit is a 
sphere with 45 mm of curvature radius. 

 

Figure 1. Spatial discretization for velocity and stress fields 

This space is discretized by a cubic grid with the side length 
of 3,025·10-5 m, which leads to 10.8 elements per wavelength 
for transversal waves, and 142.1 n/λ for longitudinal waves at 
a frequency of 40 kHz. The temporal step of the algorithm 
was chosen to preserve a maximum courant number of 0.8 
over all subdomains, and the stability conditions at media 
interface must be satisfied [25]. Due to the high computation-
al cost of algorithm simulates only a sector of the total 
orange’s domain, hence a 12 elements perfect matched layer 
(PML) was used as absorbing boundaries. The PML imple-
mentation was based on the time-dependent form of the 
stretched coordinate formulation [26], with a quadratic pro-
file and values of Ωmax=5.02·10-5 rad/s and αmax=2. The exci-
tation signal was a negative normalized second derivative of 
a Gaussian function, also known as a “Ricker wavelet”, and 
the central frequency was 40 kHz.  

EXPERIMENTAL SET-UP  

In order to validate the numerical model for the propagation 
of the elastic waves through orange tissue, a no destructive 
test was performed on a seven set of Navel cultivar sweet 
orange (Citrus Sinensis (L.) Osb). The two transducers used 
were sandwich type with a mechanical focuser to maximize 
the power transfer to the plant tissue in emission-reception 
configuration. In the nondestructive test configuration, trans-
ducers are placed on the surface without damaging the fruit. 
Thus, varying the separation between transducers can meas-
ure the received signal and calculate some acoustic properties 
of the medium. The tests were performed during two months 
after the harvest and the set of oranges were storage in a dry 
room at 20º C. The results shows that the propagation speed 
on the surface of the orange does not exceed 280 m/s at any 
time, increasing function of time since 120 m/s to final mean 
values of 220 m/s. In the other hand, the high attenuation 
coefficient of the media varies from 1dB/mm to 3dB/mm. 

 
Figure 2. Experiemenal set-up for ultrasonic measure 

RESULTS 

Several measurements over radially distributed points at he 
surface of the fruit in order to calculate the propagation 
speed. Thus, the configuration of this model is very similar to 
experimental set-up of the tests. Figure 3 represents a time-
space plot showing the recorded temporal signals versus the 
distance to excitation source. A linear fit by least squares 
over the traces of equal wave phase in time and space allows 
the estimatation the propagation speed of the ultrasonic wave.  
The fit shows that two different waves are detected on the 
surface of the orange model without damping: the steeper 
slope corresponds to the longitudinal wave propagation speed 
while the less steep slope corresponds to the surface wave. 

 
Figure 3. Space-time diagram for the fruit model without 

damping. 

With the aim of taking into account the high absorption of the 
vegetable tissue, a second model was simulated setting the 
resistance coefficients to the empirically measured wave 
attenuation of 3dB/mm as proposed in literature [9]. By a 
similar linear fit by least squares the propagation wave speed 
was estimated. Results show that only a low propagation 
speed wave is present due the high damping on the recorded 
signals. The fit for the model with damping was x=183,978t-
0,0043 (m); so the value of the propagation speed is similar 
to the theoretical predicted for a Rayleigh surface wave. 
Comparing with the theoretical Rayleigh speed cR, theoretical = 
197.42 m/s calculated for a Poisson ratio of 0.491 with that 
obtained numerically (cR, numeric = 183.97 m/s) yields an error 
of 6.8%. Yet we must bear in mind that the theoretical speed 
may vary if the surface geometry is curvilinear and whether 
there are heterogeneities [27]. Because the amplitude of the 
traces of the velocity of longitudinal wave propagation is 
very low it was decided to make several adjustments to re-
duce uncertainty. Thus, as a result of these adjustments a 
propagation velocity cP = 1357.40 m/s is obtained, 
representing an error of 9.5% compared with the theoretical 
longitudinal velocity in a homogeneous medium without 
curvilinear geometry. 
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Figure 3. Space-time diagram for the fruit model with 
3dB/mm viscous losses. 

However, a deeper analysis is needed to study if the motion 
of the orange tissue is a pure shear wave or another surface 
wave as Rayleigh or lamb waves. We this aim, the velocity of 
particle is represented as a function of depth and normalizing 
the depth respect to the wavelength, which is around 5 mm 
on the tissue surface. We can see that in spite of the hetero-
geneity of the environment and the curvilinear geometry of 
the tissue structure, we can appreciate different features spe-
cific of surface waves.  

Figure 4 shows that the particle velocity components are 
spatially offset, so that the longitudinal component is highest 
when the horizontal component is minimal. On the other 
hand, the wave is attenuated as a function of depth, and even 
the curvilinear geometry of our problem, cannot penetrate to 
a distance greater than λ. Finally, below a depth of about 0.2 
λ the velocity components are reversed which means that the 
elliptical motion described by the particles also do that: on 
the surface the particle motion describe ellipses pass back-
ward in the sagittal plane, at a depth of 0.2 λ the particle mo-
tion have a minimum in all components and below the par-
ticle elliptical motion turn in the opposite direction. 
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Figure 4. Particle velocity components recorded at maximum 

signal amplitude time versus orange’s skin depth. 

 

 

CONCLUSION 

The study and understanding of the nature of elastic waves in 
plant tissues can be approached by finite difference methods. 
In this work, cartesian 3D-FDTD techniques have been ap-
plied to solve an elastodynamic problem. The complex hete-
rogeneous media of an orange fruit can be approximated by a 
linear elastic model. The values of the computed propagation 
surface wave speed are very close to the values of the expe-
rimentally measured waves, and with this model the longitu-
dinal wave is strongly attenuated on the surface. On other 
hand, with these values of propagation speed one can calcu-
late the linear elastic parameters, which are well correlated of 
the post-harvest quality of fruit.  
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APPENDIX A 

Snapshots of the the normal strain modulus is plotted illu-
strating the elastodynamic behaviour of the modeled orange 
fruit. The figures shows the three wave motion predicted: the 
large wavelength pressure wave, the shear wave and the Rai-
leigh surface wave. 

 

 

 

 

On another secuence, snapshots of the particle position can 
be obtained from the discrete integral of the particle velocity 
vector and adding the initial balance position. The amplitude 
of the motion in the pictures below is magnified in a factor of 
103. In the secuence one can appreciatte how the longitudinal 
wave is strongly attenuated and only the Raileigh wave can 
travel along the surface in the model with viscous losses. 

 

APPENDIX B 

Splitted equations for implement the perfect matched layers 
(PML) on a 3D cartesian linear elastic solid with viscous 
losses. The subscripts denote the physical component of the 
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velocity-stress fields while the superscripts mean the splitted 
sub-component. This set of 24 equations is discretised 
through finite diferences leading an explicit method to solve 
the velocity-strain fields in time domain. Thus, for the 9 split-
ted components of particle velocity:  
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The 9 splitted set of the normal strain: 
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The 6 splitted set for the shear strain: 
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Finally, the 9 physical components are the sum of each split-
ted component: 
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where (ξ, ψ, ζ = x, y, z). As an example, the FDTD discretiza-
tion for the splitted equation (8) leads to: 
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And the update equation for this unknown is: 

( ) ( )( )kji
nn
xxkji

n
xxkji

nx
xkji

nx
x CvCv ,,,,12,,

2
12

1

1,,
2
12

1

ττ −−= +⎟
⎠
⎞

⎜
⎝
⎛ +

−
⎟
⎠
⎞

⎜
⎝
⎛ +

+

 
where constants matrix coeficients C1 and C2 are: 
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This discretization is applied for each of the 24 equations of 
the set (8-31). 

 
 


