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ABSTRACT

Edge tone is numerically reproduced by compressible LES for 2D and 3D models. To detect the aerodynamic sound
source, Lighthill’s sound source as well as Howe’s vortex sound source are calculated. We find a marked difference in
distribution between the two types of sources originating from the difference in formula: Howe’s vortex sound theory
is framed based on the concept that the total enthalpy instead of pressure or air density is true sound, so that the source
generating fluctuation of the total enthalpy is different from that generating acoustic pressure. We also calculate mutual
correlations among acoustic pressure and the two types of sound sources, i.e., Lighthill’s and Howe’s sources, so as to
examine details of interaction among them.

INTRODUCTION

Edge tones are acoustic fluctuations generated by the oscilla-
tion of a jet emanating from a flue and colliding with an edge.
The study of edge tones has a long history and many authors
have contributed to this problem(1, 2, 3, 4). It is considered
that some feedback mechanism, fluid and/or acoustic feedback,
sustains the jet oscillation whose frequency mainly determines
the frequency of the edge tone emitted by aerodynamic sound
sources, so-called Lighthill’s source(5). However, the detailed
mechanism of the edge tone is still not understood completely.

The aim of our study is to specify positions of the sound sources
and to clarify how they are created in turbulence and how the
sound is emitted from them, in terms of the aerodynamic sound
theory. For the first step, we numerically reproduce the jet os-
cillation as a sound source and the edge tone as a product si-
multaneously for 2D and 3D models with compressible Large-
eddy Simulations(6). In a previous work(7, 8), we have really
succeeded in reproducing sound vibrations of 2D and 3D air-
reed instruments with a numerical scheme provided as a free
software, OpenFOAM, by OpenCFD Ltd(9).

In this paper, we concentrate ourselves on a simple case of
a symmetrical edge without a resonator and calculate edge
tones for 2D and 3D models with changing the jet velocity.
Lighthill’s sound sources are obtained numerically and their
behavior is analyzed using statistical methods. Actually mu-
tual correlations among the sound source and the sound field
are calculated so as to examine details of interaction among
them. With those results, we try to specify the most dominant
area of sound sources distributed around the jet and the eddies
behind the edge which are generated by collision of the jet with
the edge.

We also compare Lighthill’s sound source with the sound source
of the vortex sound theory formulated by Howe(4, 10). In the
vortex sound theory, the sound wave is considered as a prop-
agation of fluctuation of the total enthalpy instead of the air

pressure or air density. Thus, the formulae are different and so
are the source terms. We will clarify the difference of source
distribution between Lighthill’s and Howe’s formulae and will
discuss why such a difference occurs.

EDGE TONE

As shown in Fig.1, edge tones are a sort of aerodynamics sound
generated by the unsteady but mostly periodical oscillation of
jet emanated from the flue and collied with the edge, which is
considered as the sound source of air-reed instruments(4, 11,
12). Understanding the mechanism of edge tones has been a
long standing problem in the fields of aero-acoustics and mu-
sical acoustics and details of its mechanics are not completely
understood yet. However, its features have been well captured
by semi-empirical equations introduced based on experimen-
tal results. To the authors’ knowledge, the first pioneer work
was done by Brown, who introduced the following empirical
formula for the frequency of edge tone(1):

f = 0.466 j(100V −40)(1/(100l)−0.07), (1)

where f denotes the frequency, V the speed of jet and l the
distance between the flue and the edge. The number j is taken
as j = 1.0,2.3,3.8,5.4. For j = 1, it gives the fundamental fre-
quency and others denote overtones. With increase of V , the
fundamental oscillation is excited and its frequency increases
in proportion to V . But it jumps to one of overtones, if V ex-
ceeds a threshold value, and the process, i.e, the transition from
one to other overtone at a threshold value, is repeated with in-
crease of V . The transitions are hysteretic and the the threshold
values of V in the downward process are usually different from
those in the upward.

After Brown’s work, several authors proposed different formu-
lae. Among them, the formula given by Holger et al. is well
known and more precise(2):

f = 0.925

√
d

l3/2 V (n+αn)3/2 (2)
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Figure 1: Edge tone

where d denotes the height of the flue, n is a natural number
and α1 = 0.4, α2 = 0.35, α3 = 0.50. Similar formulae were
also given by Crighton and Howe independently with theoret-
ical arguments(3, 4).

LIGHTHILL’S THEORY

The sound generated by turbulence is usually called aerody-
namic sound, which is a very small byproduct of the motion
of unsteady flows of high Reynolds number. The source of
aerodynamic sound was given the exact form by Lighthill(5).
Lighthill exactly transformed the set of fundamental equations,
Navier-Stokes and continuity equations, to an inhomogeneous
wave equation whose inhomogeneous term plays the role of
the source:(

∂ 2

∂ t2 − c2
0∇2

)
(ρ −ρ0) =

∂ 2Ti j

∂xi∂ x j
, (3)

where the tensor Ti j is called Lighthill’s tensor and is defined
by

Ti j = ρviv j +((p− p0)− c2
0(ρ −ρ0))δi j +σi j. (4)

Here, c0 denotes the speed of sound in a stationary acoustic
medium, p the air pressure with the average p0, ρ the air den-
sity with the average ρ0, and σi j the viscous stress tensor. It is
considered that the sound wave is generated by the quadrupole
source distribution in turbulence given by the inhomogeneous
term in RHS of eq.(3) and propagates like that in the stationary
acoustic medium, even though turbulence exists. This interpre-
tation is called Lighthill’s acoustic analogy.

Since the dissipation by σi j can be ignored for a high Reynolds
number and adiabaticity is well held as

(p− p0)− c2
0(ρ −ρ0) = 0, (5)

then the first term of eq.(4), ρviv j , becomes the major term of
the source. Further, particle velocities of the sound are usually
sufficiently small compared with those of the real flow and so
the source term is well approximated by that obtained from in-
compressible fluid with ρ = ρ0 and div v = 0. Then, the sound
source is given by

∂ 2Ti j

∂xi∂x j
∼ ρ0

∂ 2viv j

∂xi∂x j

= ρ0(s2
i j −w2

i j)

= ρ0div(ω ×v)+ρ0∇2
(1

2
v2

)
, (6)

where si j and wi j are respectively given by

si j =
1
2

(
∂v j

∂xi
+

∂ vi

∂ x j

)
, (7)

wi j =
1
2

(
∂v j

∂xi
− ∂vi

∂x j

)
. (8)

For two dimensional(2D) fluid, it is further reduced into

∂ 2Ti j

∂xi∂x j
∼−2ρ0

(
∂v1

∂x1

∂v2

∂x2
− ∂v2

∂x1

∂v1

∂x2

)
. (9)

In calculation of Lighthill’s source for 3D and 2D models, we
will use the above formulae later.

For exactly incompressible fluid, an analogue to Lighthill’s
equation is written by a Poisson equation

−∇2 p = ρ0
∂ 2viv j

∂xi∂x j
. (10)

As the analogy to the static electric field, a static pressure field
is created by the source term in RHS corresponding to the
main term of Lighthill’s quadrupole source, but the propaga-
tion speed of pressure distortion is infinite due to incompress-
ibility. For compressible fluid, the pressure distortion propa-
gates at a finite speed, then the term 1

c2
0

∂ 2 p
∂ t2 should be added to

LHS of eq.(10) and Lighthill’s equation eq.(3) with the approx-
imations eqs.(5) and (6) is obtained again. Since the compress-
ible portion of a dynamical variable is extremely small com-
pared with its incompressible portion, then Lighthill’s equation
(3) may be well approximated in turbulence by eq.(10).

HOWE’S VORTEX SOUND THEORY

After Lighthill’s paper was published(5), several authors pur-
sued the physical meaning of Lighthill’s acoustic analogy(3,
10, 13, 14, 15). Powell indicated the role of vorticity as a sound
source with reducing Lighthill’s source term as the last line in
eq.(6)(14), which has since been followed by Howe(4, 10). Ac-
tually Howe reformulated Lighthill’s equation in terms of the
total enthalpy (or stagnation enthalpy) B defined by

B ≡
∫

dh+
1
2

v2, (11)

where the enthalpy h is given by

dh = ρ−1d p+T dS. (12)

For homentropic flow with dS = 0, B is approximated by

B ∼ p
ρ

+
1
2

v2. (13)

Then, fluctuation of B is regarded as a deviation from Bernoulli’s
equation due to compressibility. Howe considered that B is the
true expression of sound and introduced a reformulated equa-
tion in terms of B:{

D
Dt

(
1
c2

D
Dt

)
+

1
c2

Dv
Dt

·∇−∇2

}
B

= div{ω ×v−T gradS−σ}

− 1
c2

Dv
Dt

· {ω ×v−T gradS−σ}

+
D
Dt

(
1
c2 T

DS
Dt

)
+

∂
∂ t

(
1
cp

DS
Dt

)
+

1
c2

D
Dt

(v ·σ)− 1
c2

∂v
∂ t

·σ . (14)

where the specific heat at constant pressure cp is defined by
cp = T ( ∂S

∂T )p, the sound speed c by 1
c2 = ( ∂ρ

∂ p )S and the vector
σ by σi = (1/ρ)∂σi j/∂x j.

For a homentropic and low Mach but high Reynolds number
flow, eq.(14) is well approximated by(

1
c2

o

∂ 2

∂ t2 −∇2
)

B ∼ div(ω ×v). (15)
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This equation indicates that the sound in terms of B is gener-
ated by the moving vortices as shown in RHS. Using the ap-
proximation eq.(13) and ignoring the term c−2

0
∂ 2

∂ t2 v2/2 which
is considered to be smaller than other terms in both fluid and
acoustic regimes, we get

1
ρc2

o

∂ 2

∂ t2 p−∇2B ∼ div(ω ×v). (16)

Eq.(16) with eq.(13) is equivalent to Lighthill’s equation eq.(3)
with the approximations eqs.(5) and (6).

(a)

(b)

Figure 2: 2D model (a)Location of flue and edge. (b) Numeri-
cal mesh.

MODEL AND NUMERICAL SCHEME

For the numerical analysis of edge-tones, we need to simulta-
neously calculate flow dynamics of the jet and a sound field
generated by it. The sound speed c of about 340m/s is much
higher than the jet velocity V , which is at most several tens
in MKS units. For reproducing sound, an extremely smaller
time step is required compared with ordinary numerical calcu-
lations of fluid dynamics. On the other hand, spatial scales used
for calculations of fluid dynamics with those vortices, some of
which may be smaller than 1mm, are much smaller than wave
lengths of sound, e.g., 34mm even at 10kHz. Therefore, in nu-
merical calculations of edge tones we must satisfy both the
requirements, a sufficiently small time step to describe sound
propagation and spatial meshes fine enough to reproduce vor-
tices in fluid. Further, particle velocities of sound(or energies
of sound) are usually much less than those of a flow. Indeed,
sound energies in the living environment are 10−4 times as
small as or smaller than those of fluid. Then, it is not easy to
numerically calculate sound propagation gradually dissipating
for a long distance with a high degree of accuracy.

For numerical calculation, we use a compressible LES(Large
eddy simulation), which is very popular in numerical simula-
tions of aero-acoustics(6). Actually the scheme we adopt is the
compressible LES solver of OpenFOAM, provided as a free
software by OpenCFD Ltd(9). LES is very stable for a long
time simulation, while it involves some ambiguities in bound-
ary layers due to the statistical assumption for dynamics of ed-
dies smaller than a given grid size. It however makes sense in
the statistical point of view.

By using the compressible LES, we calculate the edge-tone for
a 2D and 3D dimensional models. Fig.2 (a) shows geometry
of the 2D model we adopt, where the height of flue (and the
height of the splitter) d is taken as d = 1mm, the distance of the
edge from the flue aperture l = 5mm, the edge angle θ = 20◦

and the length of splitter L = 35mm. Fig.2(b) shows the spatial
area of the numerical mesh, which is taken large enough to
reproduce sound in a near-field. Table 1 shows parameters of
the mesh. The 3D model has an uniform width added to the 2D
model’s geometry and it is bounded by two slip walls. Hence,
on every cross section parallel to the slip walls, the location of
the flue and the splitter is the same as that of the 2D model.
The distance between the slip walls is 10mm and the number
of grid points between them is 40.

Table 1: Parameters of mesh

points cells faces
210214 104116 417455

The averages of pressure and temperature are taken as p0 =
100kPa and T0 = 300K, respectively. The time step of numeri-
cal integration is ∆t = 10−7sec. Time evolution is calculated
up to 0.05sec for the 2D model, but up to 0.02sec for the
3D model. For the 2D model, the velocity of the jet emanat-
ing from the flue V is changed as a control parameter in the
range (5 ≤V ≤ 30m/s), though it is fixed at V = 10.0m/s for
the 3D model. Observations are done as follows. The acous-
tic pressure p is observed at the symmetric points (D) and (E)
in Fig.2(b). The vorticityω and Lighthill’s and Howe’s sound
sources are observed at the points (A), (B) and (C) in Fig.2(a).
The point (A) is on the center line of the jet flow to detect the
vorticity of the jet and the sound sources generated by the jet.
On the other hand, the symmetric points (B) and (C) are re-
spectively located behind the edge over and under the splitter
to observe the vorticity and the sound sources related to the
eddies caused by the collision of the jet to the edge.

Figure 3: Jet velocity vs. frequency of acoustic vibration. Solid
line: numerical result. Dotted line: Brown(eq.1). Broken line:
Holger et al.(eq.2).

NUMERICAL RESULTS

Change of frequency with jet velocity

First, we discuss the relation of the frequency of sound ob-
served at point (D) or (E) to the jet velocity V . Fig.3 shows
change of the sound frequency for the 2D model as a func-
tion of V together with the lines given by eq.(1)(Brown) and
eq.(2)(Holger et al.). The sound frequency at V = 10m/s for
the 3D model is also depicted by an ’x’ in this figure.

The frequency of the edge tone for the 2D model increases
with increase of V . It well follows Brown’s equation rather than
Holger’s one, though it exists between the two lines given by
eq.(1) and eq.(2).

The frequency at V = 10m/s for the 3D model is slightly lower
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than that for the 2D model and almost coincides with that pre-
dicted by Brown’s equation eq.(1). It means that the sounding
mechanism of the edge tone for the 3D model is essentially the
same as that for the 2D model, but the 3D model is more realis-
tic than the 2D model so that it well follows the Brown’s equa-
tion. For the 3D model, even when taking slip boundary walls,
eddies may decay more rapidly, which makes the result more
realistic. It is also interesting to study the problem what extent
the frequency changes if the boundary walls are changed, for
example, to solid walls on which v = 0.

Thus, it is concluded that the compressible LES well repro-
duces the edge tone vibrations, but we don’t unfortunately ex-
plain the reason why Brown’s equation is well fit for our results
rather than the equation given by Holger et al..

(a)

(b)

(c)

(d)

Figure 4: Spatial distributions of characteristic dynamical vari-
ables of a stable oscillation at V = 30m/s for 2D model. (a)
Velocity. (b) Pressure. (c) Vorticity. (d) Lighthill’s source.

Spatial distributions of characteristic dynamical vari-
ables

Fig.4 shows spatial distributions of characteristic dynamical
variables at V = 30m/s for the 2D model, i.e., velocity, pres-

(a)

(b)

(c)

(d)

Figure 5: Spatial distributions of characteristic dynamical vari-
ables of a stable oscillation at V = 10m/s for 3D model. (a)
Velocity. (b) Pressure. (c) Vorticity. (d) Lighthill’s source.

sure, vorticity and Lighthill’s source term. As shown in Fig.4
(a), the jet oscillates between the flue aperture and the edge,
collides with the edge and is alternately poured into the upper
and lower parts of the splitter generating eddies almost peri-
odically. The eddies produced go along the splitter gradually
separating from it. As a result, almost anti-symmetric distri-
butions are formed in the upper and lower sides of the splitter,
though the anti-symmetricity becomes ambiguous in a far-side.

The anti-symmetricity is more clearly found in the pressure
distribution in Fig.4(b). At the moment at which the distribu-
tion is detected, the acoustic pressure becomes positive in the
upper side, while it is negative in the lower side. At the center
of the eddy, pressure takes a local minimum value. Thus, local
minima of negative values almost periodically appear forming
a regular pattern in the upper or lower side of the splitter.

Fig.4(c) shows the vorticity distribution. The anti-symmetric
distribution is formed in the upper and lower sides of splitter.
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At the center of the eddy, vorticity take a positive or negative
value depending on its rotational direction. Eddies with a pos-
itive center and ones with a negative center alternately appear
along the splitter in each side, though the acoustic pressure
takes a negative value at the center of each eddy. On the other
hand, the vorticity takes positive and negative values along the
upper and lower parts of the jet, respectively.

The distribution of Lighthill’s source ∂ 2viv j
∂xi∂x j

shown in Fig.4(d)
almost overlaps with the vorticity distribution. However, it al-
ways takes a negative value at the center of each eddy, which
is surrounded by a positive circumference. Lighthill’s distribu-
tion forms an array of sound sources along the splitter in both
upper and lower sides. On the other hand, Lighthill’s distri-
bution makes a different pattern along the jet flow from that
of vorticity. Namely, for a part of the jet wave with a positive
slope, it takes negative values along the upper part, while it has
positive values along the lower part. On the other hand, for an-
other part with a negative slope, the opposite pattern appears:
positive along the upper part and negative along the lower.
Namely, Lighthill’s source lags behind and leads by π/2 in
phase the jet wave in its upper and lower parts, respectively.
Then the different patterns opposite to each other alternately
appear along the wavy jet. Those patterns move toward the
edge with the propagation of the wave of the jet and are broken
due to the collision with the edge.

In Fig.5, spatial distributions of the characteristic dynamical
variables at V = 10m/s for the 3D model are drawn. The char-
acteristic feature of distribution of each dynamical variable in
Fig.5 is very similar to that of the same dynamical variable for
the 2D model drawn in Fig.4. Further, all the distributions of
velocity, pressure, vorticity and Lighthill’s source are almost
the same to those for the 2D model of the same jet velocity
at V = 10m/s, respectively, though they are not drawn. There-
fore, it can be said that the acoustic mechanism of edge tone for
the 3D model is well captured by using the 2D model at least
for the case of slip boundary walls. However, for solid bound-
ary walls on which the velocity is zero, some of the features
might change.

(a)

(b)

Figure 6: Spatial distributions of sound source for 2D model.
(a) −∇2 p. (b) Vortex sound source.

Figure 7: Spatial distribution of Vortex sound source for 3D
model.

(a)

(b)

Figure 8: Sound vibration at point (D) for 2D model. (a)
Acoustic pressure. (b) Power spectrum.

Lighthill’s sound source vs. Howe’s vortex sound source

Fig.6(a) and (b) show spatial distributions of −∇2 p and Howe’s
sound source div(ω × v), respectively. As shown in Fig.6(a),
the spatial distribution of −∇2 p is very similar to that of Lighthill’s
sound source, which is theoretically predicted with comparison
of eq.(10) with Lighthill’s equation in eq.(3) with the approxi-
mations of eqs.(5) and (6). It turns out that Lighthill’s equation
is well approximated by eq.(10) of incompressible fluid in the
turbulence region in which sound is generated, namely sound
source area.

Although we don’t show a result, at a distance from the tur-
bulence region, i.e., acoustic region without sound sources,
−∇2 p well reproduces the wave front of sound, though compo-
nents of higher wave numbers are amplified as −∇2 p ∼ k2 p.
In this regime, the source term of Lighthill’s equation eq.(3)
can be ignored, but the term of second partial derivative of p at
t in LHS must be included, namely propagation of sound wave
is written by the wave equation.

Fig.6 (b) and Fig.7 show distributions of Howe’s sound source
for the 2D and 3D models, respectively. The features of Howe’s
vortex sound source are similar to those of Lighthill’s sound
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(a)

(b)

Figure 9: Sound sources at point (A) for 2D model. (a)
Lighthill. (b) Howe.

source in some points, but are different in other points. As
Lighthill’s sound source, it takes negative values near the cen-
ter of each eddy. However, the positive areas surrounding the
negative centers of eddies for Lighthill’s source distribution
contract to wavy bands for Howe’s source distribution, which
weave through the negative centers as a snake dance. A re-
markable difference between Lighthill’s and Howe’s source
distributions is found in the jet flow. Indeed, Howe’s sound
source takes positive values along the center line of the jet flow,
though it takes negative values along the upper and lower edges
of it. Such a difference comes from dropping the term ∇2v2/2
in Howe’s source term, but it is apparent and is not essential. In
Howe’s formula shown before, the effect of the term ∇2v2/2
is included in the wave equation of the total enthalpy in LHS
of eq.(15) (or eq.(16)). It is important that the term ∇2v2/2 is
in the same order as div(ω × v) in the turbulence, although it
is often assumed that |∇2v2/2| ¿ |div(ω ×v)|. Our numerical
result suggests that that assumption is not true in the turbulence
in which sound is generated.

Correlation among jet oscillation, eddies, sound

In this section, we investigate time evolution of dynamical vari-
ables observed at points (A), (B) and (D) at V = 30m/s for the
2D model and mutual correlations among them. Fig.8 (a) and
(b) show the time evolution of the acoustic pressure observed
at point D and its power spectrum, respectively. The acous-
tic pressure oscillates almost periodically at the frequency of
2929.7Hz, except for an initial transient oscillation in the range
(0 < t < 0.005s). At the point (E), there is observed an oscil-
lation with a similar envelope but in out of phase due to the
antisymmetry.

Fig.9 (a) and (b) show the time evolution of Lighthill’s sound

source ∂ 2viv j
∂xi∂x j

and that of Howe’s vortex sound source div(ω ×
v) at point (A), respectively. Except for the initial transitions,
they oscillate almost periodically with the same frequency as
the acoustic pressure at point (D). However, Lighthill’s sound

(a)

(b)

Figure 10: Sound sources at point (B) for 2D model. (a)
Lighthill. (b) Howe.

source takes much smaller values than those of Howe’s vor-
tex sound source. Discrepancy of the two sources comes from
the term ∇2v2/2, which is lost in the source term but included
in the total enthalpy in Howe’s formula. As shown in previ-
ous sections, Lighthill’s distribution takes almost zero along
the center line of the jet flow, while Howe’s distribution forms
a ridge along it. Therefore the discrepancy is enhanced along
the center line of the jet flow. Amplitudes of both oscillations
shrink momentarily near to t = 0.025s. This is due to the ef-
fect of that sudden vertical blow caused by a complex unsteady
motion of the fluid surrounding the flue and the edge, which
disturbs the jet motion and makes it go to an upside missing
the edge, but it recovers soon and takes a regular oscillation,
again.

Fig.10 (a) and (b) show the time evolution of Lighthill’s sound

source ∂ 2viv j
∂xi∂x j

and that of Howe’s vortex sound source div(ω ×
v) at point (B), respectively. They oscillate almost periodically
with the same frequency as the acoustic pressure at point (D)
except for some regions in which oscillation amplitudes are ex-
tremely small. One of those motions which appears just after
t = 0.025s is of the aftereffect of the sudden blow which dis-
turbs the jet motion near to t = 0.025s. The amplitudes of the
two types of sources are in the same order, but Howe’s vortex
sound source is normally larger in amplitudes than Lighthill’s
sound source. So the contribution of the term ∇2v2/2 is still
not negligible.

Fig.11 shows the correlations among the oscillations of Lighthill’s
sound source at points (A) and (B) and that of the acoustic
pressure at point (D). As shown in Fig.11 (a) and (b), the cor-
relation between Lighthill’s sound source at point (A) and the
acoustic pressure at point (D) oscillates quite regularly at the
same frequency as the acoustic pressure, and so does that be-
tween Lighthill’s sound source at point (B) and the acoustic
pressure at point (D). However, the correlation between the
points (A) and (D) is unstable compared with that between the
points (B) and (D), especially in the latter half, and the for-
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(a)

(b)

(c)

Figure 11: Correlations among dynamical variables observed
at points A, B and D. (a) Lighthill at point (A) .vs. sound pres-
sure at point (D). (b) Lighthill at point (B) .vs. sound pressure
at point (D). (c) Lighthill at point (A) .vs. Lighthill at point (B).

mer has smaller amplitudes in the latter half than the latter. It
means that the eddies behind the edge make dominant contri-
bution to generating the acoustic pressure compared with the
jet flow. However, if the jet velocity is taken at a smaller value,
the correlation between the points (A) and (D) becomes a little
larger in amplitude than that between the points (B) and (D).
Even in that case, the array of the sources caused by the eddies
behind the edge exists, for example see Fig.5(d), and so the to-
tal contribution from the array may be larger than that of the
jet flow.

As shown in Fig.11(c), the correlation of Lighthill’s sound source
between points (A) and (B) rapidly decays and never grows.
Similar decay is also observed for the correlation of Howe’s
vortex sound source as well as that of vorticity between points
(A) and (B). It means that the interaction between the jet flow
and the eddies behind the edge is not so strong. It is usually
consider that the feedback from the eddies behind the edge
is essential to sustain the oscillation of the jet flow(3). Then
it is expected that the interaction between the jet and the ed-
dies is strong enough to make the feedback and so our result
is somewhat questionable and insufficient. We need to answer
the question if such a small interaction is enough to sustain the
jet oscillation or not. We leave this problem for future works.

DISCUSSION AND CONCLUSION

We numerically study 2D and 3D edge tones in terms of aero-
dynamic sound theory with compressible LES. Our main re-
sults are as follows.

First the edge tone is well reproduced by the 2D model as well
as the 3D model. Namely the frequency of acoustic pressure
is proportional to the jet velocity following Brown’s equation.
The 3D model is more realistic, since it almost coincides with
Brown’s equation, though we reported only one example at
V = 10m/s. Ignoring details, the mechanisms of edge tone for
2D and 3D models are almost the same. Thus, the 2D model is
the minimal model for study of the edge tone.

The sound sources are located along the jet flow and in neigh-
borhoods of those eddies behind the edge, which form arrays of
sources over and under the splitter. The distribution of Howe’s
vortex sound source is different in detail from that of Lighthill’s
sound source in the neighborhoods of the eddies, while they are
markedly different from each other in shape and strength near
the jet flow. Indeed, Howe’s vortex sound source takes much
larger values compared with Lighthill’s sound source near the
jet. This comes from the difference of formula: Howe’s vor-
tex sound theory is framed based on the concept that the to-
tal enthalpy instead of pressure or air density is true sound,
so that the source generating fluctuation of the total enthalpy
loses the term ∇2v2/2, though it is included into the nonlinear
wave equation of the total enthalpy. It is found from a more
precise analysis that the vortex sound source div(ω ×v) takes
almost opposite values to the term ∇2v2/2 along the jet. So the
little remainder, namely the sum of div(ω × v) and ∇2v2/2,
contributes to Lighthill’s sound source. Elucidating the mech-
anism of making such a difference between the two type of
sound sources and explaining the physical meanings of it are
postponed for future works.

From the analysis of correlation functions among the two types
of sound sources, i.e., Lighthill’s and Howe’s sources, and acous-
tic pressure, we expect that the arrays of eddies behind the edge
make dominant contribution as the sound source rather than the
jet flow, though the contribution of the jet flow may relatively
increase with decrease of the jet velocity. The arrays of sound
sources may make directional sound fields in a far field, while
the sound field emanating from the jet might not show a strong
directionality. Then observations of far field sounds may reflect
which part, the arrays of eddies or the jet flow, dominantly con-
tributes to the sound generation.

For air-reed instruments, it is considered that the jet contribu-
tion, so-called volume flow mechanism, often dominates the
contribution of eddies, i.e., the momentum drive mechanism,
especially in a low range of the jet velocity(8, 11). As shown
in ref.(8), the arrays of eddies mostly disappear for air-reed
instruments due to the operation of strong sound field created
by the resonance of a pipe, especially inside the pipe. Actu-
ally, only a few eddies rolled up exist in a vicinity of the open
mouth inside the pipe and the other part of the pipe is occupied
by the strong sound field, so that the momentum drive caused
by those eddies makes relatively small contribution. Therefore,
it is important to clarify the difference in sound generation be-
tween the pure edge tone and air-reed instruments.

Related to this problem, it is also important to study the feed-
back mechanism which sustains the oscillation of the jet. It
should be different between the pure edge tone and air-reed
instruments: the motion of eddies behind the edge may plays
the key role for making the feedback for the edge tone, but the
strong sound field in the pipe dominantly controls the motion
of the jet for air-reed instruments. To do this, more comprehen-
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sive investigation using analytical, numerical and experimental
methods is required.
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