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ABSTRACT 

Waves propagating in left-handed materials have unusual properties such as phase and group velocities of opposite 
signs and negative refraction index. Periodic lattices have been shown to exhibit such properties both for electromag-
netic (photonic crystals) and in-fluid acoustic (phononic crystals) waves. This work addresses the question of the ex-
istence of left handed elastic waves in phononic crystals. Two-dimensional phononic crystals made of square lattices 
of cylindrical cavities or inclusions in a solid matrix are considered. Dispersion curves are computed using plane 
wave expansion method for real wave vectors in the Brillouin zone and finite element method for complex 
wavenumbers along a specific propagation direction. From these results, the existence and symmetry of the left-
handed propagation mode in the phononic crystal is discussed and its relationship with lattice geometry and constitu-
tive materials is analyzed. 

INTRODUCTION 

Electromagnetic, acoustic and elastic left-handed 
materials 

Ideal Left-Handed (LH) materials were first theoretically 
studied by Veselago [1] in the frame of electromagnetism. 
LH materials have real speed of light c together with negative 
dielectric permittivity ε and negative magnetic µ. For a 
monochromatic plane electromagnetic wave in which all 
quantities are proportional to ej(kz-ωt), where ω is the circular 
frequency, t the time, ck ω=  the wave number and z the 
space coordinate, Maxwell's equations are written 

( )HcEk
rrr

ωµ=×  , (1) 

( )EcHk
rrr

ωε−=×  , (2) 

where k
r

 is the wave vector, E
r

 is the electric field and H
r

 
the magnetic field. From equations (1) and (2), it can be veri-

fied that k
r

, E
r

 and H
r

 form a left-handed triplet when ε and 
µ are negative and a right handed triplet when ε and µ are 
positive. Electromagnetic Poynting vector P

r
, which is asso-

ciated to energy flux, is defined as 

HEP
rrr

×=  . (3) 

and therefore P
r

, E
r

 and H
r

 always form a right-handed trip-
let. It appears then that P

r
 and k

r
 are colinear and of opposite 

signs for an harmonic monochromatic plane wave propagat-
ing in a LH material. 

For monochromatic plane acoustic waves propagating in a 
linear ideal homogeneous isotropic fluid, Euler's equation is 
written as 

( )vkp f
rr

ωρ=  , (4) 

where p is the acoustic pressure, v
r  the particle velocity and 

ρf the fluid density at rest. The dot product of each term of 
equation (4) and v

r  gives 

( ) 2
. vkvp f

rrr
ωρ=  . (5) 

From equation (5), the wave vector k
r

 and the intensity vec-
tor vpI

rr
=  are colinear and of opposite signs when ρf is 

negative. In that case, the adiabatic compressibility χS is also 
negative in order to have a real speed of sound 

Sffc χρ1=  [2]. 

The case of a monochromatic shear or longitudinal plane 
elastic wave propagating in a linear elastic isotropic medium 
is finally considered. Particle motion is governed by New-
ton's law  

( )vkT s
rr

ωρ−=.  , (6) 



23-27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010 

2 ICA 2010 

where T  is the stress tensor and ρs the solid density. Equa-
tion (6) is transformed by performing the dot product of each 

term and v
r  and by using the symmetry of T  to give 

( ) ( ) 2
.. vvTk s

rrr
ωρ=−  . (7) 

In that case, the wave vector k
r

 and the elastodynamic 

Poynting vector vTP
rr

.−=  are colinear and of opposite signs 
when ρs is negative. In addition, longitudinal (resp. shear) 
wave velocity must be real in order to have propagating plane 
longitudinal (resp. shear) waves. In an isotropic medium, this 
implies to have negative elastic moduli for the corresponding 
waves i.e. 

( )
( )( ) 0

211
1 <

−+
−=

νν
νEM  , (8) 

for longitudinal waves and  

( ) 0
12

<
+

=
ν

EG  , (9) 

for shear waves, E being Young's modulus and ν Poisson's 
ratio. Thus, different zones can be defined in the (E,ν) space 
of a virtual elastic material in order to describe the existence 
of propagating longitudinal and shear waves together or sepa-
rately (Fig. 1). 
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Figure 1. Domains of existence of longitudinal and shear 

propagating waves in a left-handed elastic material,  
considering a negative density ρs 

 

Acoustic meta-materials versus phononic crystals 

LH materials are usually artificial materials which are de-
signed and fabricated in order to exhibit specific properties. 
Two main concepts are considered: meta-materials and pho-
nonic crystals. 

It is known that resonators such as a simple spring-mass sys-
tem can be seen, just above resonance, as a spring having an 
effective negative stiffness. Thus, effective negative proper-
ties could be obtained in a reduced frequency range by in-
cluding adequate local resonators in a bulk material [2]. 
Properties of these locally resonant materials also called 
meta-materials result from steady-state of a resonant system 
with two important consequences: 1) a local effect is used in 
order to define effective materials properties. Consequently, 
the size of the resonators and the distance between resonators 
have to be small compared to wavelength to enable material 

homogeneization; 2) the material needs a certain amount of 
time, related to quality factor of the resonators, to build up 
the resonance and display the effective properties of a left-
handed material. 

LH properties can also be obtained by using multiple diffrac-
tions and reflections of wave propagating in a periodic mate-
rial [3]. This is the well-known concepts of Phononic Crys-
tals (PC) for acoustic waves. The fact that effective properties 
are obtained in steady-state after multiple reflections and 
diffractions in a crystal of high symmetry has two main con-
sequences. 1) the medium cannot be represented by local 
properties and LH character must be described by wave 
properties (phase propagation, flux of energy) ; 2) a certain 
amount of time is also needed in that case to display required 
wave properties. 

Content of the paper 

The work presented in this paper focuses on the evaluation of 
LH properties of elastic phononic crystals. LH character is 
therefore associated to prop agation mode and not to local 
effective properties of a medium. Identification of LH 
properties is performed from wave propagation dispersion 
curves in the PC which are computed by using Plane Wave 
Expansion (PWE) method [4] or Finite Element Method 
(FEM) [5]. Results are presented for two different 2D elastic 
phononic crystal constituted by a solid matrix with 
cylindrical cavities or hard cylindrical inclusions. Main 
question addressed by the paper concern the symmetry of the 
LH propagation mode in the PC and its relation with lattice 
geometry and materials.  

LEFT-HANDED ELASTIC WAVES IN A SOLID 
PHONONIC CRYSTAL WITH CAVITIES 

Geometry of the phononic crystal and dispersion 
curves 

The 2D phononic crystal considered in this section is a square 
lattice of air-filled cylindrical cavities in aluminum matrix [4, 
6]. The density of aluminum is ρa = 2808 kgm-3 and the lon-
gitudinal and shear velocities are respectively  
VLa = 6337 m.s-1 and VTa = 3130 m.s-1. Distance between axes 
of two adjacent holes is a = 3.9 mm and hole diameter is 
d = 3.2 mm. 

Dispersion curves of elastic waves are presented in the first 
Brillouin zone, on the ΓXM path in terms of frequency ver-
sus wavevector (Fig. 2a). The band structure displays an 
isolated branch corresponding to a LH propagation mode 
with phase velocity opposite to group velocity in the 
[470kHz, 530kHz] frequency range. A predominantly shear 
behavior is identified for this propagation mode by studying 
the transmission of incident longitudinal and shear waves 
through a CP of finite thickness at normal incidence [4]. No 
LH mode with predominantly longitudinal behavior is ob-
served on the dispersion curve contrary to the usual result 
obtained for acoustic waves propagating in lattice of rigid 
cavities [3, 7]. 

For further analysis, dispersion curves are drawn (only along 
ΓX) in complex wave number space in order to describe eva-
nescent wave solutions (Fig. 2b). Displacement fields associ-
ated to different branchpoints at Γ or X are displayed in Fig-
ures 3 and 4. Two families of solutions can be distinguished 
according to the symmetry or antisymmetry of the displace-
ment field with respect to the wavenumber axis. At CP 
boundary and at normal incidence, symmetrical modes will 
naturally couple to longitudinal waves and antisymmetrical 
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modes to shear modes. Branches corresponding to each type 
of symmetry are analyzed in more details hereafter. 

Antisymmetrical propagation modes 

Antisymmetrical propagation modes (the lowest branch and 
its multiple foldings) are constituted by branches with alter-
natively Right-Handed (RH) and LH properties connected at 
points Γ and X by small loops in the complex plane (i.e. cor-
responding to small imaginary parts for complex wavenum-
ber). Γ1 corresponds to a rigid motion of the whole lattice 
perpendicular to propagation direction. It can be seen as the 
limiting case of a pure shear wave when wavenumber tends 
to zero. Modes denoted by Γ3 and Γ4 correspond to anti-
symmetrical resonances of the matrix around the cavity of 
order 4 and 3 (resonance of order n is associated to a dis-
placement close to cos(nθ) at cavity surface). These reso-
nances result from the coupling of isolated resonances via the 
lattice. They correspond to cases for which all cavities (in 
directions parallel and perpendicular to wave propagation) 
vibrate in phase. Finally, Γ6 is an harmonic resonance which 
corresponds to order 2 cavity resonance mixed with wave-
length vibration of the unit cell perpendicularly to propaga-
tion direction. It exhibits a cut-off frequency (connection to a 
purely imaginary branch starting at zero frequency). Simi-
larly, at X, modes denoted by X1, X2 , and X5 correspond to 
antisymmetrical resonances of the matrix around the cavity of 
order 2, 3 and 5. In that case, vibrations are in phase for cavi-
ties belonging to the same row (perpendicular to progagation 
direction) and out of phase for cavities of successive rows. 
RH mode branches on real axis are Γ1X1 and Γ4X5. Several 
branches (X1X2, Γ3Γ4 and X4X5) take place in the complex 
plane and connect resonance modes having the same phase 
distribution (successive rows both in phase or out of phase) 
along propagation direction. Finally, X2Γ3 is a branch corre-
sponding to a LH propagation mode. Along this branch, dis-
placement field progressively transforms from third order 
into fourth order cavity resonance. 

Symmetrical propagation modes 

Symmetrical propagation modes display only RH properties 
for this CP. Two branchpoints are found at Γ: Γ2 corresponds 
to rigid motion of the whole lattice parallel to propagation 
direction which can be seen as the limiting case of a pure 
longitudinal wave when wavenumber tends to zero ; Γ5 is 
associated to a third order cavity resonance. Its displacement 
field is identical to Γ4 displacement field if a rotation of -π/2 
is applied to propagation direction. Both modes have there-
fore same resonance frequency at zero wavenumber. At X, 
symmetrical modes at X3 and X4 are associated respectively 
to second and fourth order cavity resonances. Identification 
of resonance order associated to X6 is difficult: strong inter-
cellular coupling generates complicated cavity surface dis-
placement field which cannot be reduced to cos(nθ) . RH 
mode branches on real axis are Γ2X3 and Γ5X4. No LH 
mode branch is found. Finally, two different types of  
branches are observed in the complex plane: X4X6 loop con-
nects at constant real part two branchpoint in X as observed 
for antisymmetrical modes; X3Γ5 is a more complicated 
complex branch that relates branchpoints in Γ and X through 
a path having very large imaginary part. This last branch 
which could be due to the fact that Γ5 mode has a lower 
resonance frequency than X4 mode, leading to the configura-
tion [complex branch X3Γ5 followed by RH real branch 
Γ5X4] instead of [complex branch X3X4 followed by LH 
real branch X4Γ5] 
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Figure 2. 2D phononic crystal constituted by a square lattice 
of air-filled cylindrical cavities in an aluminum matrix. (a) 

dispersion curves along ΓXM path for real wavevectors ; (b) 
dispersion curves along ΓX path for complex wavenumbers 
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Figure 3. 2D phononic crystal constituted by a square lattice 

of air-filled cylindrical cavities in an aluminum matrix.  
Displacement fields of antisymmetrical modes at different 

branchpoints of dispersion curves 
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Figure 4. 2D phononic crystal constituted by a square lattice 

of air-filled cylindrical cavities in an aluminum matrix.  
Displacement fields of symmetrical modes at different 

branchpoints of dispersion curves 

LEFT-HANDED ELASTIC WAVES IN 
PHONONIC CRYSTALS WITH HARD 
INCLUSIONS 

Geometry of the phononic crystal and dispersion 
curves 

The 2D phononic crystal considered in this section is a square 
lattice of steel cylinders in a nylon matrix. Physical properties 
are ρs = 7800 kg.m-3, longitudinal velocity VLs = 6181 m.s-1 
and shear velocity VTs = 3244 m.s-1 for steel,  
ρn = 1152 kg.m-3, longitudinal velocity VLn = 2454 m.s-1 and 
shear velocity VTn = 1085 m.s-1 for nylon. Distance between 
axes of two adjacent steel cylinders is a = 2.5 mm and cylin-
der diameter is d = 1.545 mm. 

Fig. 5 displays the dispersion curves of elastic waves on the 
ΓXM path in terms of frequency versus real wave vector 
(Fig. 5a) and on ΓX path in terms of frequency versus com-
plex wave number (Fig. 5b). The band structure displays a 
branch corresponding to a LH propagation mode in the 
[650kHz, 810kHz] frequency range. Displacement fields 
associated to different branchpoints at Γ or X are displayed in 
Figures 6 and 7 for antisymmetrical and symmetrical propa-
gation modes respectively.  

Antisymmetrical propagation modes 

Antisymmetrical propagation modes have a more compli-
cated band structure than in the previous case. The lowest 
branches on real axis Γ1X1 and X2Γ3 display usual RH and 
LH properties respectively. Successive rows (along propaga-
tion direction) vibrate in phase at Γ and out of phase at X. Γ1 
and X1 are associated to lateral motion of the steel cylinder 
while Γ3 and X2 correspond to rotational motion of the steel 
cylinder. Higher branches Γ4X4 and X7Γ6 are almost flat. 
Related displacement fields at Γ4, X4, X7 and Γ6 involve 
mainly shear strain of the nylon matrix with limited motion 
of the steel cylinder. Two branches (X1X2 and X4X7) take 
place in the complex plane and connect resonance modes 
having out of phase vibration of successive rows along 
propagation direction. Γ3 mode has unusual cut-off fre-
quency behaviour as point of maximum frequency, denoted 
M, is not located on real axis. Imaginary branch connected to 

Γ4 moves toward high imaginary part and high frequency 
and is difficult to interpret. 
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Figure 5. 2D phononic crystal constituted by a square lattice 
of steel cylinders in a nylon matrix. (a) dispersion curves 
along ΓXM path for real wavenumbers ; (b) dispersion 
curves along ΓX path for complex wavenumbers 
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Figure 6. 2D phononic crystal constituted by a square lattice 
of steel cylinders in a nylon matrix. Displacement fields of 
antisymmetrical modes at different branchpoints of disper-

sion curves 
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Symmetrical propagation modes 

Three different branches are found for symmetrical propaga-
tion modes. The first two branches, Γ2X3 and Γ5X5, display 
usual RH properties. Γ2 and X3 are associated to longitudinal 
motion of the steel cylinder while Γ5 and X5 involve shear 
strain (sy mmetrical with respect to propagation direction) of 
nylon matrix with limited motion of the steel cylinder. The 
third branch X6Γ7 corresponds to a LH propagation mode. 
The associated displacement at Γ7 involves a shear strain of 
the nylon matrix (symmetrical with respect to propagation 
direction) similar to Γ5 mode, mixed with compressional 
strain along propagation direction. A very small branch be-
tween X5 and X6 in the complex plane connect resonance 
modes having out of phase vibration of successive rows 
along propagation direction. Γ5 mode has a cut-off frequency 
shown by the purely imaginary branch starting at zero fre-
quency. Imaginary branch connected to X3 moves toward 
high imaginary and high frequency and is difficult to inter-
pret. 
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Figure 7. 2D phononic crystal constituted by a square lattice 
of steel cylinders in a nylon matrix. Displacement fields of 

symmetrical modes at different branchpoints  
of dispersion curves 

 

CONCLUSION 

No general rule can be identified to state the existence of 
symmetrical or antisymmetrical left-handed branches in the 
band structure from the analysis of the two phononic crystals 
presented in this work. The representation of dispersion 
curves in the complex wave number domain gives useful 
information on the connection between propagation mode 
branches. It opens up the possibility of a more progressive 
method based on unit cell resonance analysis (isolated and in 
interaction) which could improve our understanding of the 
relationship between existence of left-handed branches and 
phononic crystal geometry and constitutive materials. 
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