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ABSTRACT

Most models that predict the effect of aircraftagoon sleep relate the percent awakened to thermdise level of
the event as measured using eithgg, or SEL(A). However, results from laboratory and field studiedicate that
nighttime noise events do not only increase thebmrmof awakenings but also changes an individisi#sp struc-
ture. The duration of awakenings increases witisentevel and there is a reduction in slow wave eapd eye
movement sleep. These changes may cause nexffdelg such as decreased performance and increesaness

as well as long-term health problems such as hgpsidn.

Therefore, in order to predict the efféwtt noise-

induced sleep disturbance has on health more saettési models of sleep disturbance may be neelfedkov and
nonlinear dynamic models have been developed wigirehanges in sleep structure during the nighe Monlinear
dynamic models predict non-noise disturbed sle&pliscussion of whether these nonlinear modelsctbel be used

to predict sleep disturbance due to aircraft nsggovided.

INTRODUCTION

One of the effects of aircraft noise on a commuistit can
cause sleep disturbance. Results from laboratodyfiaid
studies indicate that nighttime aircraft noise wiltrease the
number and duration of awakenings. It can incréasdime
until sleep onset and the time until slow wave fsleecurs.
Nighttime aircraft noise can also decrease the amat
rapid eye movement (REM) and slow wave sleep (st&8ges
and 4), (Griefahn, Robens, Bréde and Basner, 2008).

Models have been developed to predict the effecafe on
sleep. Most of these models predict the percettteopopula-
tion awakened by individual events of a specifitsadevel
(e.g. Basnert al. 2004; FICAN, 1997; Finegold and Elias,
2002). However, changes in the structure of sheay also
have health and welfare consequences.

Sleep disturbance may lead to short term healdécesffsuch
as decreased performance and increased sleepirteésB w
may be related to not only the number of awakenimgts
changes in sleep structure. Wilkinson and Camti8i84)
and Marks and Griefahn (2005) for example both éban
association between the amount of slow wave sladmaxt
day performance. Also sleep disturbance may leddrtg-
term health effects such as hypertension. Studiesian-
noise disturbed sleep have found an associatioweeet
elevated nighttime blood pressure (“non-dipping” ldéod
pressure) and the number of arousals as well adutaion
of slow wave sleep (Loredo, Nelesen, Ancoli-Israeld
Dimsdale, 2004).

Several models have been developed to predict dimidn

ual's sleep structure. Basner (2006) developed skdwa
model to predict the effect of aircraft noise oaed. Also
several nonlinear dynamic models have been dewelope
describe sleep regulation. One nonlinear modetldged by
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Massaquoi and McCarley (1992) can be used to prédiet
spent in REM, NREM (Non-REM) and Wake. This model is
being examined to determine whether it predictsabiein
similar to Basner’'s model as well as obtained sudeg. A
discussion of whether this model could be altecegredict
noise-induced sleep disturbance will also follow.

SLEEP STRUCTURE MODELS

Two sleep structure models, a Markov model andrdimear
dynamic model will be described.

Markov Model

Basner (2006) has developed a Markov model to piréiokc
effect of aircraft noise on sleep structure. Troael is based
on data from a laboratory study conducted at them@e
Aerospace Center. This Markov model can be usqudo
dict the sleep stages an individual is in during thght. In
the model the probability of transitioning from ostge to
another depends on the current sleep stage arduodlvs in,
the time since sleep onset, and whether an airekadt is
occurring.

There are four models used to calculate the tiansfirob-
abilities: there is one baseline model which isduaéien an
aircraft event is not occurring and 3 noise modéie found
that aircraft noise affects the transition proktibgd for 3
epochs (30 second segments) of sleep. There isnoaiel
that applies when an aircraft event is startingytlaer for
when it is flying over, and another when the evisnjust
ending.

Nonlinear Dynamic Models

The model developed by Basner was the only modeidou
that predicts the effect of noise on sleep strecthowever,
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there have been other models developed to predichnise
disturbed sleep patterns. These include other dankodels
(e.g. Yang and Hursch, 1973; Zung, Naylor, Giarduaad
Wilson, 1965) as well as nonlinear dynamic sleepl@im
One advantage of the nonlinear dynamic models hbhat
been developed is that one can argue that theymare
physically-based models. One of the most compreébens
nonlinear dynamic models that was found was the eihod
developed by Massaquoi and McCarley (1992). Thideho
is a combination of two earlier models that wergetieped:
the extended Two-Process Model (Achermann and Borbé
1990) and the REM Limit Cycle Reciprocal Interaction
Model (McCarley and Massaquoi, 1986).

The component based on the Two-Process model has tw
terms. One term is ProceSsvhich can be thought of as an
individual's need for sleep which increases wherinalivid-

ual is awake and decreases during the night. Gbat®n for
Processis,

S=—-gcSWA+rs(1-25). L)

The second term is for slow wave activiffA), which is
the power in an EEG signal between 0.5 and 4.5 Biow
wave activity decreases during the night due toc&ssS
Also the level ofSWA increases during deep sleep and de-
creases during REM and lighter sleep. These utradscil-
lations in slow wave activity are controlled by tREM
component of the model. The equation for slow wast-

ity is,

SWA =rc SWA (1 —SWA/SWApq,) + SWAnN, (2)
where

SWApax = max (S (1 —.95 min(X* + E/2,1)),.05). (3)

In Equation (2)n is uniformly distributed noiseThe REM
sleep model is a limit cycle model of the interactihat has

been found between the firing of REM sleep promotirg-
rons (K) and REM sleep inhibiting neuron¥)(

X =aX) S;(X)X — b(X)XY, (4)
and
Y = —cY + dgir e S;(Y)(X + E)Y. (5)

Both of these equations can also be written in dinef

X+rX=0, (6)
¥1=bX)Y — a(X)S;(X), ™
and

Y+y,Y =0, (8)
Y2 = ¢ = deircS2 (V)X + E). ©

The solution for slow changes-inandy, is approximately

X =e Mt (20)
and
Y = eV, (12)

In Equation (5) dg is a sinusoidal term with a period of 24
hours and the tern&X), b(X), S;(X) andS,(Y) are saturation
functions, as shown in Figure 1.
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Figure 1. Saturation and coefficient functions. éX), (b)

b(X), (¢) Su(X) and (d)S(Y).

The excitatory ternkt will lead to the prediction of awaken-
ings when using the model. The equationHas,

E+KkE=N. (12)

E is a low pass filtered version of a Poisson shadenproc-
ess N). The cut-off frequency of the filter lsand the gain
is 1k. Therefore the amplitude and the rate of the sise
decay of the noise are not controlled independeffitig am-
plitude and duration of the Poisson shot noidg gre uni-
formly distributed. The arrival time between puslsg expo-
nentially distributed. The terr& will decrease the level of
the slow wave activity and will increase the leg€l (REM-
OFF) activity. The excitations will, in generalateéto longer
periods of NREM sleep and can lead to shortened R&fA p
ods. The baseline parameters of the model agsllist Table
1.

Table 1. Baseline model parameters (Massaquoi and McCar-
ley, 1992) (1 unit in the model is equal to 10. hutes).

Model Parameters Baseline Values
1
gc 0.05
k 10
N Amplitude: Uniformly distributed

between 1.25 and 25

Duration: Uniformly distributed be-
tween 0.25 and 0.5

Inter-arrival Time: Exponentially
distributed with mean of 1.1

n Uniformly distributed between -10
and 10
rc 3.0
rs 0.005
E, 0.001
Xo 0.12
Yo 0.35
S 2.0
SWA, 0.1

From the outputs of the nonlinear dynamic modes, time
an individual spends in three sleep states: REM, NRiEb
wake, can be predicted. The stage an individuat is de-
termined based on thresholds. When the leve{ attivity
(REM-ON) is above 1.4 an individual is considered®in
REM sleep, when the level & is above 0.5 and the level of
SWA is below 0.1 an individual is considered to be lava
For all other situations an individual is considete be in
NREM sleep. An example of an output of the modehwi
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corresponding sleep stages derived using thesg isufghown
in Figure 2.
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Figure2. (a) REM-ON (green) and REM-OFF (blue) activi-
ty, (b) ProcessS (green) and slow wave activity (blue), (c)
excitatory activity and (d) sleep stages. Threshddd deter-
mining sleep stages are shown as red dashed lines.

MODEL COMPARISON

It was of interest to determine whether the outgduhe non-
linear dynamic model was similar to that of Basnegseline
Markov model. A comparison was made between thbagro
bilities of being in NREM, REM and Wake through thight.
To compare the two models 100 simulations usingnthrdi-
near dynamic model were performed and the proligsili
calculated from the simulated datasets. The resnét shown
in Figure 3.
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Figure 3. Probability of being in Wake, REM and NREM
sleep during the night predicted by using Basneasebne
Markov model (red) and Massaquoi and McCarley’s menl
ear dynamic model with the original model paransetbitue)
and with a 40% increase in the valuecafi Equation (5xand
the amplitude oN (green).

The Massaquoi and McCarley model does predict aenhigh
probability of being in NREM sleep and a lower proitity
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of being in REM sleep and wake than Basner's model.
obtain a better match between models a parametitioa
study was conducted to determine how altering ttoeleh
parameters would change the predicted duration df1,RE
NREM and Wake. From completing this analysis it was
found that the parameterin Equation (5had a large effect
onthe duration of REM sleep. An increasecofill lead to a
faster rate of decay of (REM-OFF) activity and therefore
more time will be spent in REM sleep during the higfihe
parameters of the Poisson noiéean be changed to increase
the probability of awakening. Increasing the dumator am-
plitude or decreasing the inter-arrival time wilsolt in an
increase in awakenings. For the result shown gurei 3 the
amplitude ofN and value ot was increased by 40% to ob-
tain better agreement with Basner’s model.

Another difference between Basner's Markov model ted
results obtained from the nonlinear dynamic model the
oscillations in the predicted probability of beiimgREM and
NREM sleep. Oscillations in the probabilities canseen in
Basner’s original data (Basner, 2006). The valuestte
probability of being in REM sleep were extractednir@
figure in his report and are shown in Figure 4@3cillations
were also apparent in the data from the laboratturgly con-
ducted by Flindelkt al. (2000). Plotted in Figure 4 are the
probabilities of being in Wake, NREM, and REM calt¢eth
for every 5 minutes using the baseline data frosalgects in
the laboratory study. The results from Flindgtllal.’s study
follow the trends predicted by Basner's Markov masbatept
for the probability of awakening, which is usualbwer in
the Flindellet al. study. However, this comparison was con-
ducted using only 9 nights of data.
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Figure 4. Probability of being in Wake, REM and NREM
sleep during the night predicted using Basner’s lbase
Markov model (red) and (a,b,c) the probabilitybafing in
each sleep stage based on baseline data from Flatc.’'s
laboratory study and (d) Basner’s laboratory stuaktracted
from Basner, 2006, Figure 9.18)

CHALLENGES WITH MODEL

While there seems to be general agreement betweekels
and sleep data, there are several challenges iy ladile to
use this model to predict the effect of noise @egl Most
importantly in the Massaquoi and McCarley model, leawa
ings or arousals will not occur during a REM sleepiqd.
For example, an individual could never have théofuihg
three sleep stages in consecutive epochs: REM-Waké-RE
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However, this type of behaviour can occur and remnhob-
served in sleep data from the study conducted mdéll et
al. An example is shown in Figure 5 where periodstafies
1 and wake are present during the last REM cycle.

Wake ' ' ]

REM .

Stage 1 .
Stage 2| Last REM

Stage 3¢ Cycle |

Stage 4 C 1 1 1 1 |
0 100 200 300 400

Time {min)

Figure5. An example of a sleep hypnogram with brief
awakenings and sleep stage changes during REM sleep.

The behaviour shown in Figure 5 cannot be predidied
Massaquoi and McCarley’'s model because Ehexcitatory
term does not affect (REM-ON) activity to any significant
degree. The excitatory term will increa¥e(REM-OFF)
activity, however, during REM-sleep when the levEXois
greater than 1.4, the value ¥fis low and therefore it has
little effect on the behavior of.

From the work of Basner and Samel (2005) and Gnefah
Marks and Robens (2006) exposure to aircraft noikdew
asleep results in an increase in the number of emiags as
well as reduced slow wave sleep and REM sleep. Baditey
to control fast REM-Wake oscillations as well ag fdREM-
Wake oscillations is a key component in the devalept of
these nonlinear sleep models. While the exampiethé
following section are an attempt to introduce teildations
in simulations of non-noise disturbed sleep, aneustdnding
of how to do this will help in determining how toontel the
impact of noise on sleep.

POTENTIAL CHANGES TO THE MODEL

One possibility for increasing the effect Bfon REM-sleep,
is to add a tern into Equation (4) of the form,

X =a(X) S;(X)X — b(X)XY — f(X)EX, (13)

In Equation (13) the functiof(X) is a saturation function
which reduces the effect &fon the level o)X whenX s low,
below 1.4. Therefor& would only have an effect cxwhen
the level is above the threshold for scoring stagd. The
saturation function that was used is shown in Fger If
there wasn'’t a saturation function the levelXo€ould con-
tinuously decay due t& and no ultradian oscillations in the
obtained results would occur.

X

Figure 6. Saturation functiof(x) used in Equation (13).

An example of the results typically obtained frame tmodel
when this excitation term is added is shown in Fegu. In
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Figure 7(a) the oscillations at points A and B areatcome
of this change in the equations. These oscillatiarX result
in the prediction of changes in sleep stage duanBEM
sleep cycle which is shown in Figure 7(d).
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Figure 7. (a) REM-ON (green) and REM-OFF (blue) activi-
ty, (b) ProcessS (green) and slow wave activity (blue), (c)
excitatory activity and (d) sleep stages when acit&on
term is added to the equation Xr

The addition ofE to Equation (4) however, still does not
cause the changes that are desired on a short lerivng
scale. To have activity on a shorter time scaleetjeation
for E would need to be changed. First the value of kldo
need to be increased as the cut-off frequencynietly set
to 10 which is approximately 1.6 cycles per umnitdior per
10.7 minutes. Also the higher the cut-off frequeinf the
low pass filter the lower the amplitude of the ¢éxiion, be-
cause the gain in Equation (12)1ik. The equation would
need to be changed so that the amplitude and tutesf
quency are independent. One simple change thad dmu
made is to alter Equation (12) so it is of the fprm

E + kE = kAN, (14)
where A is an arbitrary amplitude.

The other difficulty in obtaining faster transiemttivity in

the model is the decay and rise of terms when senevent
occurs which are controlled by andy,. The increase in
level of Y is dependent on the level of the excitation. The
greater the level of the faster the rise of. However, the
decay ofY is not largely dependent on the excitation. To
increase the rate of the decay the value wbuld need to be
increased. This, however, would shift when REM slead
NREM sleep occur. An example of the results for tatues

of ¢, 1 and 1.4, is shown in Figure 8. To clearly demmatst
the effect ofc on the results each excitation was set at the
same height and duration and with the events evgrdyged
through time. The higher the value @fin general the more
REM cycles in the model, for this example there fangr
complete REM cycles whenis equal to the original value of

1 and there are 5 complete cycles whénincreased by 40%
tol4.
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Figure8. REM-ON (green) and REM-OFF (blue) activity,
(a) cis equal to 1, (b¥ increased by 40% and equal to 1.4
and (c) the excitatory term used for both simulsgio

Another method for introducing noise into the moigelo
include a Gaussian distributed white noise ternig the
equation forX,

X =a(X) S;(X)X — b(X)XY + nX, (15)

The noise is multiplied by, without this multiplication the
level of X can become negative. The results for four different
amplitudes of noise, Gaussian noise with a standevéhtion

of 5, 10, 20 and 40 are shown in Figure 9. WHmendtan-
dard deviation of the noise is increased, largeillations did
occur. However, adding Gaussian distributed whibése
does not provide a lot of control over the frequeand depth

of oscillations.
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Figure 9. Results of REM-ONX) for different amounts of
noise, (ap =5, (b)o=10, (c)o=20 and (dp=40.

Another possibility would be to add band-passedeaar a
sinusoidal term to the model instead of Gaussiatriduted
white noise. This would also be addedhas Equation (15).
An example of results obtained using both methods a
shown in Figure 10. This does introduce oscillaiam the
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time scale that we are interested in but this megumuch
further exploration.
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Figure 10. Results of REM-ONX) with (a) added sinusoidal
noise term with frequency of 4 oscillations per aten and
amplitude of 40. (b) added noise which was bandqrhs
between frequencies of 1 and 4 oscillations peruteirwith
an amplitude of 50.

CONCLUDING COMMENTS

The baseline model developed by Massaquoi and MegZarl
predicts similar results in terms of the probapitf being in
NREM, REM and Wake stages as Basner’'s baseline model.
However, the limitation of the model for predictimpise-
induced sleep disturbance is that it is difficuttr ffaster
changes in the terms to occur. For the modeledipt short
arousals in sleep additional noise or excitatioilshave to
be added. Results of initial investigations showat tlurther
work is needed to tailor the form those excitatiah®uld
take. It would also be desirable to have physiatibnale
supporting the introduction of such terms which ldoalso
require additions to the model to produce predigtighat
have the required “noise” characteristics.
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