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ABSTRACT

A link between graph theory and statistical energy analysis (SEA) has been recently established. This allows resorting
to the former to solve many issues related to energy transmission paths in SEA models. In this work, we benefit from
this connection to implement an algorithm for ranking the set of K maximum energy transmission paths from a source
subsystem to a target subsystem, in a SEA model. Problems arising if the stochastic nature of loss factors was to be
incorporated in the computation of paths are also outlined. The algorithm can prove very useful for the noise control
engineer. For instance, knowing whether energy transmission between sources and targets in a SEA system is drawn
by a limited set of paths or not, can be helpful to determine noise control treatments. Moreover, it is at the core of the
existence of transmission loss regulations between dwellings.

INTRODUCTION TO SEA GRAPHS

Traditionally, a statistical energy analysis (SEA) model of a
physical system has been represented by means of a set of
boxes standing for subsystems, which are linked by arrows
accounting for power interchange. Additional arrows are used
to represent external power input and subsystem internal dis-
sipated power [1]. For the example in Figure 1a, which shows
a given configuration of connected plates, the corresponding
SEA model would look like the block diagram in Figure1b.

On the other hand, a graph consists of a pair G = (U ,E ) with
U = {u1,u2, . . . ,uN} standing for the set of nodes and E for
the set of edges

(
ui,u j

)
∈ E ⊂U ×U . We consider ordered

edges
(
ui,u j

)
6=
(
u j,ui

)
in which case G is known as a directed

graph or digraph. A graph can be weighted or labelled with
a path algebra [2], which basically consists in assigning a
given number or symbol wi j to each edge

(
ui,u j

)
and defining

two sets of binary operations between them. Having a look
at the plate model in Figure 1a, one may think of assigning
a weighted graph to it that it could look somewhat as that in
Figure 2. Comparison of the SEA block diagram in Figure 1b
with the graph in Figure 2b naturally accounts for the following
questions:

• Is it possible to define a SEA graph? Which weights
should be assigned to it?

• If this was the case, could SEA graphs be useful for
noise control engineering purposes? That is to say, is it
possible to benefit from developments in graph theory
to help the acoustic engineer?

In [3] a positive answer was given to these questions. It was
shown that a natural and convenient way to build a SEA graph
was by identifying its adjacency matrix with the generating
matrix of the SEA system series solution. We remind that the
weighted adjacency matrix of a graph has entries

A (i, j) =

{
wi j if

(
ui,u j

)
∈ E

/0 if
(
ui,u j

)
/∈ E ,

(1)

which allows to represent any weighted graph by means of a
squared matrix. For a SEA system with loss factor matrix H ,

the subsystem energy vector EEE for a given external energy vec-
tor input EEE0 can be found as EEE = H −1EEE0. H −1 can be com-
puted from the Neumann series H −1 = (I−S)−1 = ∑

∞
k=0 Sk,

where S stands for the generating matrix of the series, having
entries S(i, j) = η ji/ηi(1−δi j) [4]. As usual, ηi j stand for the
coupling loss factors, whereas ηi stands for the total loss factor
of subsystem i (ηi = ηid +∑ j ηi j , ηid being the dissipation loss
factor).

It is then possible to define a SEA graph GSEA = (USEA,ESEA)
with adjacency matrix given by

AS(i, j) =

{
η ji/ηi if

(
ui,u j

)
∈ ESEA

0 if
(
ui,u j

)
/∈ ESEA.

(2)

The powers of AS ≡ S provide very useful information on the
SEA system. For example, the element Sk(i, j) gives the energy
contribution of all paths of order k linking subsystems j and
i [4, 5]. If instead of the "natural" SEA graph induced by S,
one considers different algebras and weights but keeping the
same graph connectivity, further results can be obtained on the
existence and number of paths of a given order. Extremal (max-
imum and minimum) kth order paths can also be identified in
this way [3]. Moreover, once the link between graph theory and
SEA has been established, many possibilities arise. For instance,
it was proposed in [3], and further extended in [6], to make use
of graph cut algorithms to diminish the energy transmitted from
a set of source subsystems to a set of target subsystems in a SEA
model, with the sole modification of a few number of system
loss factors. This constitutes an alternative and/or complement
to more standard approaches to solve the problem based on
optimization plus sensitivity analysis techniques [7, 8].

In this work we will focus on another SEA path problem pointed
out in [9], where the necessity to find efficient algorithms
for identifying dominant energy transmission paths between
sources and targets in a SEA model was expressed. It has been
recently shown in [10] that it is possible to tackle this problem
by resorting again to graph theory. The idea is to perform appro-
priate modifications to an algorithm originally intended to solve
the so called standard K shortest path problem in graphs. In par-
ticular, the MPS algorithm [11] that relies on the computation
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(a) System of connected plates (b) SEA model for connected plates

Figure 1: Physical system and corresponding SEA model

of the so called deviation paths has been used to rank the set of
K dominant energy transmission paths between a source and a
receiver in a SEA model. In this paper, we will review the main
results in [10], and comment on the possibilities and difficulties
that will emerge if the random nature of graph weights in AS is
to be taken into account. Some rather straightforward options
such as making use of the Hurwicz principle or computing path
uncertainties may suffice for engineering purposes. However, if
the random nature of graph weights is to be incorporated in the
computation path algorithm, the main difficulty will come from
the fact that Bellman’s principle of optimality will no longer be
satisfied.

The paper is organized as follows. In section 2 the problem
to be solved will be stated. The solution proposed in [10] will
be reviewed in section 3 and applied to the SEA system in
Figure 1. In section 4 some strategies and problems arising
when dealing with stochastic weights will be pointed out. A
more realistic example consisting of vibroacoustic transmission
between adjacent dwellings in a building will be considered
to illustrate some situations. Conclusions close the paper in
section 5.

STATEMENT OF THE PROBLEM

Let us remember that a pth order path between a source node
s and a target node t in a graph consists in the edge sequence
pst :=

{(
s,uh1

)
,
(
uh1 ,uh2

)
, . . .
(

uhp−1 , t
)}

. If GSEA is weighted

with the path algebra P2 ≡
(
R+

0 ,max, ·
)

and has the adjacency
matrix AS in (2), it follows that the weight of a path will be
given by

w(pst) =
p−1

∏
m=0

whmhm+1 =
p−1

∏
m=0

ηhmhm+1

ηhm+1

≡∏
p

wst , (3)

where the equivalence has been introduced to ease the notation.
Note that (3) is nothing but the standard Craik definition of an

Figure 2: SEA graph for connected plate system?

energy transmission path [5]. The weight of two concatenated
paths ps j and q jt will be given by

w
(

ps j ◦q jt
)
= w

(
ps j
)

w
(
q jt
)
= ∏

p
ws j ∏

q
w jt = ∏

p+q
wst ,

(4)

and the join operation of the algebra, ∨ ≡ max, for a pair of
paths returns that with maximum weight,

w(pst)∨w(qst) = max{w(pst) ,w(qst)} . (5)

The above results can be generalized for any paths in the graphs
although they have been particularized here for paths linking
the source and the target. Note also that a path in GSEA will
obviously contain loops.

Let us denote by Pst the set of all paths joining s and t. This
set will never be empty given that a SEA graph is strongly
connected provided no coupling loss factor is neglected in the
model. Then, the problem of ranking the set of, say, K main
energy transmission paths in a SEA model can be stated as
follow:

Problem 1 Given a source subsystem s and a target subsystem
t in the SEA graph GSEA, we aim at finding the set of K paths
Pst,K =

{
pst,1, pst,2 . . . pst,K

}
⊆Pst such that

• w(pst,k)≥ w(pst,k+1) ∀k ∈ {1, . . .K−1},
• w(pst,K)≥ w(qst) ∀qst ∈Pst −Pst,K ,
• pst,k is found just before pst,k+1∀k ∈ {1, . . .K−1}.

The following results guarantee the well-posedness of Prob-
lem 1, in the sense that a finite solution can be found for it.

Theorem 1 Consider a SEA digraph GSEA = (USEA,ESEA)
with adjacency matrix given by the generating matrix AS of the
Neumann series solution of the SEA system. There exists a finite
and maximum energy transmission path from the source s to the
target t in GSEA.

Proof. The proof is given in [10].

Corollary 1 The problem of finding the K ∈ Z+ dominant
paths in the SEA graph GSEA is finite.

Proof. It is a direct consequence of Theorem 1.
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RANKING THE SET OF K MAIN ENERGY TRANS-
MISSION PATHS

Trying to solve Problem 1 making use of the series development
for the subsystem energy vector, i.e., using the kth powers of the
SEA graph adjacency matrix is clearly inefficient. If the path
algebra P2 ≡

(
R+

0 ,max, ·
)

is used, the powers of the adjacency
matrix A k

S will provide the maximum transmission paths of
order k, linking any pair of subsystems in the SEA model. That
is to say the entry Ak

S(i, j) will contain the k-th order dominant
path from j to i. However, it is clear that if one proceeds accord-
ingly, several important paths will be missing. For instance, it
could easily happen that the third dominant energy transmission
path of second order in a SEA model transfers more energy
than the main transmission path of third order. Consequently, to
avoid disregarding any path one should compute all paths up to
a large enough k and then sort them. This is a clearly inadequate
way to proceed, as already quoted in [9], given that for large k
the number of path can become prohibitive.

It has been recently proposed in [10] that Problem 1 can be
efficiently solved by introducing some modifications to the so
called MPS algorithm [11]. This algorithm makes use of the
concept of deviation paths, originally introduced in [12]. Let
us next give a general overview on how the algorithm performs
(the reader is referred to [10] and references therein for full
technical details).

The adapted MPS algorithm works on the tree T ∗t =(USEA,E∗t )
rooted at t that contains all maximum transmission paths from
the source subsystem to the target subsystem. This tree can
be easily computed by means of slight modifications to well-
known algorithms, such as the celebrated Dijkstra algorithm
[13]. The maximum energy transmission path from any node i
to the target t will be designated by p∗it and its weight by πi ≡
w(p∗it). The algorithm starts choosing the maximum energy path
from the source to the target p1 ≡ p∗st ∈ T ∗t , and proceeds to
build a set X of possible candidates to be the second dominant
transmission path p2. These candidates are computed from de-
viation paths of p1. Given the finite pth order path from source
to target pst :=

{(
s,uh1

)
,
(
uh1 ,uh2

)
, . . .
(

uhp−1 , t
)}

, the qth or-

der path qst :=
{(

s,vh1

)
,
(
vh1 ,vh2

)
, . . .
(

vhq−1 , t
)}

is termed a
deviation path from pst if the following fulfils

• the subpath qst ⊃ qsh j = psh j ⊂ pst for j < p, j < q,
• the first arc of the subpath qh jt is different from the first

arc in the subpath ph jt , i.e., (uh j ,uh j+1) 6= (vh j ,vh j+1),
• the subpath qh j+1t = q∗h j+1t ∈T ∗t , i.e., qh j+1t is the max-

imum energy transmission path from the node vh j+1 to
the target t.

The node uh j = vh j is known as the deviation node of qst and
(vh j ,vh j+1) as the deviation arc of qst from pst .

In order to build the deviation paths from p1, the source node s
is first considered as a deviation node. Then, the weights of all
deviation paths (us,uh j ) ◦ p∗h jt ∀ (us,uh j ) ∈ E −s are computed
and the one with maximum weight is stored in X (E −s stands
for the adjacent nodes of s whose edges are such that s is their
tail node). The subsequent node in p1 is next considered as
a deviation node. The weights of all paths psh1 ◦ (uh1 ,uh j ) ◦
p∗h jt ∀ (uh1 ,uh j ) ∈ E −h1

are computed and the one having maxi-
mum weight is also saved in X . The process continues until all
nodes in p1 have been analyzed. Then, the maximum path in
X is selected to be the second dominant path in the SEA graph,
p2, and becomes removed from X . To find the third maximum
transmission path in the SEA model we proceed computing
all deviation paths from p2. The third dominant energy trans-

mission path p3 is selected as the maximum path in X , which
now contains all previously stored deviation paths from p1 and
all deviation paths from p2. The process is iterated until the K
maximum energy transmission paths have been obtained. The
MPS algorithm turns to be very efficient and has a theoretical
computational cost O(|E| logN +KN), with N denoting the
number of subsystems in the SEA graph and |E| the number of
edges [14].

The time expended in the comparison of deviation paths can be
strongly decreased with the use of edge reduced weights and by
sorting the graph edge set ESEA in the forward star form [11].
For the SEA problem under consideration, the reduced weight
of an edge w̄i j can be defined as

w̄i j :=
π j

πi
wi j. (6)

w̄i j could be understood as the additional energy attenuation
that a path from ui to t will experience if u j /∈ p∗it . This is so
given that if u j ∈ p∗it , then πi = wi jπ j and w̄i j = 1.

Reduced weights can be shown to satisfy the following interest-
ing relations (see [10]):

w̄i j = 1 ∀ (ui,u j) ∈ ESEA∩E∗t , (7)
w̄i j ≤ 1 ∀ (ui,u j) ∈ ESEA, (8)
w(pst)≥ w(qst) iff w̄(pst)≥ w̄(qst). (9)

Note that (9) expresses the fact that if a path pst with weight
w(pst) transmits more energy than a path qst with weight w(qst)
(i.e., w(pst)≥ w(qst)) then it is also true that w̄(pst)≥ w̄(qst).
So one can sort deviation paths either by considering their
weights or their reduced weights. However, the latter is more ad-
vantageous given that it is quite straightforward to see that the re-
duced weight of a deviation path w̄[psh j−1 ◦ (uh j−1 ,uh j )◦ p∗h jt ] =

w̄(pst)w̄[(uh j−1 ,uh j )] (see [10]). Consequently, it will suffice
to compare the deviation arc reduced weights w̄[(uh j−1 ,uh j )]
to obtain the maximum deviation path of a given deviation
node. Moreover, only one deviation arc per deviation node
needs to be considered if the graph edge set is sorted in the
forward star form. This basically consists in factorising ESEA as
ESEA = ∪N

i=1E
−
i , with the tail node ui being smaller than ui+1.

The edges in every E −i are then rearranged, the edge having
maximum reduced weight being positioned the first in the list.
This edge will be the only one considered from all ui deviation
arcs, so there is no need to evaluate any further edge in E −i .

Table 1: Loss factors and modal densities used for the SEA
graph in Figure 2.

η13 0.086 η31 0.081 η1d 0.057 n1/n1 1
η14 0.045 η41 0.051 η2d 0.057 n2/n1 1
η23 0.085 η32 0.080 η3d 0.055 n3/n1 1.06
η25 0.045 η52 0.051 η4d 0.045 n4/n1 0.88
η34 0.064 η43 0.077 η5d 0.026 n5/n1 0.88
η35 0.065 η53 0.079 η6d 0.055 n6/n1 1.06
η46 0.011 η64 0.009
η56 0.094 η65 0.076

The whole process can be illustrated building a pseudo tree T k
t

of deviation paths for each kth iteration. The first pseudo tree
T 1

t will only contain the maximum energy transmission path
p1 from the s to t. The second pseudo tree T 2

t will represent
p1 plus all its maximum deviation paths, from which p2 will
be selected. T 3

t will show p1, plus its deviation paths, plus the
deviation paths from p2, and so on.

As an example, we have considered the SEA graph in Figure 2
(associated to the connected plate model in Figure 1a) with
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(a) T ∗
t (b) T 1

t

(c) T 2
t (d) T 3

t

Figure 3: Tree T ∗t of maximum energy transmission paths to the target and pseudo trees T k
t , k = 2...3.

arbitrary loss factors and normalized modal densities in Table 1.
In Figure 3a, the tree T ∗t of maximum energy transmission
paths from the source subsystem s≡ u1 (plate 1) to the target
subsystem t ≡ u6 (plate 6) is plotted. Numerical values for the
weights of the maximum paths connecting each node with the
target are given besides each vertex. The maximum energy path
from T ∗t is chosen as the first pseudo tree, T 1

t (see Figure 3b).
Note that this path is the third order transmission path p1 =
{(s,u3) ,(u3,u5) ,(u5, t)} and not the second order path passing
through plate 4. In fact, this is the second dominant path p2 =
{(s,u4) ,(u5, t)} as observed from the second pseudo tree T 2

t
in Figure 3c. In Figure 3d we have plotted the third pseudo tree
T 3

t , from which the third dominant path p3 is selected. This
is the fourth order path p3 = {(s,u3) ,(u3,u2) ,(u2,u5) ,(u5, t)}.
Note that paths highlighted in dark grey in Figure 3 belong to
the set of dominant paths. In particular, T 3

t contains p1, p2
and p3. The weights of these paths, which correspond to the
energy ratios (E6/E1)pi (i.e., energy ratio corresponding to the
energy transmitted through pi) have values (E6/E1)p1 = 0.032,
(E6/E1)p2 = 0.016 and (E6/E1)p3 = 0.009.

Finally, observe that virtual source VS and target VT nodes
have been added to the pseudo trees and maximum transmission
tree in Figure 3. Virtual nodes have no influence in the final
results because they are linked to s and t through edges of unit
weight, but they are necessary for the good performance of the
algorithm [10, 11].

SEA GRAPH WITH STOCHASTIC WEIGHTS

The algorithm described in the previous section considers de-
terministic weights, i.e, each edge has been assigned a constant
value, wi j =η ji/ηi, and it is assumed that wi j exactly represents
the connection between subsystems j and i. In graph theory,
finding extremal paths in the deterministic case is sometimes
referred to as solving the standard extremal path problem, to
discriminate from wi j being a random variable described by
means of a probability density function (pdf). Given that SEA
is a statistical approach, the loss factors in the SEA model will
correspond to averaged values according to the randomness
of the parameters involved in their computation (see [1] for
details on the sources of uncertainty in SEA). As known, the
subsystem energy vector EEE = H −1EEE0 corresponds to a mean
energy value and much efforts have been placed to compute its
variance (see e.g., [15] and references therein for recent results
on the subject).

Consequently, it is licit to wonder about the reliability of the
ranking of paths output by the MPS algorithm, given that the
SEA graph weights do not actually correspond to deterministic
values, but to stochastic ones. Several strategies of increasing
complexity can be followed to address this topic (see e.g., [16]
in the general context of graph theory).

First of all, let us focus on the meaning of the MPS path ranking
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(a) Path I (b) Path J

(c) Path K (d) Path L

Figure 4: Some energy transmission paths between source room (red) and target room (blue).

results when random weights are considered. Assume that each
weight wi j of an edge in a path is described by a pdf fi j(wi j)
and that all wi j are independent random variables. Let us denote
by
〈
wi j
〉

the expected value of wi j . A pth order path pst linking
the source and the target will be described by the joint pdf
fpst = ∏p fi j(wi j) and its weight expected value will be given
by

〈w(pst)〉 := ∏
p
〈wst〉 . (10)

Therefore, under the assumption of independent random vari-
ables for the SEA graph weights, the outcome of the MPS
algorithm is to find the set of K paths with largest expected
value but without taking into account any deviation (i.e., ne-
glecting the stochastic nature of weights when concatenating
paths).

One option to gain some knowledge on the path ranking reli-
ability may consist in applying Hurwicz’s principle (see e.g.,
[16]). If we have an idea of the limiting values for the loss
factors, we can compute the edge weights corresponding to the
most favorable (less energy transmission) and (maximum en-
ergy transmission) worst cases, wup

i j and wlow
i j . This can be done

by respectively diminishing the coupling loss factors to their
minimum possible values, as well as increasing the dissipation
loss factors to their maximum possible values, and viceversa
[6]. The following weight is assigned to each edge in ESEA

αwlow
i j +(1−α)wup

i j , α ∈ [0,1] . (11)

Then, the problem to be solved is that of first finding the path
such that

pα
1 = arg max

pst∈Pst

[
αwlow(pst)+(1−α)wup(pst)

]
, (12)

and then proceed analogously for the remaining K− 1 ones.
Note that α = 1 corresponds to the best case and α = 0 to the
worst one. Consequently, in practice on could apply the MPS
algorithm three times to account for the expected value (EV)
and the α = 0,1 cases.

The latter has been done for the more or less realistic bench-
mark case tested in [10]. This consisted in computing energy
transmission paths between two adjacent dwellings in a build-
ing. The building was made of 24 identical rooms distributed
between two floors. The reader is referred to [10] for modeling
details such as geometric and material characteristics. An over-
all of K = 500 paths were computed showing that the first 20
dominant paths already transmitted 90% of the energy in the
reception room (hence justifying the existence of noise regu-
lations based on direct anf first order flanking paths between
adjacent dwellings).

The first 15 energy transmission paths have been computed
according to (12) for the EV and α = 0,1 cases. The paths have
been labelled from A to O according to their ranking in the
EV results. In Figure 4, we have plotted the paths I, J, K and L
from the source room (red colour) to the receiever room (blue
color) (i.e., the paths corresponding from the ninth to the twelfth
dominant paths). In Figure 5 the ranking of paths is shown for
the three cases being analyzed. The center column contains
the classification for the EV case, whereas the left column
corresponds to the best situation (α = 1), and the right column
to the worst one (α = 0). As observed, the first eight dominant
paths remain identical for the three cases. However, for α = 1
paths L and K become interchanged with respect to EV, while
for α = 0 the interchanged paths are I and J. Moreover, two new
paths (P and Q) appear and path M becomes relegated to the 15
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Figure 5: Ranking of energy transmission paths. (left column)
Best case α = 1 (center column) Expected value (right column)
Worst case α = 0

position. The weights for α = 0,1 cases have been computed
assuming variations of ±2dB in the involved loss factors.

Another way to check the reliability of the ranked paths is
that of evaluating the uncertainty of their weights. In [9], the
variance of a path was expressed in terms of the variance of its
coupling and total loss factors. Consider the expression in (3)
for the weight of a path pst from source to receiver. Given that
the path can have loops, let us rewrite its weight as

w(pst) = ∏
p!

wαm+1
hmhm+1

= ∏
p!

(
ηhmhm+1

ηhm+1

)αm+1

, (13)

where αm+1 stands for the multiplicity of each edge in the path
and p! is used to indicate that no terms can be repeated in the
product (these are accounted for with the exponents αm+1).
From standard uncertainty propagation theory, it follows that
the variance σ2

g of a function g(x1,x2, . . . ,xn) depending on n
variables xi, i = 1,n is given by σ2

g = ∑n σ2
i (∂ig)2. Then it can

easily be checked that the variance of the weight of pst fulfills(
σw(pst )

w(pst)

)2
= ∑

p!
α

2
m+1

(
σwhmhm+1

whmhm+1

)2
. (14)

Taking into account that whmhm+1 = ηhmhm+1/ηhm+1 we can read-
ily relate the variance of the path weight with the variance of
the coupling loss factors and total loss factors. This yields [9](

σw(pst )

w(pst)

)2
= ∑α

2
m

(
σηhm

ηhm

)2
+∑α

2
m+1

(
σηhmhm+1

ηhmhm+1

)2
,

(15)

which expresses the variance of the path as a summation of
the total loss factors variances plus the coupling loss factors
variances. Notwithstanding, it should be remarked that the total
loss factor variances depend in turn on the internal and coupling
loss factors, and these on the statistics of the physical parameters
involved in their computation. However, should we have some
knowledge on the variances of the SEA total and coupling loss
factors, we could evaluate the variance of each of the ranked K
paths. If the energy of, say, the K−3 path, was in the range of
the energy of the K−4 path minus a certain factor multiplying
its variance, then we could only assume a certain degree of
validity for their mutual ranking, depending on the pdfs being
involved. It is also worthwhile to note that the uncertainty will
generally be higher for the longest paths, as they involve a larger
number of subsystems.

Although resorting to the Hurwicz principle or computing un-
certainties might suffice for noise control engineering purposes,
the possibility of directly including randomness in the computa-
tion of energy paths could be considered. In graph theory much
work has been devoted to this subject since it finds applications
in many areas of operational research, from transportation and
routing problems to robotics (among many others). The main
difficulty of the stochastic extremal path problem stems from
the fact that in general, the optimality principle no longer holds.
In other words, the optimal path between two nodes is not made
of suboptimal paths, which makes most strategies developed
for the standard critical path problems useless. Let us illustrate
this with a simple toy example.

Consider the graph in Figure 6 with edge weights described by
independent random variables. Let us assume that we know the
mean value and variance of every edge weight, so that for any
path pi j we can compute its mean mi j and variance σ2

i j (from
repeated application of the standard expressions for the product
of two independent random variables). Namely, for any two
paths pi j and p jk, the mean and variance of the concatenated
path pik = pi j ◦ p jk are given by

mik = mi jm jk, (16)

σ
2
ik = σ

2
i jσ

2
jk +σ

2
i jm

2
jk +m2

i jσ
2
jk. (17)

Next, suppose that we aim at finding a path from s ≡ u1 to
t ≡ u4 that maximizes the objective function

u(pst) = mst − cσst , (18)

with c standing for a constant to be tuned according to the
range of intended deviation (we take c = 1/2 for simplicity in
this example). Maximizing (18) could correspond to asking for
the weakest transmission paths resulting from variations of the
maximum energy transmission path, to be as large as possible.
If use is made of the values in Table 2, the following results are
obtained.

Table 2: Mean values and variances for edges in Figure 6.

m12 3.55 σ2
12 0.8

m13 2.1 σ2
13 0.75

m32 2.1 σ2
32 0.75

m24 1 σ2
24 0.2

m34 0.5 σ2
34 0.5

The path that maximizes the objective function (18) results
from the concatenation p1 ≡ p1

st = p13 ◦ p32 ◦ p24 that has value
u(p1

st) = 2.642, to be compared with u(p2
st) = 2.617 from path

p2
st = p12 ◦ p24. However, the optimal path from s ≡ u1 to u2

is p12 /∈ p1
st with cost u(p12) = 3.103, instead of p13 ◦ p32 ∈

Figure 6: Benchmark graph to show failure of the optimality
principle

6 ICA 2010



Proceedings of 20th International Congress on Acoustics, ICA 2010 23–27 August 2010, Sydney, Australia

p1
st with value u(p13 ◦ p32) = 3.07. Consequently, the path p1

st
that maximizes the objective function is not made of optimal
subpaths.

The objective function (18) has been only intended to illustrate
the failure of optimality but, a large variety of alternative math-
ematical models exist. Probably, the most extended approach
to solve stochastic path problems is that of making use of the
expected utility criterion of Von Neumann and Morgensten, i.e.,
the optimal path is the one maximizing the expected value of
a given utility function. When dealing with a summation of
random variables, which would correspond to dealing with the
logarithms of weights in our SEA case (probably at the price
of having to deal with positive and negative values), it follows
that the resulting problem still satisfies the optimality principle
whenever the utility function is either affine linear or exponen-
tial. Moreover, for quadratic utilities and/or exponential pdfs,
the stochastic problem can be turned into a deterministic, but
multidimensional, critical path problem (i.e., vectors are now
assigned to graph weights instead of scalars) [16]. Dynamic
programming strategies can then be still applied to find the
solution by resorting to the concepts of dominance and efficient
paths. However, in more general situations this is not possible
and many other strategies have been attempted such as extended
dominance, convex and quasi-convex optimization, hybrid ap-
proaches that combine stochastic and genetic algorithms, etc
(see e.g., [17–19] and references therein).

Finally it is worthwhile to mention that whatever strategy could
be followed, its success will also rely on the knowledge of the
involved SEA statistics. This is not an easy point, given that
some simplifying hypothesis which allow to make use e.g., of
the very practical Central Limit theorem [20], do not always
apply in SEA [21].

CONCLUSIONS

In this work, we have benefit from the connection between
SEA and graph theory to efficiently rank the set of dominant
energy transmission paths between a source subsystem and a
target subsystem, in a SEA model. On the one hand, we have
reviewed the basis of a recently developed algorithm to do so,
which relies on the notion of deviation paths. On the other hand,
several options to take into account the stochastic nature of SEA
graph weights in the ranking process have been outlined. These
can be used to check the reliability of the ranked paths, and
constitute the basis for future work that will directly incorporate
the random nature of weights in the ranking process.

Ranking paths in a SEA model is certainly a problem of interest
for noise control engineering. For example, if a set of paths
can be shown to transmit negligible energy when compared to
others in a SEA model, the latter could be simplified in future
computations. Moreover, path ranking can be very useful to
help determining noise abatement treatments. Besides, many
situations exist in which a large percentage of energy is carried
out by a finite and rather small number of paths. For instance,
this is at the core of transmission loss regulations between
adjacent dwellings. Ranking paths algorithms can easily be used
to analyze those cases in which these regulations are known to
fail.
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