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ABSTRACT

A structure, for example a building, a bridge etc. has degraded since it was built due to a physical damage, for example
an earthquake or time-passing by. Detecting such degrading is much important to predict an accident from security
point of view and to maintain a structure from economical point of view. Degrading is detectable as changes in dynamic
properties of a structure. It is practical to detect changes in frequency responses of a structure with non-stationary
vibrations, e.g. natural force of winds. This issue is considered to be identification of transfer function with a non-
stationary input signal. The discrete Fourier transform (DFT) is well used to obtain the spectrum of a response of a
structure. The amplitude spectrum by DFT is subject to temporal changes in the non-stationary input signal. On this
issue, we have a statistical approach in this article. We introduce short-interval period (SIP) to detect the spectrum of
the signal. The SIP is defined as distribution of statistical frequency of dominant frequencies of fractions of measured
data. Therefore, the SIP is independent from the magnitude of the unknown signal. This paper shows a theory of the
SIP and an application to a scale model experiment. In the experiment, the SIP distribution resulted in stable spectrum
independent from a sequence of random numbers as a non-stationary input. The SIP is available for the estimation of
the dynamic properties for many types of structures.

INTRODUCUCTION

Detecting degradation of structure, for example a building, a
bridge etc. is important for living safety and comfort. In many
cases, such degrading does not appear in its appearance. Degra-
dation of buildings due to a physical damage is detectable as
changes in dynamic properties of the structure. The properties
are evaluated by a transfer function of the structure and those
in the properties are estimated by changes in the function. It is,
however, impractical to measure the function intentionally.

A structure trembles due to winds, ground motions etc. The
tremble data of the structure is considered to be convolution of
a transfer function of the structure and vibration sources, which
are wind and ground motion etc. If we could extract the trans-
fer function from the tremble data, it’s very much practical.
However, even if the transfer function of the structure varies
much slowly and is assumed to be stable for a short period,
tremble data for the structure is also non-stationary because
the vibration sources are non-stationary. Therefore, extracting
the transfer function from the non-stationary data is the issue.

On this issue, discrete Fourier transform, DFT, is a well-known
method for estimating a transfer function. However, a trans-
fer function estimated by DFT is subject to non-stationary of
the data to be analyzed. Hirata, one of the authors, proposed
a method, that is short-interval period, SIP, for estimating a
frequency characteristic from a non-stationary data. This pa-
per shows that SIP is applicable to the issue by a scale-model
experiment.

SHORT-INTERVAL PERIOD

Short-Interval Period, SIP is a new method for estimating a fre-
quency characteristic of a transfer function with a non-stationary

input. SIP is given as statistical frequency of a dominant fre-
quency for short-interval data. SIP requires a dominant fre-
quency for a signal of short-length. Discrete Fourier Trans-
form, DFT, is a well-known method for analyzing a signal in
the frequency domain. But, we do not use the DFT for detect-
ing a short-interval period because of its inherent limitation of
frequency resolution(Kay and Marple Jr.1981).

The dominant frequency or period of a short-interval seqnu-
enceW(n)(n = 0,1, · · · ,M) can be given by the non-harmonic
Fourier analysis(Hirata2005,Hirata 2008). In the process of
the analysis, we putW(x) = W(n) wherex = n−M/2, and
obtain Fourier coefficientsa( f ) andb( f ) for an arbitrary fre-
quency such that
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b( f ) =

M
2

∑
x=−M

2

W(x)cos(2π f x)

M
2

∑
x=−M

2

cos2(2π f x)

. (2)

Hence, if we put

y(x, f ) = a( f )sin(2π f x)+ b( f )cos(2π f x) (3)

and

Y( f ) =

M
2

∑
x=−M

2

y2(x, f ), (4)
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we have the dominant frequencyfp which satisfies

Y( fp) = the maximum ofY( f ). (5)

It should be noted that we attain a least-squares fit ofW(x) to
a sinusoid byy(x, fp).

The SIP distribution is given by a number of dominant fre-
quencies ( or periods ) of short sequences which are fractions
of measured data. Thus, the normalized SIP distributionD( fp)
gives the probability of the dominant frequencyfp found in
measured data.

If we assume that a structure is excited by the force of random
noise and assign the frequencyf in Eqs.(1) and (2) such that

f = fn = n∆ f ; n = 1,2, · · ·N (6)

where∆ f < 1/M, we have, from the reference(Hirata2005),

D( f j )−D( fi) = Qi j (r)
S( f j )−S( fi)
S( f j )+ S( fi)

(7)

where0 < Qi j (r) < 1 and S( f j ) is the power frequency re-
sponse of a structure at a frequencyf j and so on.

Hence, we get an approximation:

S( fn)≈ kD( fn) (8)

wherek is an appropriate constant. It should be mentioned that
the spectral resolution given byD( fn) depends little on the
length of the short sequence whenM fn >1.

SCALE-MODEL EXPERIMENT

Scale-model

The scale-model is a framework model of a building of three-
storied. Its dimensions are 18 cm (W) * 21 cm (D) * 38 cm
(H). The scale-model has four pillars and each pillar is com-
prised of thin square lumbers. Figure 1 shows that images of
the scale-model degrading by reducing the lumbers. Frequency
characteristic of the impulse responses at Fs of 6 (kHz) before
degrading (condition A) and after degrading (condition B) are
shown in Fig. 2. These two responses are unknown in the real
world.

Figure 1:Structure conditions (before degrading and after de-
grading); Condition A (a) and Condition B (b)

Figure 2:Power spectrum of structure; condition A (a) and
condition B (b).

FREQUENCY CHARACTERISTICS ESTIMATION
USING STATIONARY VIBRATION

First of all, DFT and SIP analysis were compared by stationary
noise vibration for structure frequency charracteristics estima-
tion. Noise signals as stationary vibration were prepared us-
ing Matlab function ("randn"). Responses of the scale-model
for condition A and condition B, vibrated by the noise signal
are simulated by convolution of the two impulse responses and
the noise signals, respectively. The two simulated signals of
144,000-sample long are used for frequency chracteristics es-
timation.

Figure 3:Frequency characteristics estimation using stationary
noise vibration; condition A (a) and condition B (b).

DFT analysis

The two simulated signals for condition A and condition B
are, respectively, divided into 240 sections. Each is 600-sample
long. For each section, DFT over 600 samples are computed.
Therefore, frequency resolution is 10 (Hz). Furthermore, fre-
quency characteristic over 240 sections are averaged.
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Figure 4:Averaged power spectrum of non-stationary vibrations; case A (a), case B (b) and case C (c).

Figure 5:Averaged power spectra of structure condition A and B under non-stationary vaibration culculated by DFT. Condition A
excited by non-stationary noise case A (a), case B (b) and case C (c). Condition B excited by non-stationary noise case A (d), case B
(e) and case C (f).

Figure 6:SIP distributions of structure condition A and B under non-stationary vaibration. Condition A excited by non-stationary noise
case A (a), case B (b) and case C (c). Condition B excited by non-stationary noise case A (d), case B (e), case C (f).
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SIP analysis

The two responses simulated are, respectively, divided into 2,400
sections. Each section is 60-sample long. For each section,
a dominant frequency is extracted with frequency resolution
of 10 (Hz), by the non-harmonic Fourier analysis. And SIP is
given as statistical frequency of the dominant frequencies.

Figure 3 shows that estimated frequency characteristics of the
two impulse responses by DFT and SIP analysis under sta-
tionry noise vibration. The horizontal axis shows frequency
and the vertical axis denotes relative magnitue. Relative mag-
nitude was defined normalized power of each frequency for
DFT and normalized distribution for SIP analysis. In condition
A, similar frequency characteristics are appeared in DFT and
SIP analysis both. These characterics are also similar to origi-
nal frequency characteristics of impulse response in Fig. 2. In
condition B, DFT has details of impulse frequency character-
istic compared with SIP analysis. And, SIP distriburion shows
peaks of frequecy characteristics explicitly. In any case, simi-
lar frequency characteristics are obtained from stationary noise
vibration by DFT and SIP analysis both.

IMPULSE RESPONSE ESTIMATION USING NON-
STATIONARY VIBRATION

Noise signals of 144,000-sample long as non-stationary vibra-
tion were prepared for natural vibration simulator as natural
force of winds, seismic wave and etc. Figure 4 shows that
the power spectra of three noise signals (case A, B, C) aver-
aged over 600-samples long 240 windows. Responses of the
scale-model for condition A and condition B, vibrated by the
noise signal are simulated by convolution of the two impulse
responses and the noise signals, respectively. And, DFT and
SIP analysis were computed as same as previous section.

Evaluation

Figure 5 shows power spectra of different structure conditions
A and B which were excited by three different noise signals.
Upper three panels (a-c) are for condition A and lower ones (d-
f) are for condition B. Frequency characteristics of the under
condition A has three peaks which are similar to impulse re-
sponse condition A. And, condition B have different shapes
from the measured impulse response. According to this re-
sults, DFT can estimate frequency characteristics under non-
stationary vibration, if impulse response has strong peaks such
a condition A.

Figure 6 shows SIP distributions as well as Fig.5. For SIP dis-
tributions, condition A has three peaks explicitly. For condition
B, SIP distributions have simple peaks compare with power
spectra using DFT. It denotes that SIP distribution can esti-
mate peaks of frequency characteristics, if peaks of orignal fre-
quency characteristics are not sharp. This results suggests that
SIP distribution is effective to estimate peak frequencies as res-
onance frequency. Consequently, SIP analysis is applicable for
health monitoring under non-stationary vibration.

SUMMARY

Hirata proposed Short-Interval Period, SIP, that is a method for
estimating a transfer function from non-stationary data. This
paper reports on a scale-model experiment, which shows that
SIP detects changes in a frequency characteristic from non-
stationary data and is applicable for estimation of a structure.
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