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ABSTRACT

Finite Element Methods are widely used to modefoAlicoustic systems, but as the modal density besdrigher
this type of model becomes inaccurate and impmrcfitis is why in the high modal density regioe tise of Statis-
tical Energy Analysis (SEA) models has become msiregly popular. SEA has some obvious advantages asl its
simple formal expression, being based on lineaatgu systems or the reduced number of variableshed. But
SEA has drawbacks as well, such as the absencealfihnformation or the necessity of frequency agerg. A key
quantity in SEA models is the loss factor. Thisemknto account the energy dissipated within argsgbsystem or
when power flows from one subsystem to anothernBEkieugh analytical expressions exist for a nunafesubsys-
tems of differing nature, the measurement of tles actor is still advisable and a necessity ftarge number of
cases. The most commonly used method of measwswfactors is the Power Injection Method. Thishodtis
based on the injection of power into every singilbesystem in sequence while the energy in each stdrgyis meas-
ured. In spite of its simplicity, there remain anther of problems where the accuracy of the ressiltsfluenced by
various practical issues. In this paper, a MontddOaodel is used to describe the uncertainty ofi@ $ubsystem-
problem consisting of two planar elements conneatedg one side. The influence of the input vagakk studied

and the conditioning of the coefficient matrix timaddel the system is also taken into account.

INTRODUCTION

There are a great amount of studies that analyzensages
and drawbacks about the use of deterministic mettaodi
non-deterministic methods based on statisticalriecies to
characterize dynamic systems. The conclusion castdied
as that both ways to solve the problem is efficigithin its
applicability range, what, in turn, will depend tre size of
the system, the modal density of the whole systerh its
parts, the calculation load and the accuracy needed

In this paper a non-deterministic method; the Stiadl En-
ergy Analysis, SEA, is used as a way to charaetetlie
structural systems usual in fields apparently a®fees from
each others, as aeronautic design or acousticklihgiele-
ments analysis. In this method, the determinatibthe loss
factors of the different parts of the system igpofmary im-
portance to specify the performances at high freges.

SEA was developed as an analysis method in thenddualf
of the last century, and it can be very usefuhi@ frequency
range where deterministic methods become too moah ¢
plex and unpractical. Lyon [1] was one of the fasthors to
give a general view of the method as a whole, dtioly pos-
terior updating revisions [2][3]. Later on Craik [4pntrib-
uted to generalize the application of SEA method$ié field
of building acoustics showing its viability andliti.
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One of the main advantages of SEA is that it cadehoom-
plex vibro-acoustical systems using very few paranse
(Input power, total energy of the system and lasstafs,
typically). On the other side, it cannot give log#brmation
about the system, or take into account little \teotes on the
structure/material properties, including junctiobgtween
subsystems, for instance, unless they correspormthdnges
in their modal density characteristics.

To build up a SEA model, the structure must bet sptb
subsystems. These subsystems are substructure$ianitb-
geneous properties, including its modal density, imaddi-
tion should have a high value. Once defined thesystbms,
power flow among them must be determined, includiisy
sipated power within them (see Fig. 1). Another ontgnt
issue related with the applicability of these medi the
coupling between systems, which is related withah®unt
of power flowing throughout all the structure andhathe
presence of global modes in it [3][4][5].

The principle SEA model is based on two main statesi

On the stationary state power flow within the sgsténclud-

ing power going from one subsystem to another avepo
dissipated by any part of the structure) must bednilib-

rium. The power flow is proportional to the totaleegy in a
given subsystem (Fig. 1). Relationship between snargl

power flow can be expressed as:
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Figure 1. Power flow diagram of a two-subsystem
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whereP; is the power input to the subsystenwis the angu-
lar frequencyk; the total energy of thith subsystemk; the
energy of thgth subsystemy, is the internal loss factoil, F,
andj; is the coupling loss facto€LF between subsystems
andj. They take into account the energy dissipatediwitie
subsystem and through the joint respectively.

To get loss factors, calculations based on the migwof the
structure can be done. Besides they can be obtdioed
tests, as well. In this work an experimental metiodsed,
the Power Injection Method, PIM, which consistsepiting
consecutively each one of the subsystems the steuds
compound of while the input power and every sulesyst
energies is measured [6][7]. In this way, the r@sglequa-
tions system that describe the process is

P
E, O E. -Ex A %)

0 E, -E;, E; 7, 0
E,. O E. -Ex o

o @)
0 E, -E, E, M1 %

where E; represents the energy in tith subsystem when
panelj is excited.

It is well known that in spite of the formal simgty of the
model some problems arise. One of these problethe ifact
that energy matrix elements usually are of diffeneragni-
tude orders giving rise to numerical problems tkat to ill
conditioned matrices that, in turn, produce prolslesn the
resolution process of the system. In this paperctralition-
ing of the matrix is taken into account to evaluigeinflu-
ence on the results.

A way to minimize this problem was developed bydrgB],
who separatindLF from CLF in two different equation sys-
tems. One for th€LFsand other for thé_Fs:

Ei B I
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For this simple case of two subsystems eqs (3a)2indcan
be solved and the values of loss factors can tbesradat:

__ kB _E, _Ep
Ny = i where A=—/-—% 4a
2w, A E, E, (42)
R E, Ex
n,,=—=—; where B=—2-*2 4b
%~ WE, B E. E, (4b)
P
= wéﬂ -1, Ey (4c)

- P, -R(E./EM)

7],
: w(Ezz = E12)

(4d)

In this paper, uncertainties of the loss factorsioied by the
PIM are evaluated by the use of a Monte Carlo nj@Herhe
output variables of the model are the loss factduiss and
CLFs while the input (statistical) variables are tmemgy in
the subsystems and the input power to the subsgsteith
Gaussian probability distribution densities. Baitiput and
output parameters are related by egs. (4a) to (4d).

In addition the influence of the conditioning ofetlenergy
coefficients matrix is evaluated. To this end, siag values
of the matrix are calculated and its minimum vakigvesti-
gated.

MONTE CARLO MODEL
Structure description

The case studied consists of two plates joined iy side.
Sizes of plate 1 and plate 2 are 1.60 x 1 x 0.0G§ch0.8 x1
x 0.003 m, respectively. They are assumed to beenudd
aluminun with ¢=5000 m&, p = 2621.5 kgrif.

ILFs of both plates are assumed to®e1, and plates junc-
tion is assumed to be in such a way tBhFsare

n = PoLi T
) HZS 'f fci (5)

being p, the plate densityr; the transmission coefficient
(strength coupling will depend mainly on it [10][112]), L;
the junction length§ the surface of the plate afithe criti-
cal frecuency, whose value is 4281 Hz. Both CLFstrnsat-

isfy

_n
i = K’]ij (6)

J

wheren; stands for modal density of each plate

n(f)= NS modes/ Hz (7

Li

andh; is the plate width. Values for plateand?2 are:
n, = 0.1848 modes/Hz

n, =0.0924 modes/Hz (8)

Reference case definition

Once the system is completely defined, the respoose
power input can be obtained by solving the dirdeA$rob-
lem (material known and consequentlyks known). The
only non-intrinsic parameter involved . It describes the
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vibratory power that goes into receiver subsystelative to
power incident to the subsystems boundary, sodnahgth
of the coupling between the subsystems will dependt.
Two different values where here consideréd1 and0.95
weak and strong coupling respectively. Input powess
assumed to b& Wfor every frequency band, and energy of
the vibratory state is obtained for both subsystems
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Figure 2. Mean loss factors values and error bars for ai-conf
dence level of 95 %4,= 0.01,0,p= 0.1.ando, g=0.1

Test model definition

Mathematical test model is defined by egs. (4), rehieput
parameters are the input power to each subsystehthan
whole set of energies every subsystem has on eeseh Out-
put parameters are tiFsandILFs of the system.

Input parameters are supposed to be random vasialitk a
Gaussian probability distribution functiomdf, each one
centred on the reference values obtained by thectdir
method, and standard deviatiors, that in an actual case
would depend on the uncertainty of the acquisityatem
and experimental setup, are chosen such thatualie rela-
tive to the mean value ranges from 0 % to 20 %itlieren-
ergy sets and from 0 % to 25 % for the input powenulat-
ing different groups of tests sets.

Uncertainty estimation is based on the Monte Caréthad
rather on propagating input uncertainties up to dbgout
ones. Though, both could be used in this casendive ana-
Iytical expression of our test model, in real caselsere a
much higher number of subsystems are involved, seleh
tionships are difficult to obtain, if so. On thehet hand, a
Monte Carlo model in this more complicated scenaright
reduce the mathematical effort, could reduce thmber of
hypothesis the uncertainty analysis is based d, wauld
allow the determination of the output paramefedés and
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determine confidence interval when the oufpdfiscannot be
considered as Gaussians.

Then a Monte Carlo model was run for an ensembE0060
instances. All thepdfs were assumed to be Gaussian in this
paper, and the standard uncertainty of the inputslated to
their variances.

RESULTS
Overview

Figure 2 shows the results for a single exampleaiMealues
are so close to the reference ones that takingaictount any
bias correction is useless, and negligible comparita the

uncertainty introduced by random variations.

Figure 3 shows an example of the behaviour of tieetain-

ties for a whole set of input variances. Resultsfarsurface
on the results space that can be different for éaafuency
band. Results show how the surface of the standarctibn

of theLFsis monotone increasing with both: andgp.

CLF12- 2580Hz; =001

Figure 3. Relative uncertainty of the CLF values in the fre-
quency band of 250Hz. Upper plet;= 0.01; lower plot,
71,= 0.95. Confidence level: 95 %

Uncertainty model for the two-plate system
Given the nature of the results surface a bilimeadel is

defined for the uncertainties. We assume that tieeainty
of everyLF follows the expression:

ux,y) = f,(x,y) 9)
wherex, andy are dummy variables that, in our case, will
stand for the relative standard uncertainty ofehergy and

input power, and

fo (%, Y) =6 + &Y +EXY+EX+HEY+E  (10)
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where coefficients§ are determined by fittind(x,y) to the
calculated data by the Monte Carlo modgl, that is, the
function

2

>z - ,(x.%)) (12)

i=1

M=

F(zxy)=

1
X

has to be minimized. What, in turn, leads to theatigns
system

of
Zz(gj—f(x.yi))ﬁ(&,yi):o Op=1..n  (12)
L] p

That can be expressed as:
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Where¢ is the mathematical expectation of the respective

variables.

This equation was solved for every frequency b&nglres 4
and 5 show the upper and lower quartile valuesthadne-
dian of the coefficient values obtained.
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Figure 4. Coefficient values of the CLF uncertainty model.
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Figure5. Coeficient values of the CLF uncertainty model.

for T12= 0.95.

Differences within a given coefficient for the whofre-
quency range are so small that the model can bplifed

using the same expression for all the frequendgiesse coef-
ficients correspond to the median of the relatigensis of the
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loss factor of all the frequencies for the diffdrencertainty
values of energy and power. (see Table 1).

Table 1. Overall coefficients for eadhFs

& g & & 8 %6
N 58358 24945 -554.40 103.74 137.67 2.28
N, 94744  261.65 -672.00 199.57 121.82 3.47
N 58472 25263 -551.60 102.85 136.78 2.39
N 94262 25760 -676.28 201.56 123.02 3.30

Relative errors are obtained and show on in Tab¥hith in
the worse of cases rise up to 10%.

Table 2. Coefficients of adjustment Error for LFs

% & & & & & %
M 39 12 17 -16 24 22
ez 58 28 23 17 8.4 50
ez 9.4 23 5.1 938 8.2 9.2
Max 56 27 27 -10.0 106 73

Thus the bilinear surface that describesltRe’ uncertainty
of the systems as a function of the relative uladeties in the
energy and power is as follows:

_ 2 2
U (G, Op) =60 +&0° +£0:Tp +E T +60, &, (14)

Whereg; are presented in Table 1

Therefore the uncertainty in the measurement of Life
depends on the relative uncertainties of both trergy and
the power according to Equation 14 for each oflths Ac-
cording to this equation, Figure 5 presents théasas gener-
ated for one of th€LFsfor both types of union studied.

Figure 5 shows the results for a given case. aift loe ob-
served how the increase of eitlsgf or o,p causes an increase
on the standard uncertainty of the correspondiRguncer-
tainty. It is noteworthy that the increase in telative energy
uncertainty produces higher values on the unceytatman
when the power uncertainty is increased.

CLF12 ©=0.01
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CLF12 1=095

Figure5. Model of the uncertainty foy,, Upper plotz,=
0.0% lower plot,z;,= 0.95.

In addition, results of the series of tests runvehdow the
model stays working even for different strengthshef junc-
tion.

INFLUENCE OF THE CONDITIONING OF THE
PIM LINEAR EQUATION ON THE RESULTS

When usin PIM method to determibEs negative values are
usually obtained. The most ususal reason statezkptain
this fact is that the linear system that relatesghrameters of
the PIM model is ill-conditioned. The developmehtalcu-
lation estrategies to avoid such a results is § aetive line
of work nowadays. In this section, the influencetaf condi-
tioning on the linear system of our case is ingadéd.

The calculation of the singular values of the epamgtrix of
Eq 2, results:

S2:(}/1"'1/2)i (};1_}/2)2"'41/3 (15)

Where:

h= (Eu + Elz)z +(E12)2
Vo =(E21 + E2)2 +(Ez )2 (16)
Vs :(El + ElZ) (E21 + E2)+ E.E,

There are two singular values of double multipjicivhere
the minimun value corresponds to the negative sigthe
eq.15. In our case this value is very small in tigh fre-
quencies area.

The condition number is defined as

Sun(E) @n

wheresya andsy, stands for maximum and minimum singu-
lar values of the Energy matrix. This is a very @iencase
where x will be the ratio between the two corresponding
singular values (eq 15).

2 2 %
K(E):[/1+/fg/1-4-_1] as)
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Where:

(Bu+Bo) +EL+(En+Ey) + B, (19)
(EuEzz - E12E21)
The condition number values obtained in this wark the

various cases analysed are between2 andk = 7.For the
latter, negative loss factors can be presented.

/‘1=

Actually present case is quite small so it is tekpected that
no big problems arise from the matrix conditioniag it is
happening. Nevertheless, the model can be extetodeidh-
er dimensional problems where conditioning of tlystem
matrix plays a role.

CONCLUSIONS

An uncertainty model of théFs has been developed for
systems consisting of two plane plates, which gerera
quadratic surface whose coefficients can be eaddter-
mined.

Based on the previous results, it can be said HedtFE un-
certainty depends on the energy and power uncgesin
Playing a greater role the one coming from the ysthss
energy.

It should be noted that in spite of the dependeridbe LFs
with frequency, the uncertainties model can bengefithe
same for all frequencies if based on relative uageties.

It has been shown that for the case under studsnaindi-
tioning does not influence much the validity of thesults.
Though, this conclusion cannot be extended to higheen-
sional systems that must be studied in the future.

Finally, another important point that emerges friiis study
is the independence of the uncertainty surface thighjunc-
tion strength between subsystems.
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