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ABSTRACT 

Finite Element Methods are widely used to model vibro-acoustic systems, but as the modal density becomes higher 
this type of model becomes inaccurate and impractical. This is why in the high modal density region the use of Statis-
tical Energy Analysis (SEA) models has become increasingly popular. SEA has some obvious advantages such as its 
simple formal expression, being based on linear equation systems or the reduced number of variables involved. But 
SEA has drawbacks as well, such as the absence of local information or the necessity of frequency averaging. A key 
quantity in SEA models is the loss factor. This takes into account the energy dissipated within a given subsystem or 
when power flows from one subsystem to another. Even though analytical expressions exist for a number of subsys-
tems of differing nature, the measurement of the loss factor is still advisable and a necessity for a large number of 
cases. The most commonly used method of measuring loss factors is the Power Injection Method. This method is 
based on the injection of power into every single subsystem in sequence while the energy in each subsystem is meas-
ured. In spite of its simplicity, there remain a number of problems where the accuracy of the results is influenced by 
various practical issues. In this paper, a Monte Carlo model is used to describe the uncertainty of a two subsystem-
problem consisting of two planar elements connected along one side. The influence of the input variables is studied 
and the conditioning of the coefficient matrix that model the system is also taken into account.  

INTRODUCTION 

There are a great amount of studies that analyze advantages 
and drawbacks about the use of deterministic methods and 
non-deterministic methods based on statistical techniques to 
characterize dynamic systems. The conclusion can be stated 
as that both ways to solve the problem is efficient within its 
applicability range, what, in turn, will depend on the size of 
the system, the modal density of the whole system and its 
parts, the calculation load and the accuracy needed. 

In this paper a non-deterministic method; the Statistical En-
ergy Analysis, SEA, is used as a way to characterise the 
structural systems usual in fields apparently as far ones from 
each others, as aeronautic design or acoustical building ele-
ments analysis. In this method, the determination of the loss 
factors of the different parts of the system is of primary im-
portance to specify the performances at high frequencies. 

SEA was developed as an analysis method in the second half 
of the last century, and it can be very useful in the frequency 
range where deterministic methods become too much com-
plex and unpractical. Lyon [1] was one of the first authors to 
give a general view of the method as a whole, including pos-
terior updating revisions [2][3]. Later on Craik [4] contrib-
uted to generalize the application of SEA methods to the field 
of building acoustics showing its viability and utility. 

 

One of the main advantages of SEA is that it can model com-
plex vibro-acoustical systems using very few parameters 
(Input power, total energy of the system and loss factors, 
typically). On the other side, it cannot give local information 
about the system, or take into account little variations on the 
structure/material properties, including junctions between 
subsystems, for instance, unless they correspond to changes 
in their modal density characteristics. 

To build up a SEA model, the structure must be split into 
subsystems. These subsystems are substructures with homo-
geneous properties, including its modal density that, in addi-
tion should have a high value. Once defined the subsystems, 
power flow among them must be determined, including dis-
sipated power within them (see Fig. 1). Another important 
issue related with the applicability of these models is the 
coupling between systems, which is related with the amount 
of power flowing throughout all the structure and with the 
presence of global modes in it [3][4][5]. 

The principle SEA model is based on two main statements: 
On the stationary state power flow within the system, (includ-
ing power going from one subsystem to another or power 
dissipated by any part of the structure) must be in equilib-
rium. The power flow is proportional to the total energy in a 
given subsystem (Fig. 1). Relationship between energy and 
power flow can be expressed as: 
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Figure 1. Power flow diagram of a two-subsystem  

SEA model 

 

 

Pi = ω Ei ηi j
j =1

N

∑ − ω Ej η j i
j =1
j ≠i

N

∑ i = 1,2,K N  (1) 

where Pi is the power input to the subsystem i, ω is the angu-
lar frequency, Ei the total energy of the ith subsystem, Ej the 
energy of the jth subsystem, ηi is the internal loss factor, ILF, 
and ηij is the coupling loss factor, CLF between subsystems i 
and j. They take into account the energy dissipated within the 
subsystem and through the joint respectively. 

To get loss factors, calculations based on the dynamics of the 
structure can be done. Besides they can be obtained from 
tests, as well. In this work an experimental method is used, 
the Power Injection Method, PIM, which consists on exiting 
consecutively each one of the subsystems the structure is 
compound of while the input power and every subsystem 
energies is measured [6][7]. In this way, the resulting equa-
tions system that describe the process is 
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where Eij  represents the energy in the ith subsystem when 
panel j is excited. 

It is well known that in spite of the formal simplicity of the 
model some problems arise. One of these problems is the fact 
that energy matrix elements usually are of different magni-
tude orders giving rise to numerical problems that lead to ill 
conditioned matrices that, in turn, produce problems on the 
resolution process of the system. In this paper the condition-
ing of the matrix is taken into account to evaluate its influ-
ence on the results. 

A way to minimize this problem was developed by Lalor [8], 
who separating ILF from CLF in two different equation sys-
tems. One for the CLFs and other for the ILFs: 
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For this simple case of two subsystems eqs (3a) and (3b) can 
be solved and the values of loss factors can be obtained: 

η12 =
P2

ω E22 A
; where A=

E11

E21

−
E12

E22

 (4a) 

η21 =
P1

ω E11 B
; where B=

E22

E12

−
E21
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 (4b) 

η1 =
P1

ω E11

−η2 E21  (4c) 

η2 =
P2 − P1 (E12 E11)

ω (E22 − E21 E12 )
 (4d) 

In this paper, uncertainties of the loss factors obtained by the 
PIM are evaluated by the use of a Monte Carlo model[9]. The 
output variables of the model are the loss factors, ILFs and 
CLFs, while the input (statistical) variables are the energy in 
the subsystems and the input power to the subsystems, with 
Gaussian probability distribution densities. Both, input and 
output parameters are related by eqs. (4a) to (4d).  

In addition the influence of the conditioning of the energy 
coefficients matrix is evaluated. To this end, singular values 
of the matrix are calculated and its minimum value is investi-
gated. 

MONTE CARLO MODEL 

Structure description 

The case studied consists of two plates joined by one side. 
Sizes of plate 1 and plate 2 are 1.60 x 1 x 0.003 m and 0.8 x1 
x 0.003 m, respectively. They are assumed to be made of 
aluminun with cL=5000 ms-1, ρ = 2621.5 kgm-3. 

ILFs of both plates are assumed to be 0.01, and plates junc-
tion is assumed to be in such a way that CLFs are 

ηij =
ρoLijτ ij

π 2Si f fc i

 (5) 

being ρo the plate density, τij the transmission coefficient 
(strength coupling will depend mainly on it [10][11][12]), Lij 
the junction length, Si the surface of the plate and fc the criti-
cal frecuency, whose value is 4281 Hz. Both CLFs must sat-
isfy 

η ji =
ni

nj

ηij  (6) 

where ni stands for modal density of each plate 

ni ( f ) =
3Si

hi cLi

   modes/ Hz (7) 

and hi is the plate width. Values for plate 1 and 2 are: 
n1 = 0.1848 modes/Hz  

n2 = 0.0924 modes/Hz (8) 

Reference case definition 

Once the system is completely defined, the response to a 
power input can be obtained by solving the direct SEA prob-
lem (material known and consequently, LFs known). The 
only non-intrinsic parameter involved is τij. It describes the 
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vibratory power that goes into receiver subsystem relative to 
power incident to the subsystems boundary, so that strength 
of the coupling between the subsystems will depend on it. 
Two different values where here considered, 0.01 and 0.95, 
weak and strong coupling respectively. Input power was 
assumed to be 1 W for every frequency band, and energy of 
the vibratory state is obtained for both subsystems. 
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Figure 2. Mean loss factors values and error bars for a confi-
dence level of 95 %. τ12 = 0.01, σr P= 0.1. and σr E=0.1 

Test model definition 

Mathematical test model is defined by eqs. (4), where input 
parameters are the input power to each subsystem and the 
whole set of energies every subsystem has on each case. Out-
put parameters are the CLFs and ILFs of the system.  

Input parameters are supposed to be random variables with a 
Gaussian probability distribution function, pdf, each one 
centred on the reference values obtained by the direct 
method, and standard deviations, σi, that in an actual case 
would depend on the uncertainty of the acquisition system 
and experimental setup, are chosen such that their value rela-
tive to the mean value ranges from 0 % to 20 % for the en-
ergy sets and from 0 % to 25 % for the input power, simulat-
ing different groups of tests sets.  

Uncertainty estimation is based on the Monte Carlo method 
rather on propagating input uncertainties up to the output 
ones. Though, both could be used in this case, given the ana-
lytical expression of our test model, in real cases, where a 
much higher number of subsystems are involved, such rela-
tionships are difficult to obtain, if so. On the other hand, a 
Monte Carlo model in this more complicated scenario might 
reduce the mathematical effort, could reduce the number of 
hypothesis the uncertainty analysis is based of, and would 
allow the determination of the output parameters pdfs, and 

determine confidence interval when the output pdfs cannot be 
considered as Gaussians. 

Then a Monte Carlo model was run for an ensemble of 5000 
instances. All the pdfs were assumed to be Gaussian in this 
paper, and the standard uncertainty of the inputs is related to 
their variances. 

RESULTS 

Overview 

Figure 2 shows the results for a single example. Mean values 
are so close to the reference ones that taking into account any 
bias correction is useless, and negligible compared with the 
uncertainty introduced by random variations. 

Figure 3 shows an example of the behaviour of the uncertain-
ties for a whole set of input variances. Results form a surface 
on the results space that can be different for each frequency 
band. Results show how the surface of the standard deviation 
of the LFs is monotone increasing with both σrE and σrP.  

 

Figure 3. Relative uncertainty of the CLF values in the fre-
quency band of 250Hz. Upper plot, τ12 = 0.01; lower plot, 

τ12 = 0.95. Confidence level: 95 % 

Uncertainty model for the two-plate system 

Given the nature of the results surface a bilinear model is 
defined for the uncertainties. We assume that the uncertainty 
of every LF follows the expression: 

u(x,y) = fp (x,y)  (9) 

where x, and y are dummy variables that, in our case, will 
stand for the relative standard uncertainty of the energy and 
input power, and  
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where coefficients ξi are determined by fitting f(x,y) to the 
calculated data by the Monte Carlo model, zij, that is, the 
function 

( ) ( )( )
2

1 1

,,, ∑∑
= =

−=
m

j

m

i
iipij yxfzyxzF  (11) 

has to be minimized. What, in turn, leads to the equations 
system 

2 zij − f (xi ,yi )( )∂fp

∂ξp

(xi ,yi ) = 0
i , j
∑        ∀p = 1,...,n  (12) 

That can be expressed as: 

 

(13) 

Where ε is the mathematical expectation of the respective 
variables. 

This equation was solved for every frequency band. Figures 4  
and 5 show the upper and lower quartile values and the me-
dian of the coefficient values obtained. 
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 Figure 4.  Coefficient values of the CLF uncertainty model.   
for τ12 = 0.01 
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Figure 5.  Coeficient values of the CLF uncertainty model.  
for τ12 = 0.95.  

Differences within a given coefficient for the whole fre-
quency range are so small that the model can be simplified 
using the same expression for all the frequencies. These coef-
ficients correspond to the median of the relative sigmas of the 

loss factor of all the frequencies for the different uncertainty 
values of energy and power. (see Table 1). 

Table 1. Overall  coefficients for each LFs 

 ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 
η11 583.58 249.45 -554.40 103.74 137.67 2.28 
η12 947.44 261.65 -672.00 199.57 121.82 3.47 
η22 584.72 252.63 -551.60 102.85 136.78 2.39 
η21 942.62 257.60 -676.28 201.56 123.02 3.30 

 

Relative errors are obtained and show on in Table 2, which in 
the worse of cases rise up to 10%.  

Table 2. Coefficients of adjustment Error for LFs 

% ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 

η11 3.9 1.2 1.7 -1.6 2.4 2.2 
η12 5.8 2.8 2.3 -7.7 8.4 5.0 
η22 9.4 2.3 5.1 -9.8 8.2 9.2 
η21 5.6 2.7 2.7 -10.0 10.6 7.3 

  

Thus the bilinear surface that describes the LFs’ uncertainty 
of the systems as a function of the relative uncertainties in the 
energy and power is as follows: 

 
6543

2
2

2
1),( ξσξσξσσξσξσξσση +++++= rPrErPrErPrErPrEu

 
(14) 

Where ξi are presented in Table 1 

Therefore the uncertainty in the measurement of the LFs 
depends on the relative uncertainties of both the energy and 
the power according to Equation 14 for each of the LFs. Ac-
cording to this equation, Figure 5 presents the surfaces gener-
ated for one of the CLFs for both types of union studied. 

Figure 5 shows the results for a given case. . It can be ob-
served how the increase of either σrE or σrP causes an increase 
on the standard uncertainty of the corresponding LF uncer-
tainty. It is noteworthy that the increase in the relative energy 
uncertainty produces higher values on the uncertainty than 
when the power uncertainty is increased. 
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Figure 5.  Model of the uncertainty for η12 Upper plot, τ12 = 
0.01; lower plot, τ12 = 0.95.  

 

In addition, results of the series of tests run shows how the 
model stays working even for different strengths of the junc-
tion. 

INFLUENCE OF THE CONDITIONING OF THE 
PIM LINEAR EQUATION ON THE RESULTS 

When usin PIM method to determine LFs negative values are 
usually obtained. The most ususal reason stated to explain 
this fact is that the linear system that relates the parameters of 
the PIM model is ill-conditioned. The development of calcu-
lation estrategies to avoid such a results is a very active line 
of work nowadays. In this section, the influence of the condi-
tioning on the linear system of our case is investigated. 

The calculation of the singular values of the energy matrix of 
Eq 2, results: 
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There are two singular values of double multiplicity, where 
the minimun value corresponds to the negative sign of the 
eq.15. In our case this value is very small in the high fre-
quencies area. 

The condition number is defined as  

κ (E) =
smax(E)

smin (E)
  (17) 

where smax and smin stands for maximum and minimum singu-
lar values of the Energy matrix. This is a very simple case 
where κ will be the ratio between the two corresponding 
singular values (eq 15). 
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The condition number values obtained in this work for the 
various cases analysed are between κ = 2 and κ = 7.For the 
latter, negative loss factors can be presented. 

Actually present case is quite small so it is to be expected that 
no big problems arise from the matrix conditioning as it is 
happening. Nevertheless, the model can be extended to high-
er dimensional problems where conditioning of the system 
matrix plays a role. 

CONCLUSIONS 

An uncertainty model of the LFs has been developed for 
systems consisting of two plane plates, which generates a 
quadratic surface whose coefficients can be easily deter-
mined. 

Based on the previous results, it can be said that the LF un-
certainty depends on the energy and power uncertainties 
Playing a greater role the one coming from the subsystems 
energy. 

It should be noted that in spite of the dependence of the LFs 
with frequency, the uncertainties model can be defined the 
same for all frequencies if based on relative uncertainties. 

It has been shown that for the case under study matrix condi-
tioning does not influence much the validity of the results. 
Though, this conclusion cannot be extended to higher dimen-
sional systems that must be studied in the future. 

Finally, another important point that emerges from this study 
is the independence of the uncertainty surface with the junc-
tion strength between subsystems. 
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