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ABSTRACT 

This paper deals with the broadband noise due to the interaction between convected turbulent gusts and a rectilinear 

cascade of flat plates bounded by two parallel walls. An analytic formulation for the acoustic power spectrum due to 

this turbulence-cascade interaction is derived, which can be used to assess the effects of the span-wise wavenumber 

components of ingesting turbulent gust on the overall acoustic power spectrum. This three-dimensional theory is de-

duced based on the two-dimensional theory of Cheong et al. (2006, 2009). The three-dimensional model is shown to 

provide a close fit to the measured spectrum of rotor-stator interaction. The predictions using this three-dimensional 

model are also compared with those using the previous two-dimensional model by Cheong et al. (2006; 2009). 

Through this comparison, it is found that the contributions to the acoustic power of the span-wise wavenumber com-

ponents of incident turbulent gust is increased as the frequency augments, which is mainly due to three-dimensional 

dispersion-relation characteristics of acoustic waves. The formulation is also used to make a parametric study about 

the effects on the power spectrum of the blade number, stagger angle, gap-chord ratio, and Mach number.  

INTRODUCTION 

In modern society, aircraft has become a widely-used traffic 

tool. It is urgent for aero-engine manufacturers to develop 

quieter products. Among all the noise sources of aero-engine, 

fan noise is the most significant part which can be further 

categorized into tonal noise and broadband noise. Fan tonal 

noise has now been lessen with less blades and lower rotation 

speed of future Ultra High Bypass Ratio engine-design. Fan 

broadband noise may be categorized into self noise and in-

flow noise. Self noise is due to interaction between the turbu-

lence generated in the boundary layer on the blade surface 

and the trailing edge and may be further divided into five 

categories based on its generation mechanism [1]. Broadband 

inflow noise originates from interaction between inflow tur-

bulence with rotors or stators.  

Previously, many researches on fan broadband inflow noise 

have been carried out. Smith [2] has developed the first the-

ory based on classical aerodynamic vortex theory to predict 

the unsteady blade loading and the acoustic field upstream 

and downstream of a two-dimensional cascade of flat-plate 

airfoils perfectly aligned with a uniform mean flow. White-

head [3] has developed the LINSUB code to calculate the 

unsteady two-dimensional linearized subsonic flow in a cas-

cade, using the theory developed by Smith. Using the Wie-

ner-Hopf techniques, Glegg [4] has given an analytic expres-

sion for the unsteady blade loading, acoustic mode amplitude, 

and sound power output of a three-dimensional rectilinear 

cascade of blades with finite chord excited by a three-

dimensional vortical gust and investigated the effects of blade 

sweep and oblique gust arrival angles. Using the similar the-

ory, Hanson and Horan [5] also made a research about the 

broadband noise due to turbulence/cascade interaction. Later 

on, Hanson [6] extended the research to investigate the influ-

ence of lean and sweep on noise of cascades with turbulence 

inflow. Cheong et al. [7] generalized Smith theory to broad-

band noise, defined the concept of critical frequency, and 

made a fully investigation on modal acoustic power (MAP). 

Cheong et al. [8] also made a modal-decomposition analysis 

to assess the effects of its sub-components on modal acoustic 

power.  

Extending the previous works [7, 8] based on two-

dimensional theory, this paper investigates the broadband 

noise due to the interaction between convected turbulent 

gusts and a rectilinear cascade of flat plates bounded by two 

parallel walls. An analytic formulation for the acoustic power 

spectrum due to this three-dimensional turbulence-cascade 

interaction is derived. The three-dimensional model is shown 

to provide a close fit to the measured spectrum of rotor-stator 

interaction. The predictions using this three-dimensional 

model are also compared with those using the previous two-

dimensional model by Cheong et al. [7, 8]. Through this 

comparison, it is found that the contributions to the acoustic 

power of the span-wise wavenumber components of incident 

turbulent gust is increased as the frequency augments, which 

is mainly due to three-dimensional dispersion-relation char-

acteristics of acoustic waves. Main contribution of this work 

is to make clear the effects of the span-wise wavenumber 

components of ingesting turbulent gust on the overall acous-

tic power spectrum, which reveals that the number of incident 

turbulent gust modes directly involved in generating cut-on 

acoustic waves increases as the frequency increase. There-

fore, in the lower frequency range, three-dimensional acous-

tic power is less than its corresponding two-dimensional one, 

whereas, as the frequency increase, three-dimensional acous-

tic power spectrum closely follows those of two-dimension. 

The formulation is also used to make a parametric study on 

the effects on the power spectrum of the blade number, stag-

ger angle, gap-chord ratio, and Mach number. 
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RESPONSE OF RECTLINEAR CASCADE TO 
INCIDENT GUST  

The cascade geometry investigated in this paper and its coor-

dinate systems are shown in Fig.1. A three-dimensional cas-

cade of flat-plate airfoils with stagger angle   is assumed to 

be located in a two-dimensional uniform flow moving in the 

direction parallel to the chord, i.e., with zero incident angle. 

Homogeneous, isotropic turbulence is assumed to be con-

vected with mean flow as a “frozen gust pattern”. In Fig.1, 

),,(x 321 xx  is the unwrapped duct coordinate system, and 

),,(y 321 yy  is the cascade-fixed coordinate system.  

 
Figure 1. Cascade geometry and convected turbulent gust.  

3
x and 

3
y coordinates are coming directly out of the page. 

The linearised three-dimensional equations of momentum 

and continuity are   
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where U , V and W are the mean velocities in the 
1

x , 
2

x and 

3
x directions, respectively; u ,v and w are the corresponding 

unsteady velocity perturbations;  
0

 and  are the mean and 

perturbation densities, respectively. 

The flow is assumed to be isentropic, so that 

2p dp
a

ds 

 
  

 
                                                          (2) 

where a  is the speed of sound. 

For harmonic space and time dependence, the perturbation 

quantities may be written 

 
1 2 3

exp ( )

u u

v v
i t x x x

w w

p p

      
                               (3) 

where  u , v , w and p are constant complex amplitudes and 

 ,  and   are wave numbers. From Eqs. (1), (2) and (3), 

we can get the condition for a non-trivial solution: 

2
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            (5) 

 Two different physical phenomena are embodied in Eq. (5): 

acoustic waves and vorticity waves, and these will be consid-

ered separately. The acoustic waves satisfy the relations:  

2 2 2 2 2( ) ( ) 0U V W a                               (6) 

Eq. (6) can be expressed in the form:  

 
2 2 2 2 2

2 2

( ) ( ) -( - )( )

-

U V W a V W a U

a U

       


     
    (7) 

  with the assumption that  and    are real. The two values 

of  correspond one to upstream going and the other to 

downstream going perturbations. Vorticity wave gives the 

following relation:           

  
2

0U V W                                                      (8) 

Eq. (8) can be rearranged for  ,  

 
V W

U

  


 
                                                           (9) 

Disturbances of this type propagate without associated pres-

sure fluctuations. 

In this paper, the mean flow velocity in x3-direction, W, must 

be zero to satisfy the boundary condition given in Fig.2. A 

single wave number component 
1 2 3

( , , )k k k has a phase angle 

  between adjacent blades separated by a gap s given by  

 
1 2

( sin cos )k k s                                                    (10) 

 
Figure 2. Three-dimensional cascade geometry and the con-

vected turbulent gust. 

 

The phase angle   between adjacent blades of r-th acoustic 

wave generated from the cascade due to a single wave num-

ber component of vorticity 
1 2 3

( , , )k k k is of the form 

2
r
s r    . So the acoustic circumferential wave number   

of the r-th acoustic wave is given by 
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1 2
( sin cos ) 2

r

k k s r

s

  


 
                                    (11) 

Then, the solution for axial wave number can be expressed in 

terms of  
r

 , 
3

k and   as: 

2 2 2 2
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
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(12) 

Here, the acoustic wavenumber, γ, in the span-wise direction 

is replaced by the incident vorticity wavenumber, 
3

k , be-

cause the rectilinear cascade is uniform in the x3-direction.    

Following to the procedure presented by Smith [2]. For a 

harmonic gust of the form,   

1 1 2 2 3 3[ ( ) ]

1 2 3 0
( , , , ) i k y At k y k yw y y y t w e                                         (13) 

The acoustic pressure upstream and downstream of the cas-

cade is of the form, 

3 3 1 3 1 2( ( ) )

1 2 3 0 0 1 2
( , , , ) ( , ) r rik x i k At k x x

r
r

p x x x t Aw e R k k e  


  



    (14) 

where 
r

R is defined as the cascade response function.  

 

EXTENSION TO BROADBAND ACOUSTIC 
POWER FORMULATION  

Assuming that turbulence velocities are much smaller than 

mean velocities, Taylor’s hypothesis can be applied to treat 

the turbulence as “frozen gust pattern” which is convected 

with the mean velocities. Then, straightforward extension of 

the formula for the acoustic pressure for radiation due to an 

incident three-dimensional sinusoidal vortical gust leads to 

the expression for broadband acoustic pressure from a cas-

cade subject to the impinging turbulent gust, in the form,  
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where 
1 2 3

ˆ̂
ˆ ( , , )

D
w k k k is the three dimensional turbulence wave 

number spectrum of the turbulence velocity evaluated in the 

moving reference frame. Taking the Fourier transform of Eq. 

(15) with respect to t , we can transfer the acoustic pressure 

from time domain to frequency domain in this form,      
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(16) 

The term within the curly brackets corresponds to a delta-

function )(
11

Kk  , where AK 
1

. Only the component 

of the turbulence with an axial wave number 
1

k
 
equal to 

1
K  

contributes to acoustic pressure. Integration over the axial 

wave number is therefore trivial and Eq.(16) becomes:   
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Substituting Eq.(17) into the momentum equation, we can get 

acoustic velocities in the axial and gap-wise directions: 
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Acoustic power spectrum 

To calculate the acoustic power spectrum, the instantaneous 

acoustic intensity vector for sound propagation in a uniform 

mean velocity A is required, which formula is given by Gold-

stein [12]. Substituting Eq.(17)~(19) into Goldstein’ equation 

leads to the formula for the intensity spectrum as: 
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Following the procedures presented by Amiet [9] ,we can get: 
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 Inserting Eq.(22) into (21) and performing integrations over 

2
k and 

3
k

 
leads to: 
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Integrating the above Eq.(23) in the 
2 3

x x plane over an area 

of Bs R , we can get the acoustic power. Since the gap-wise 

direction wave numbers r and r  are periodic over a dis-

tance Bs , this integral is of the form 

   2 2 30 0
exp

R Bs

r r rr
i x dx dx RBs                               (24) 
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where the Kroneker delta function 
rr

 
enables the r summa-

tion in Eq.(23) to be eliminated. Therefore, the acoustic 

power spectrum can be expressed as 
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where )(
3

k
r

 is non-dimensional acoustic power factor de-
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Because of the periodicity of the turbulence spectrum in the 

2
x

 
direction, we can use Fourier series instead of the above 

Fourier integrals. So, the above Fourier integral over 
2

k can 

be converted to Fourier series with the fundamental spatial 

frequency equal to 2 Bs . The wave number in the  direction 

are therefore integer multiples of the fundamental spatial 

frequency and equal to 

2
m

BS


                                                                          (27) 

The turbulence wave numbers 
1

k and 
2

k , defined in the 

blade-fixed coordinate 
1 2 3

( , , )y y y , can be expressed in the 

cascade coordinate system 
1 2 3

( , , )x x x , which leads to the 

following relation,  
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Eq. (28) can be rearranged in the explicit form for 
m

k
,2
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where m is defined as the vortical mode number in the gap-

wise direction.   

Therefore, integration over 
2

k  at a constant frequency (or 

1
K ) can be replaced by: 
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Similar reasoning can be applied for the 
3

k in the 
3

x  direc-

tion. The wave number in the 
3

x  direction is integer multi-

ples of the fundamental spatial mode j and integration over  

3
k  can be replaced by: 
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Thus, Eq. (25) now turns into:  
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Formula (34) shows that the radiated sound power spectrum 

is due to an infinite number of impinging vortical modes m   

and j , of which each generates upstream and downstream 

going acoustic waves. However, Eq. (34) is not efficient 

when calculating the spectrum of acoustic power because 
r

R    

appears inside the three summations over the variables of m ,  

r and j . A transformation of the summation indices can be 

used to move 

r
R out from the three summation into a single 

summation at the expense of moving the turbulence spectrum 

ww
  under the three summations. Such an arrangement is 

advantageous since 
ww

 will normally be computed from a 

simple algebraic expression, whereas 

r
R requires another 

infinite summation of the so-called “cascade waves” and the 

numerical computation of the upwash integral equation in 

Smith’s theory. Since the basic spatial period of the flow is 

Bs , the acoustic wave number in 
2

x direction must satisfy 

2
l

l
Bs


                                                                         (36) 

where l  is the acoustic mode in 
2

x -direction. Inserting Eqs. 

(29) and (36) into Eq.(11), the m-th vortical wave number 

may be written in terms of the acoustic mode number l  and 

the cascade scattering index r  as 

 m l Br                                                                       (37) 

Inserting Eq.(37) into Eq.(29) gives 

 
2, 1

2
( ) tan

cos
l Br

k l Br K
Bs







                                  (38) 

By using Eq.(38),  Eq.(34) can be rearranged as: 

     
2

2
0

1 2,mod( , ) , 1 2, 3,

2
, , ,

cos
l l B r j ww l Br j

l j r

M
P R K k K k k

R

 
 



  
  


  

   

    (39) 

Turbulence spectra 

For simplicity, we just consider the circumstance that the 

turbulence impinging on the stator is homogeneous and iso-

tropic. Liepmann spectrum ),,(
321

kkk
ww

 is a very suitable 

model for wave number PSD:  

 
 

  

2 2 2 23
1 3

1 2 3 32
2 2 2 2

1 2 3

2
, ,

1
ww

k kw
k k k

k k k




 


   
               (42)  

Cut-on condition 

Equation (39) defines the acoustic power spectrum due to an 

infinite summation over the acoustic mode number l . How-

ever, if we consider only the propagating wave components 

in Eq. (39), the infinite summation over l  can be reduced to 

a finite frequency range. In a subsonic flow, aW  , propagat-

ing acoustic modes correspond to real values of 

r
 , which 

occur over the range of 
l


 
given by 
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                           (43) 

We use 
max

L and 
min

L to denote the maximum and minimum 

integers of acoustic mode number l satisfying the upper and 

lower inequality of Eq.(43). The range of r  and j  are also 

selected to ensure the cut-on condition and convergence, 

respectively. The broadband sound power over the frequency 

range 
HL

  can therefore be integrated as 

 

 

max

min

2
2

0

1 2,mod( , )

, 1 2, 3,

2
,
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, ,
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l l B
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r j ww l Br j
j r

M
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
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 



 
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                     (45) 

The predicted sound power spectrum are expressed in deci-

bels as a power level (PWL) defined as 

 
10 12

10log
10

PWL






 
  

 
                                               (46)  

 

COMPARISON WITH EXPERIMENTAL RESULT 

Using the 3-D formula derived in the last section, the broad-

band acoustic power spectrum can be calculated. In this sec-

tion, a comparison between predicted acoustic power spec-

trum and a model test data in a wind tunnel at NASA-Lewis 

is presented in Figure 3. The stator is modeled by the three-

dimensional cascade geometry shown in Figure 2, with a 

mean flow impinge on the tip of the stator with zero incident 

angle. The parameter data used in this computation is shown 

in Table 1. Turbulence scale and intensity were adjusted to 

provide a good match between the predicted data and the 

experimental result. 

Table 1. Parameters used for the acoustic power spectrum 

prediction  

M B s/c   22 Ww  R  R  

0.5 45 0.8 30° 4.2×10-4 0.035 0.8 

  

Figure 3. Comparison of acoustic power spectrum between 

the predictions and experimental result for a scaled model. 

Although the turbulence properties are represented simply by 

the Liepmann model with a single value of turbulence inten-

sity and scale, the agreement between the predicted acoustic 

power spectrum and the measurement is good, as shown in 

Figure 3. In addition, the difference between the predicted 

upstream and downstream acoustic power spectrum closely 

matches experimental data.  

 

COMPARISON WITH 2-D RESULT 

In Fig. 4, acoustic power spectra predicted using the present 

three-dimensional model are compared with those using the 

previous two-dimensional formulation [7, 8]. The parameters 

used in this calculation followed the baseline case used in the 

last section, except that the mean square value of turbulence 

velocity 2w was changed to 422 104 Ww . Note that the 

difference in magnitudes between the three-dimensional and 

two-dimensional spectra is induced by the difference of inci-

dent turbulence velocities: in two-dimensional model, the 

turbulence spectrum ),,(
321

kkk
ww

  is integrated over all the 

range of 
3

k
 
modes, while for three-dimensional model, it is 

only integrated over a finite number of 
3

k  modes satisfying 

the boundary condition as given in Eq. (32). Therefore, it is 

physically meaningless to compare their magnitudes. Instead, 

variations of spectra according to the frequency are of physi-

cal importance. As shown in Figure 4, high-frequency roll-off 

of the acoustic power spectra predicted using the present 

model closely follows that of the the two-dimensional model 

prediction. However, the positive slope of the spectra at 

lower frequencies, predicted using the present model, is 

steeper than that of two-dimensional predictions. Based on 

these observations, it can be inferred that as the frequency 

increases acoustic power spectrum due to three-dimensional 

interaction of ingesting turbulence with the rectilinear cas-

cade of flat-plates more resembles that in two-dimension. 

This result may be explained by the fact that the number of 

the span-wise wavenumber components of incident turbulent 

gust involved directly in contributing to the acoustic power is 

increased as the frequency augments. These characteristics of 

three-dimensional acoustic field are mainly due to the disper-

sion-relation properties of three-dimensional acoustic waves: 

the lowest cut-on frequency increases as the span-wise 

wavenumber increases, which is quite different from two-

dimensional ones . The approach used in the two-dimensional 

prediction is to start with a three-dimensional turbulence 

spectrum, integrate over all spanwise wavenumbers, and then 

apply this reduced spectrum at zero spanwise wavenumber. 

i.e., all input gusts are in phase along the full vane span This 

difference characterizes the broadband noise due to the inter-

action between the turbulence and rectilinear cascade, com-

pared with its corresponding two dimensional one. Important 

implication of this finding is that the high-frequency ap-

proximate expression, proposed by Cheong et al. [7] to effec-

tively predict the acoustic power spectrum due to turbulence-

cascade interaction, can be still applied for the prediction of 

acoustic power due to this three-dimensional interaction.   

 

Figure 4. Comparison of the 3-D prediction with the two-

dimensional prediction of Cheong et al. [7, 8].  
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PARAMETRIC STUDY 

In this section, we examine the effect of different parameters 

on the acoustic power spectrum. For the parametric studies 

shown in this section, a baseline case is chosen to correspond 

to that used in Sec.V. This parametric study is a useful refer-

ence for stator designers. 

Figure 5 shows the variation of one-third octave band power 

levels for 15, 30, 60B  . In the high frequency range, ap-

proximately 1000 Hzf  , the acoustic power both upstream 

and downstream is observed to be proportional to B , same as 

that observed in the two-dimensional cases of works [7, 8]. 

(a)  

(b)  

Figure 5. Variation of acoustic power spectrum with blade 

number, B . (a) upstream and (b) downstream. 

Figure 6 shows the power spectrum for the stagger angle of  
。15 , 。30  and 。45 . At the high frequency range, the acoustic 

power upstream is observed to be proportional to stagger 

angle while downstream shows an opposite phenomenon. 

However, the effect of stagger angle on the downstream spec-

trum is generally small, particularly at high frequencies.  

(a)  

(b)  

Figure 6. Variation of acoustic power spectrum with stagger 

angle,  . (a) upstream and (b) downstream. 

Figure 7 shows the power spectrum for the Mach number of 

4.0 , 5.0 and 6.0 . At the high frequency range, the acoustic 

power both upstream and downstream is observed to increase 

with Mach number, of which the reason is attributed mainly 

to the convection effect, as given in Eq. (20). 

(a)  

(b)    

Figure 7. Variation of acoustic power spectrum with Mach 

number, M . (a) upstream and (b) downstream. 

Figure 8 shows the power spectrum for the gap-chord ratio 

cs  0.4, 0.8 and 1.2. As the approximate expression of Eq. 

(42) in Ref. [7] predicts that the sound power is independent 

of gap-chord ratio (or solidity) above the critical frequency, 

chord length has little effect on sound radiation. However, at 

the high frequency range, as gap-chord ratio increases, the 

acoustic power both upstream and downstream is observed to 

slightly decrease. 
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(a)  

(b)  

Figure 8. Variation of acoustic power spectrum with gap-

chord ratio, s c . (a) upstream and (b) downstream. 

A similar parametric study is carried by Cheong et al. [7] 

under the same condition. The trends with various parameters 

obtained here closely match those obtained by Cheong et al. 

[7] which used two-dimensional theory, especially at high 

frequencies. The reason for this can be explained by the de-

scriptions given in Section III.   

CONCLUSION 

Characteristics of the acoustic power spectrum, upstream and 

downstream of a three-dimensional cascade of flat plates 

bounded by two parallel walls impinging by isotropic frozen 

turbulent gusts have been investigated. The acoustic power 

spectrum formulation was derived, which includes the effects 

of span-wise wavenumber components of the impinging tur-

bulent gust. This three-dimensional theory is based on the 

previous tonal noise theory of Smith [2] and its generaliza-

tion to two-dimensional broadband noise theory by Cheong et 

al [7]. The validity of the present model is confirmed by 

comparing its prediction with the experiment.  

Through the comparison of the acoustic power spectra pre-

dicted using the present three-dimensional model with those 

using the two-dimensional formula by Cheong et al. [7, 8], it 

is shown that the variation of the spectra with the frequencies 

comes to closer agreement between two prediction as the 

frequency increases, whereas there is significant difference of 

increasing rate of the spectra at lower frequencies. These 

results can be understood by noting the different dispersion 

relations between two- and three- dimensional acoustic fields. 

However, the closer agreements between the two models at 

higher frequencies allow the main findings provided in the 

previous works [7, 8] based on two-dimensional model to be 

valid and applied for the three dimensional broadband noise 

due to the interaction of the ingesting turbulence with the 

rectilinear cascade of flat plates bounded by two side walls.  

Through the subsequent parameter study, we aim at finding 

out the effect of different parameters such as stagger angle 

and blade number on the whole acoustic power. As discussed 

in the parametric study section, with Mach number and blade 

number increases, the acoustic power both upstream and 

downstream increases; with stagger angle increases, the 

acoustic power upstream decreases while the downstream 

acoustic power increases; and with gap-chord ratio increases, 

the acoustic power spectrum both upstream and downstream 

does not show significant differences. This can be utilized as 

the reference when designing the aero-engine fan.   
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