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ABSTRACT

The motion of an acoustic source relative to somerlfframe produces a Doppler shifting of the sedrequency at
a fixed point relative to that frame. For lineartion of the source greater than the speed of sahedadiated sound
forms a shock wave whose angle relative to thectime of motion varies with source speed. Someiegtbns in
acoustics involve a sound source rotating aroufiged point in space. For example, in surround sbsystems, it
may be desirable to generate the sound due toral smurce which moves around the listener. As amakample,
the Leslie speaker is a rotating loudspeaker sysesigned to produce amplitude and frequency mtidolaffects.
In aeroacoustics, the noise produced by rotatiogedters or rotors is of interest and the lineavevaquation solu-
tion for a rotating source has some relevance.dBseription of rotating sources also has appligshii other disci-
plines such as electromagnetism and astronomy.peisr develops a cylindrical harmonic expansioritfe sound
field produced by a rotating line source. The expamhas a simple form and reverts to the stanelgodession for a
fixed line source when the rotation speed is zZEow.rotational speeds where the source is supersivai sound field
produced by the expansion produces features sigildihose demonstrated for rotating supersonictpsonrces,
such as a Mach cone emanating from the sourceigusit spiral cylinder within which the field procks a spiral-
ling pattern, and an inner cusp where the circwiavefronts converge. The expansion is implememedatlab us-
ing a truncated form of the expansion, and exanmgfiesund fields are given for both subsonic argkssonic cases.

INTRODUCTION simplicity of analysis we consider a line sourceiténg a
single frequency. The source is assumed to belgltalthe

The motion of an acoustic source produces a Dogpiéing vertical z-axis and to rotate about it at a radiysand at a

of the source frequency which is dependent on thece’s rotation frequencyig . The corresponding angular velocity is

motion relative to a listener [1]. The sound fipldduced by
the source can be visualised in discrete time sejaence of . )
pulses radiating spherically from the source weidhty the is the rotational wavenumber
signal amplitude at that time [2]. For source viles greater
than the speed of sound, the radiated sound forstsoek
wave whose angle from the direction of motion vangth

source speed.

@, and the Mach number 81 =r @, / ¢ = K r. wherekg

The sound field produced by this rotating source loe de-
rived by first approximating the sound field usiaghumber
of stationary line sources using the principlessofround
sound systems. To represent a moving source thierssy

Some applications in acoustics involve a soundcsoutat- line sources must have time-varying amplitudes tvipco-
ing around a fixed point in space. For examplestirround duces a sound field with a multi-line spectrum. tipef the
sound systems, it may be desirable to generatsailned due number of statlonary_ sources tend to infinity throduces
to a sound source which moves around the listekeran- the exact representation.

other example, the Leslie speaker is a rotatingldpeaker

system designed to produce amplitude and frequeraju- THEORY

lation effects [3]. In aeroacoustics, the noisedpiced by
rotating propellers or rotors is of interest and #ffects of
turbulence and aerodynamics must be taken intouatdd-
7]. The equations describing the sound field arslinear.

The interior sound field in a region of space carrdpresent
in cylindrical coordinates as [8]

However, linear approximations have some relevamcethe N i % ik 2
sound field due to a rotating point source (theapBreen p(r.pzw)= Z e Icm (k, @) 3, (kr)e“dk,
function) is therefore of interest [5]. m=—e -

)
We consider here a description of a rotating sosowlrce

without the turbulence or aerodynamic effects cdusethe Where J_(k r) is the cylindrical Bessel functiof, is the
high speed motion of a physical source. In thig¢hs linear

wave equation is sufficient to describe the souietilf For
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radial component of the wavenumberk =+/k” -k * and

Ci(k;, &) themth expansion coefficient.

For the case where the sound field is independeittbe
expansion simplifies to

p(r.gw ZC

m=-co

)3, (kr)e™ )
and the sound field is represented as a sum offphwdes”

expimg with coefficientsC,(«) which are independent af

Similarly, thez-independent sound field exterior to a region
containing sources has the expansion

p(r.pw ZD ()R (k)e™ @

where H:) (kr) is the cylindrical Hankel function of the
first kind.

The sound field produced by a line source radiatirgingle
complex negative frequenay is

pline (rlqo,(l) ,t) = e_i%tH(l) (k|r, —r_'; )
J (1) k 'm(q"@s),
—i gt sz J ) r < rs (4)

=e
M .
z ‘]m (krs) Hrfwl) (kr)elm(w_%)’ r> rs
m=-M
The summation is limited to the finite rangeM-M] for a
finite value ofr because the Bessel functiods (kr) are

only significant over a finite range of argumentr Ehe inte-
rior expansion, at radius< rg the required order of the sum-
mation is M = kr and for the exterior expansion the re-

quired order isM = krg [9].

For a positive frequency, the sound field has enfobtained
from the conjugate of Eq. (4)

pllne(r’w’a)o’t):ei%tHcEZ)(k|F_rs|)

N

Z Ja (kr) Hr(nZ) (krs)eim(wé), r<r
=™ (5)

HO (k)™ ®) | ¢ >y

s

ZJ (kr.)

where Hiz) (kr) is the cylindrical Hankel function of the
second kind.

Consider first the approximation of the interior sdiield of

a stationary line source e(trs,(ps) as described by Eq. (4)
using a fixed array of line sources at radiysand angles

@ =2m /L. Since the truncated modal expansion has

2M+1 terms the number of sources must exceld12to
allow accurate reproduction of the modes. We wskiane
L = 2M+1 in what follows.
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The required line source amplitude weights are rdeted
by requiring that the weighted sum of line sourmersl fields
equals that of the desired source. For the intdietd, using
Eq. (4), this implies

fw ZJkr
_Z‘](kr (1)

If the virtual source is confined tg=r, the Hankel function
terms cancel and Eq. 6 implies, for eaghthat

(1) kr) im(¢-¢)
(6)

) im(¢-a)

iw@hwz€m (7)

ForL odd and for,_=rg, the solutions to this set of equations
are the angular sinc interpolation (“panning”) ftions [10]

w(g)=

_r i gnla-a) _ sin[L(#-¢)/2
2M +1,55, Lsin(g-¢)/ 2
A similar result applies for even, which we ignore here for

simplicity [10]. The same interpolation functiongpdy to the
reproduction of the exterior field.

®

If we want the sound source to rotate at a constate
around the listener with rotation frequerfgythen the source

position @ becomes a linear function of time,

@ (t) =27f t = wt and therefore the panning functions in
Eq. (8) become periodic functions of time. This neghat
each loudspeaker signal in Eqg. 6 at single frequenc (Eq.
4) is

modulated by M+1 frequencies nw, for

nD[—M,M] with phasesng, and therefore each loud-

speaker radiated\2+1 frequenciesv = @ + nw, , each with
its corresponding spatial frequency

k =k, +nk, ©)

For n<-[k /k_ | the spatial frequendy, becomes nega-

tive, and so the sound field produced by thiwudspeakers
becomes

p(r,¢w,w,.t)
_ e_'%t c n(g -axt) J Kk H(J) eim(g)—q)
5350, () (k)
(10)
where
{Lh>o
J = (1)
2,k <0

Rearranging, and noting that
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g ILn-m=qL
- el(n—m)ﬂ - . (12)
LS 0, otherwise
for integersy, yields
p(r.pw, @, .t)=

z z (@b tnax)t ei(n-qL)coJmqL (

n=-M g=-e

k

n

k

n

r)H® (

n-qL

r.)

(13)

for r <r . If we now let the number of loudspeakérsand

hence M , tend to infinity, then the terms fay # O tend to
zero, yielding the continuous result

p(r.o.w,.t)

* . . 14
= 300, () (g e B
for r <r_.Forr >r asimilar analysis yields
p(r.ow.m 1) =
(15)

DR r)ere

> 3, (k,

These expansions are generalisations of the cidmdhar-
monic addition theorem for a stationary line souaod Eq.s
(14) and (15) equal Eq. (4) fap, = 0.

As for the stationary case, the summation limits ba de-
rived from the properties of the Bessel functiomwdver in
the rotating source case, the argument of eacheBisgction
varies with mode numbem. We now derive approximate

limits for the index of J_ (kr) assumingm= kr, for the
subsonic and supersonics cases [9].

Subsonic source

Since each term in the exterior expansion of thatirg
source has the terrd (|k0 + rrkR| rs) , the negative limit for

the expansion,my, will be different to the positive limir,.
The negative limitm; is obtained from the solution to

(kD + mlkR) r=-m,or

m =—kr/(1+kr ) =—kr/(1+9m)  (@6)

Note that the frequencyk,, is zero for
m = —[kn/kR] <m and so negative frequencies do not

spatial

contribute significantly to the sound field in tlseibsonic
case.

The upper mode limit is obtained from the solutitm
(kD +mk )Jr =m or

m, =kr/(1-kr) =k /(1-m), M <1 @7)
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Supersonic source

For speeds above Mach It = k r >1 and the slope of the
line (ka + mkR) r_exceeds 1. There is no upper limit to the
summation and san, =« . For negative mode indices the

solution to — (ka + mlkR) r =-m yields an additional inter-
section

rns = _kors/(ers _1) = _kors/(gjt - 1) (18)

where m < m_. Betweenms andm, the mode magnitudes

are smaller, but they are significant outside thigge and the
expansion order is unbounded. In practice the mmdgni-
tudes are a decreasing functionrof 4nd so a finite summa-
tion over a symmetrical rangeM-, M] can be used with
reasonable results provid&tlis large enough.

SIMULATIONS

The expansion in Eq.s (14) and (15) were simulatedat-
lab. For reference, the mode magnitudes in dB gensode
number andgr are shown in Fig. (1) for a stationary 400 Hz
source (Mach 0) at a radius@fl metre. The mode distribu-
tion is symmetric, as expected from Eq. (4).
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Figure 1: Mode magnitudes for a stationary sounac®
(Mach 0) with spatial frequendy=7.4.
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Figure 2: Mode magnitudes for a sound source rgjatt
Mach 0.5 with spatial frequenéy=7.4.

Fig. (2) shows the mode magnitudes for the sowtaing at
Mach 0.5, (a rotational frequency of 27 Hz, wiih = 7.4).

The distribution is now skewed towards positive maaldi-
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ces as expected. The mode range calculated from (E6)
and (17) was -5 to 15, but the modes are calculated
[-30,30] to allow the mode magnitudes over a wideige to
be seen. For distances far from the source rathesmodes
rapidly attenuate below the lower mode limit of a#d are
small abovem= 15. In practise a higher limit than 15 would
further reduce the truncation error. At radii cloge the
source radiuskgr = 7.4), the mode bandwidth tends to be-
comes large due to the discontinuity produced leysthurce
and the field produced with a finite summation tiwill be
less accurate.

The mode magnitudes for Mach 1.5 (rotational freqye81
Hz) are shown in Fig. (3) for a mode range of [-100]. At
small radii the interior expansion requires a lasyrametric
order, but at radii approaching, the interior mode band-
width again becomes large. However, the modal batitiw
also increases far<rg This occurs because a cusp forms in

the sound field at a radiug =r /9, (kre=4.9) which

requires a high modal bandwidth to represent it [®8f radii
greater thamg, the mode bandwidth is also large because the
sound field displays a cylindrical shockwave thatliates
outwards in a spiral, creating a strong discontjnin the
field as a function of angle.

The negative mode limits calculated from Eq. (183 &q.

(16) were m, = -15 and m = -3, which defines a region
within which the mode magnitudes are reduced. Theew
numberk, is approximately zero fom = -5 and the mode

magnitude is a minimum here, showing that zeroueagy
waves do not contribute significantly to the fieldowever,
for negative wavenumbenmn nearingm; the mode magni-
tudes increase again. Hence, a large symmetringeraf at
least [-100,100] is required to accurately repretenfield.

The exterior mode spectrum has a large bandwidtt, is

relatively insensitive to the field radius, sinbe tshock wave
is a similar function of angle at all exterior riadi
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Figure 3: Mode magnitudes for a sound source ragat
Mach 1.5 with spatial frequenéy=7.4.

The real part of the sound field produced a0 for a 400 Hz
source travelling anticlockwise at Mach 0.5 is shaw Fig.

(4) for a mode range of [-5,20]. The sound fieldassistent
with that expected for a moving source with the efeants

compressed in the forward direction and expandedhén
reverse direction. The field is similar in appeamio that of
a source rotating at Mach 0.5, emitting pulses edte of 2
kHz which expand cylindrically at speedas shown in Fig.

®) [7].
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The effects of the mode truncation are most appaethe
source radius of 1 metre, where the wavefrontsnateper-
fectly circular. At this radiugyrs= 7.4 and the required mode
order is high as shown in Fig. (2).

y(m)

Figure 4: Sound field of a 400 Hz line source liatagat
Mach 0.5, mode range -5 to 20.
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Figure 5 Expanding wavefronts from a source mowang
Mach 0.5 emitting pulses at a 2 kHz rate.

The sound field of a 400 Hz source traveling at Mad is
shown in Fig. (6), for a mode range of [-100,100jis field
demonstrates the typical features of a supersaotiating
source, which are discussed in detail in [5]. Therse pro-
duces a finite-width cylindrical region which extEnout-
ward in a spiral, which contains those field powtsich are
caused by multiple retarded times. The width ofdiléndri-
cal spiral increases with Mach number and reduzessingle
sheet at Mach 1.0.

At the head of the cylindrical spiral is a shockvefaont
which would be a Mach cone for linear motion of @inp
source in the 3D case but which for a 2D rotating kource
is curved and is of infinite extent in The interior shock

wave forms a cusp at =r /9 =0.67m [5]. This cusp

forms at a convergence of the circular wavefrortat t
emerge from the source at previous times, as shoviig.
(7) for a line source rotating at Mach 1.5 emittjgses at a
rate of 6 kHz [7].
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y(m)
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Figure 6: Sound field of a 400 Hz line source liotaat
Mach 1.5, mode range —100 to 100.
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Figure 7: Expanding wavefronts from a source mowahg
Mach 1.5 emitting pulses at a 6 kHz rate.

CONCLUSIONS

This paper has derived a generalised form of thiednycal

harmonic addition theorem for a line source rotatn con-
stant rate. The modal expansion represents thénmtteld

as a sum of fixed spatial modes each of which lasedl at a
different frequency. This description offers aneaigtive
way of describing the characteristics of the figldhe para-
metric approach in [5]. Furthermore, the approaah be
extended to a description of general rotating ssuic 2D or
3D coordinates.

The modal expansion for a line source allows ttaperties
of more general rotating sources to be studiecedinese can
be expressed as an integral over a density ofbuoeces.

The linear analysis ignores turbulence effects, dhd
nonlinear effects that occur at large sound presswand so
will be most relevant at low Mach numbers. Howevewill
be more directly relevant to the simulation of dating
source using a circular discrete array of line sesr where
the rotation can be achieved electronically, ang alao be
relevant to the electromagnetic case.
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