
 Proceedings of 20th International Congress on Acoustics, ICA 2010 

23-27 August 2010, Sydney, Australia 

 

ICA 2010 1 

Studies on Substructure FMBEM and Direct Mixed-body 
FMBEM for Acoustic Performance Prediction of 

Reactive Mufflers 

Xiaobing Cui, Zhenlin Ji 
College of Power and Energy Engineering, Harbin Engineering University, Harbin, China 

PACS: 43.20.RZ 

ABSTRACT 

Due to the advantage of fast computation and drastic memory saving in solving the large-scale problems, the 
FMBEM has been developed rapidly in recent years. But it is hard to be employed directly to the acoustic computa-
tion of mufflers with complex structures (such as mufflers with extended inlet/outlet tubes or perforated tubes). Two 
approaches for FMBEM (the substructure FMBEM and the direct mixed-body FMBEM) are investigated and applied 
to predict the acoustic performance of mufflers in the present paper. For the substructure FMBEM, the interior acous-
tic domain is divided into several subdomains first, and then the FMBEM is applied to each domain. The direct 
mixed-body FMBEM may deal with the muffler with complex internal geometry without dividing subdomains, which 
is achieved by summing up all the integral equations in different zones and then adding the hypersingular integral 
equations at interfaces. The transmission loss of expansion chamber mufflers with extended tubes are predicted by us-
ing the two approaches and verified by the experimental data. The computational time is compared, and the computa-
tional accuracy and efficiency are discussed for the two approaches. 

INTRODUCTION 

Mufflers are widely used in the intake and exhaust systems of 
internal combustion engines and fluid machines. The numeri-
cal methods such as finite element method (FEM) and 
boundary element method (BEM) are suitable to predict the 
acoustic attenuation performance of mufflers[1,2]. Compar-
ing the computational complexity of FEM and BEM, BEM is 
the winner at the dimensionality of the problem due to its 
surface-only meshing scheme, but respect to the computa-
tional time, BEM handling dense matrices does not have an 
advantage over the FEM handling sparse or band matrices. If 
a direct solver for linear systems like Gaussian elimination is 
used, the two methods have an equal order of complexity. If 
an iterative solver is used and assuming that the iterations 
converge rapidly, the computational time of BEM still O(N2), 
where N is the number of unknowns. When the scale of the 
problems become large, the memory requirement of FEM 
and BEM is hard to be surported by the PCs since the huge 
number of nodes and too long computational time.  

To overcome these shortcomings, the fast multipole algo-
rithm (FMA) originally developed by Rokhlin[3] is employed 
for this difficulty, it provides an efficient mechanism for 
computing potential in large-scale systems and leads to an 
advanced boundary element method—FMBEM. FMBEM has 
been applied in various fields[4-5], including the acoustic 
problems, it has a possibility to drastically  reduce the com-
putational complexity and time in dealing with the large-scale 
sound field analysis. 

For the interior sound field analysis, the FMBEM is maily 
applied to calculate the sound field with single domain and 
single medium (air). However, the practical mufflers usually 
have complex internal structures which contain perforated 
tubes, thin bafflers, branched cavites, extended inlet/outlet 
tubes. The traditional FMBEM fails to yield reliable results 
because the presence of singular boundaries and very fine 
meshes have to be used and nearly singular behavior may 
occur in the integral equation. In order to solve this problem, 
two approaches (the substructure FMBEM and the direct 
mixed-body FMBEM) are proposed in the present paper. 

In the substructure FMBEM, the imaginary interfaces are 
constructed to divide the acoustic domain into several sub-
domains, so each domain has a well-defined bondary and the 
FMBEM can be employed to compute the matrix-vector 
products for each subdomain. Be different from the conven-
tional substructure BEM[6], the coefficient matrix is not 
explicitly calculated in FMBEM, so the global matrix-vector 
products should be obtained by superpose the matrix-vector 
products of each sub-domain. 

The direct mixed-body FMBEM combines the FMA with 
direct mixed-body BEM developed byWu etc.[7,8]. The ad-
vantage is that, the thin wall components just need to be dis-
cretized once, and no imaginary interface will be created, so 
it’s excellent for reducing the number of unknows to be 
solved. The disadvantage is that the thickness of these com-
ponents is neglected. If the thickness of thin walls can be 
ignored, the direct mixed-body FMBEM will be more suit-
able for the analysis of the large complex sound fields. 



23-27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010 

2 ICA 2010 

)

In the present paper, the two approaches are investigated and 
developed to predict the acoustic performance of mufflers 
with complex internal structures. As an example of applica-
tion, the transmission loss of an expansion chamber with 
extended inlet and outlet tubes is calculated by using the 
substructure FMBEM and direct mixed-body FMBEM. The 
constant elements are used to discretize the boundaries for 
simplicity. Finally, the availability and accuracy of the ap-
proaches are confirmed by comparing the numerical results 
with the experimental data.  

BASIC IDEA OF FAST MULTIPOLE METHOD 

Suppose that we evaluate the set of integrals as follow over n 
field panels, with respect to m source points. 
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With reference to Figure 1, the integrations could be per-
formed directly (for example by using a Gauss quadrature 
scheme) leading to order  computational complexity. 
If we apply the FMM, choosing a point 

0
 near the field 

region and another point 
0

(O m n×
y

x  near the source region, the inte-
grations can then be evaluated fast by the fast multipole algo-
rithm. The total computational cost of the operation is thus of 
order . ( )O m n+

 

Figure 1.  Scheme of basic FMM application 

The key idea of fast multipole method (FMM) is that, a mul-
tipole expansion of the kernel should be build in which the 
connection between the collocation point and the integration 
point is separated, and group the discretized nodes to differ-
ent sells and levels by a hierarchical structure, then according 
to the position relationship of the nodes, the computation of 
integrations can be then accelerated using the fast multipole 
algorithm[9].  

SUBSTRUCTURE FMBEM 

Fundamentals of FMBEM 

Figure 2.  Internal sound field with general bondary 
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Figure 3. Geometry of the four poins 

For the inernal sound field shown in Figure 2, it contains 
three kinds of boundaries: rigid boundary, vibration boundary 
and absorption boundary. The steady-state linear acoustics 
with the j te ω− convertion are assumed, where 1j = − . If point 
P is on a smooth bounary, then the sound pressure at P can be 
calculated by the Kirchhoff-Helmholtz boundary integral 
equation[10]. 
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The normal derivative of sound pressure is related to the 
particle normal velocity by 
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where ρ is the mean density of the fluid and ω is the angular 
frequency. So equation (2) becomes 
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where Q
∂ ∂n denotes the normal derivative, and G is the 

Green’s function given by 

( , ) exp( ) 4P Q PQG jkr π=r r PQr                        (5) 

Regarding each collocation point, in order to accelerate the 
computation of its boundary integration, the sound field has 
to be divided into near and far field according to the position 
relationship between the collocation and integration point, 
and then the FMM will be applied in the far field, so the ker-
nel intergral equation should be writen as a multipole expan-
sion. With reference to the geometry among four points in 
Figure 3, the Green’s function is transformed into the follow 
expansion according to the Gegenbauer’s addition theorem 
[11] and plane wave expansion[12]. 
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M is the multipole expansion point, L is the local expansion 
point, P is a collocation point and Q is a integration point, the 
four points are located with the provision that rPL < rLM and 
rMQ < rPM . k is the wavenumber, is the integration vector 
on the unite sphere, lh is the first kind of Hankel function, 

l  are the Legendre polynomials. Accordingly, the normal 
derivative of the Green’s function at q can be expressed by 

s

P
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For the multilevel translation relationship between the collo-
cation point and integration point in the far field, the multi-
pole expansion should be rewriten as: 
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m’L belongs to the interaction cells of the cell mL at the low-
est level L, and I is the level number at which the interaction 
contributions of cells are computed. λ means the cell’s center. 
According to the principle of cells dividing, there are no in-
teraction cells before level 2, so the equation (10) will be 
adopted when L≥3. Regarding cells, hierarchical structure is 
introduced where a cubic cell circumscribing the whole 
boundary is determined as the root cell and is divided into 
child cells at the lower level in turn. At each level interac-
tions between cells are numerically evaluated. (The full de-
tails to the concept of hierarchical cell structure and the defi-
nition of interaction cells and neighbor cells refer to [13]) 

Substituting equation (6) and equation (9) into equation (4), 
the multipole expansion connecting the collocation point and 
the integration point is built. All the interaction cells and 
neighbor cells at each level are difined based on a hierarchi-
cal cell structure. In the near field, the matrix-vector multipli-
cation in solving the boundary integral equaton is achieved 
by the conventional BEM (CBEM); in the far field, the ma-
trix-vector multiplication is achieved by the FMM. Finally, 
the whole matrix-vector products can be obtained by adding 
the two results (The full process of FMBEM refers to [13]). 

Substructure technique for FMBEM 

The substructure approach is widely used in the BEM analy-
sis for the silencers with complex internal structure. However, 
because the coefficient matrix in FMBEM is not calculated in 
the explicit form, this approach is impossible to be applied 
directly to FMBEM in the same manner as the substructure 
BEM approach. 

In order to apply the substructure approach to FMBEM, the 
whole acoustic domain is divided into two subdomains as 
shown in Figure 4. Discretizing the boundary of each subdo-
main, p1, v1 and p2, v2 denote the sound pressure and the par-
ticle velocity on the real bondary (all boundaries except the 
interface bounary) of subdomain 1Ω  and 2  respectively; p12, 
v12 and p21, v21 denote the sound pressure and the particle 
velocity on the interface belong to the subdomains 1

Ω

Ω and 2Ω  
respectively. This sound field contains: rigid wall boundary, 
vibration boundary at the inlet, absorption boundary at the 
outlet and continuity condition at the interface.  

 

Figure 4. Division of acoustic domain 

As mentioned above, the FMBEM directly yield the matrix-
vector products, we can not compose the global matrix by 
moving the unknowns of the subdomains to the left-hand side. 
Here we superpose matrix-vector products calculated in each 
sub-domain to efficiently obtain the global matrix-vector 
products. In the following expression, each matrix-vector 
product in the global matrix-vector products can be calcu-
lated efficiently by applying the FMBEM to each sub-domain. 
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on the interface, the continuity condition must be satisfied:  

1,2 2,1=p p                                     (13) 

1,2 2,1= −v v                                     (14) 

By this way, the substructure FMBEM can handle all kinds 
of sound field with complex internal structure. Also, the 
computational complexity of this procedure can be O(Na 
lnNa), where Na is the sum of number of unknows on the 
boundary of 1Ω and 2Ω . 

DIRECT MIXED-BODY FMBEM 

Idea of mixed-body 

As we know about the substructure FMBEM, if a model con-
tains many thin obstacles or if the one of the subdomains are 
intricately connected to another, then the zoning and match-
ing procedure of substructure technique is usually tedious and 
time consuming, especially for the thin walls with big size, 
the substructure FMBEM will not be a wise and practical 
choice. 

To avoid this problem, a method called direct mixed-body 
BEM derived from the conventional multi-domain BEM was 
proposed by Wu and Wan, they overcome the thin-body dif-
ficulty by using the hypersingular integral equation. In this 
approach, the real boundaries only need to be meshed once, 
and all the values on these dicretizing nodes can be governed 
by the mixed-body integral formulation.  

Combination of FMA and direct mixed-body BEM 

With reference to Figure 5, there are three kinds of boundary 
in the sound field, Sr, St  and Sp denote the regular wall plus 
the inlet and outlet ends, the thin walls (including the inrernal 
connecting tubes, extended inlet/outlet tubes and thin baffles) 
and the perforated tubes, respectively. The unit outward nor-
mal vector on Sr is pointing away from the interior acoustic 
domain, the unit normal vector on St and Sp can be pointing to 
either side of the thin walls. 

 n
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St 

St 

Sr 

Sr 

Sr 

 

Figure 5. Boundary definition for the mixed-body approach 

The multi-domain BEM is first employed to obtain several 
subdomains, each of which has a well-difined boundary. This 
will yield some imaginary interfaces. By forming a set of 
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subdomain boundary integral equations and adding them up, 
all the integrals over the imaginary interfaces are cancelled 
out due to the continuity condition at the imaginary inter-
faces[14]. Therefore, the single-domain direct mixed-body 
boundary integral equations are[8] 
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where P is the collocation point, G is the Green’s function,  
ρ is the mean density of the fluid, k is the wavenumber, and 
ξ is the non-dimensional transfer impendance for the perfo-
rated surface Sp , p+and p- is the sound pressure on the posi-
tive side and the opposite side of the thin walls (St or Sp), 

pn∂ ∂ means partial differentiation with respect to the normal 
direction of P. The expression of G is 

exp( ) 4G jkr rπ=                               (17) 

where r P Q= − , Q is any integration point at the boundary. 
Equation (15) and (16) together form a complete set of 
boundary integral equations for muffler analysis. Apparently 
that, the direct mixed-body BEM still have a difficullty that 
the hypersingular integral in equation (16) needs to be regu-
larized before mumerical implementation, there are various 
techniques for dealing with this problem[15-17], but lots of 
them have a complex implement process, and the complexity 
for programing will be increased. 

However, the combination of FMA and direct mixed-body 
BEM can handle this problem naturally. In order to apply the 
FMM to the mixed-body approach, the multipole expansion 
of Green’s function is used here again. Because of 
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the hypersingular kernels used in equation (16) are trans-
formed into the multipole expansion as follow: 
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So it is ideally suitable to mixed-body BEM for combining 
with the FMA. The same as the FMBEM, substituting equa-
tions (9) and (20) into equations (15) and (16), the multipole 
expansion connecting the collocation point and the integra-
tion point can be formed. Also, by discretizing the mixed-
body boundary integral equation, the matrix-vector products 
are solved using the mixed-body BEM and FMM in the near 
and far fields respectively. The matrix form of the combined 
equations (15, 16) is 

rr rt rp r

tr tt tp t
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−

the first row is generated by equation (15), the second and the 
third row by equation (16); the first subscript of each sub-
matrix refers to the position of the collcation point P, and the 
second subscript refers to the position of the unknown nodes. 

It should be noted that, the governing equations (15) and (16) 
consist of two integral equations with defferent integral do-
main, so considering the application of FMM in the far field, 
when we divide the nodes into defferent cells and levels, the 
nodes located on the regular boundaries and thin bondaries 
have to be grouped separately. 

NUMERICAL EXAMPLE 
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Figure 6. Circular expansion chamber with extended inlet 

and outlet tubes 

A circular expansion chamber with extended inlet and outlet 
tubes shown in Figure 6 is considered, the dimensions are: 
d1=d2=0.0486m, d=0.1532m, l1=0.08m, l2=0.04m, l=0.2823 
m. In order to apply the the substructure FMBEM, the acous-
tic domain is divided into two subdomains. For the employ-
ment of the direct mixed-body FMBEM, we set two kinds of 
boundary (Sr and St). The two approaches are applied to cal-
culate the transmission loss of the muffler. All the computa-
tions are conducted on a desktop PC with an Intel Pentium 4 
processor 2.93GHz and 2G of memory. 

We set a unit amplitude velocity at the inlet, and the anechoic 
condition (characteristic impedance condition) at the outlet, 
then transmission loss of the muffler may be determined by 
using the follwing expression: 

20log 10log
2

i i

o o

ip cv sTL
p s
ρ+

= +                    (22) 

where pi, vi is the sound pressure and particle velocity on the 
inlet surface, respectively, po is the sound pressure on the 
outlet surface, c is the speed of sound , Si and So are the areas 
of inlet and outlet of the muffler respectively. 

The transmission loss (TL) of the reactive silencer calculated 
by substructure FMBEM and direct mixed-body FMBEM is 
shown in Figure 7, and the numerical results are verified by 
comparing with the experimental data[18]. Figure 8 shows 
the total computational time of three methods at 500Hz, ver-
sus number of nodes. It may be seen that, compared to the 
BEM, the advantage of FMBEM in reducing computational 
time is more obvious as the number of nodes increasing, also, 
this figure shows the similar computational efficiency of 
substructure FMBEM and direct mixed-body FMBEM in 
solving the same number of equations. However, it can not be 
ignored that, the direct mixed-body FMBEM can reduce the 
amount of discretized nodes because of its thin components 
meshing once only without adding imaginary interface. So, if 
the total time is displayed versus the length of meshes as 
shown in Figure 9, it is clear that the direct mixed-body 

⎧ ⎫
⎪ ⎪

⎬
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,            (21) 
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