
 Proceedings of 20th International Congress on Acoustics, ICA 2010

23-27 August 2010, Sydney, Australia

ICA 2010 1

On Decreasing the Calculation Time
in Multi-Dimensional Acoustic Numerical Simulation

by Multi-GPU Parallel Computing

Naoki Kawada (1), Kan Okubo (1), Norio Tagawa (1) and Takao Tsuchiya (2)
(1) Faculty of System Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino-shi, Tokyo 191-0065, Japan

(2) Faculty of Science and Engineering, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe-shi, Kyoto 610-0321, Japan

PACS: 43.58.Ta, 43.55.Ka

ABSTRACT

Numerical analysis for sound wave propagation in time domain has been investigated widely as a result of computer
development. Now, the development of accurate numerical schemes in time domain is an important technical issue.
When we analyze large-scale sound wave propagation, the reduction of the calculation time is a necessary require-
ment. Recently, GPU (Graphic Processing Unit) is used as an acceleration tool for the calculation in various study
fields. This movement is called GPGPU (General Purpose computing on GPUs). In the last few years the perform-
ance of GPU keeps on improving rapidly. This study makes an examination on decreasing the calculation time in
acoustic field numerical analysis using GPU. We implement time-domain acoustic simulation (FDTD method, CIP
method, and GCIP method) on GPU by CUDA (Compute Unified Device Architecture).

INTRODUCION

To date, numerical analysis for sound wave propagation in
time domain has been investigated widely as a result of com-
puter development. Acoustic simulation in time domain is an
effective technique for the estimation of time-series sound
pressure data (e.g., nonlinear acoustic propagation phenome-
non, acoustical measurements and instrumentation, architec-
tural acoustics). Now, the development of accurate numerical
schemes in time domain is an important technical issue.

The finite difference time domain (FDTD) method [1-8] is
the most popular scheme used in time-domain acoustic simu-
lation. However, we know that, using Yee's leapfrog algo-
rithm, finite difference approximation certainly causes error
owing to numerical dispersion. In the past study, the authors
have proposed an acoustic simulation technique using gener-
alized constrained interpolation profile method (GCIP
method) [9], which is an expanded CIP method [10-16]. It is
a method of characteristic [17] with very high accuracy; i.e.,
it enables the calculation with less-numerical dispersion.
However, this method requires more calculation time than the
conventional dispersive schemes.

When we analyze large-scale sound wave propagation, the
reduction of the calculation time is a necessary requirement.
Of course, there are usually trade-off relationships between
required calculation time and numerical accuracy. Generally,
calculation time and computational cost are proportional to
the number of grid points. Additionally, more accurate
schemes also require more computational cost.

Recently, GPU (Graphic Processing Unit) is used as an ac-
celeration tool for the calculation in various study fields [18].
This movement is called GPGPU (General Purpose comput-

ing on GPUs) [19]. In the last few years the performance of
GPU keeps on improving rapidly. That is, a PC (personal
computer) with GPUs might be a personal supercomputer.
GPU computing gives us the high-performance computing
environment at a lower cost than before. Therefore, the use of
GPUs contributes to a significant reduction of the calculation
time in large-scale sound wave propagation.

This study makes an examination on decreasing the calcula-
tion time in acoustic field numerical analysis using GPU. We
implement time-domain acoustic simulation (FDTD method,
CIP method, and GCIP method) on GPU by CUDA (Com-
pute Unified Device Architecture) [20-21]. We examine suit-
able algorithm and efficient thread models of CUDA for
single- and multi- GPU computing.

ACOUSTIC NUMERICAL SIMULATION

Governing equations for linear acoustic fields

The governing equations for linear acoustic fields are given
in Eq. (1) and Eq. (2).

p
t
v

−∇=
∂
∂
r

ρ , (1)

t
p

K
v

∂
∂

−=⋅∇
1r

. (2)

In those equations, ρ denotes the density of the medium, K
is the bulk modulus, p is sound pressure and v is the parti-
cle velocity. Here we assume that the calculation is for a
lossless and homogeneous medium.

23-27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010

2 ICA 2010

Moreover, for simplicity, assuming (, 0, 0)xv v=
r in order

to analyze one-dimensional (1-D) acoustic field propagation
in the x-direction，we can obtain the following equations
from Eq. (1) and Eq. (2).

01
=

∂
∂

+
∂
∂

x
p

t
vx

ρ
, (3)

0=
∂
∂

+
∂
∂

x
v

K
t
p x . (4)

FDTD method

We can obtain Eqs. (5) and (6) from Eqs. (3) and (4) by em-
ploying second-order central difference approximation on a
staggered grid.

,),(),1(

),
2
1(),

2
1(2

1
2
1

x
jipjipt

jivjiv

nn

n

x

n

x

Δ
−+Δ

−

+=+
−+

ρ

 (5)

,
),

2
1(),

2
1(

),(),(

2
1

2
1

1

x

jivjiv
tΚ

jipjip
n

x

n

x

nn

Δ

−−+
Δ−

=

++

+

 (6)

where tΔ is the timestep, and xΔ is the grid size. Figure 1
depicts the grid model used in three-dimensional (3-D)
FDTD analysis.

GCIP(l,m) method

By addition and subtraction of Eq. (3) and Eq. (4), we obtain

0
)()(
=

∂
±∂

±
∂
±∂

x
Zvp

c
t
Zvp xx . (7)

In those equations, Z indicates the characteristic impedance
(i.e. KZ ρ=) and c represents the sound velocity in

medium (i.e. ρ/Kc =).

In addition, through simple spatial differentiation of the equa-
tions, the derivatives are given as

Figure 1. FDTD grid model

0
)()(
=

∂
∂±∂∂

±
∂

∂±∂∂
x

vZp
c

t
vZp xxxxxx . (8)

Therein, xx ∂∂=∂ / Figure 2 depicts the grid model used in
GCIP analysis, in which both acoustic field components and
the derivatives of fields are located on the same grid (i.e.,
collocated grid).

We show the means to calculate the fields of the (n + 1) time
step from the fields of n time step, applying the CIP method
to discretized acoustic field components. We define +xF ,

−xF , +xG and −xG as follows:

xx ZvpF +=+ , (9)

xx ZvpF −=− , (10)

xxxx vZpG ∂+∂=+ (11)

xxxx vZpG ∂−∂=− . (12)

Consequently, these components on grid points (xix Δ=) at
the time step n are given +xF , −xF , +xG and −xG as

)()()(iZvipiF n
x

nn
x ±=± , (13)

)()()(ivZipiG n
xx

n
x

n
x ∂±∂=± . (14)

Next, applying the Hermite interpolation (H and H′) to
)(iF n

x± and)(iGn
x± yields the following equations related

to propagation to the x± -direction.

),(H)(),(1 n
x

n
x

mln
x GFiF ±±
+
± ← , (15)

),(H)(),(1 n
x

n
x

mln
x GFiG ±±
+
± ← . (16)

Here, H(l,m) represents the Hermite interpolation with the l-th
order using additional m moments. For example, H(3,1) ex-
presses the Hermite interpolation with the 1st order using
physical values and their derivatives. That is, Hermite inter

Figure 2. GCIP grid model

23-27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010

ICA 2010 3

polation in case of the GCIP(3,1) method, represented as
H(3,1), is given as

,)()(

)()()(

1

)1(

1

)0(1

∑

∑

=
±

=
±

+
±

+

=

i

ik

n
xk

i

ik

n
xk

n
x

kGxh

kFxhiF

m

m
 (17)

.)()('

)()(')(

1

)1(

1

)0(1

∑

∑

=
±

=
±

+
±

+

=

i

ik

n
xk

i

ik

n
xk

n
x

kGxh

kFxhiG

m

m
 (18)

On the other hand, Hermite interpolation H(7,1) used in the
GCIP(7,1) method is given as

,)()(

)()()(

1

2

)1(

1

2

)0(1

∑

∑
±

=
±

±

=
±

+
±

+

=

i

ik

n
xk

i

ik

n
xk

n
x

kGxh

kFxhiF

m

m
 (19)

,)()('

)()(')(

1

2

)1(

1

2

)0(1

∑

∑
±

=
±

±

=
±

+
±

+

=

i

ik

n
xk

i

ik

n
xk

n
x

kGxh

kFxhiG

m

m
 (20)

where)()(xh m
k is assumed Hermite interpolation function.

That is, the present method involves the use of the values of
the acoustic field and their spatial derivatives at two or four
grid points.

Moreover, using the following Eqs. (21) to (24), one can
obtain acoustic field components (p and xv) of time step
(n+1).

2
)()()(

11
1 iFiFip

n
x

n
xn

+
−

+
++ +

← (21)

Z
iFiFiv

n
x

n
xn

x 2
)()()(

11
1

+
−

+
++ −

← (22)

2
)()()(

11
1 iGiGip

n
x

n
xn

x

+
−

+
++ +

←∂ (23)

Z
iGiGiv

n
x

n
xn

xx 2
)()()(

11
1

+
−

+
++ −

←∂ (24)

GPU PROGRAMMING BY CUDA

Recently, GPU has evolved into a highly parallel, multi-
threaded, many core processor with great computational abil-
ity and very high memory bandwidth owing to the huge com-
puting demand for real-time and high-definition 3D graphics

[4]. Figure 3 shows the performance comparison between
GPUs and typical CPUs.

In November 2006, NVIDIA introduced CUDA, a general
purpose parallel computing architecture. CUDA comes with a
software environment that allows developers to use C as a
high-level programming language. GPU should be used as an
acceleration tool for the calculation in computational acous-
tics.

Figure 4 depicts CUDA’s grid model and block model. The
blocks of the kernel grid, which is invoked by a CUDA pro-
gram on the host CPU, are enumerated and distributed to
multiprocessors with available execution capacity. The
threads of a thread block execute concurrently on one
Streaming Multiprocessor (SMP). As thread blocks terminate,
new blocks are launched on the vacated SMP.

A SMP consists of eight Streaming Processor (SP) cores, a
multithreaded instruction unit, on-chip constant cache, tex-
ture cache and shared memory. GPU have several SMPs; for
example, GeForce GTX 285 owns 30 SMPs, GeForce GTX
295 owns 2 × 30 SMPs. That is, GeForce GTX 285 has 240
parallel cores. Figure 5 shows the Hardware Model of
NVIDIA GPU (Compute Capability 1.0 – 1.3).

We can use multiple GPUs programming as CUDA devices,
if the computer system loads same type GPUs. Multiple
GPUs computation needs to transfer boundary data between
neighboring nodes across the PCI Express bus. Therefore, in
multiple GPUs programming, we must consider the overhead
introduced by the transference.

 NVIDIA GPU
 Intel CPU

 Peak
GFLOPS

2003 2004 2005 2006 2007 2008

0

200

400

600

800

1000

 NVIDIA GPU
 Intel CPU

Bandwidth
 GB/s

2003 2004 2005 2006 2007 20080

25

50

75

100

125

150

Source: ([21], 2010)

 (a) Peak FLOPS (b)Memory Bandwidth
 Figure 3. Performance comparisons between GPUs and
typical CPUs [4] (Source: ([21], 2010))

Grid

Block(0,0)

Block(0,1)

Block(0,N)

Block(1,0)

Block(1,1)

Block(1,N)

. . . Block(M,0)

Block(M,1)

Block(M,N)

. . .

Block(i , j)

Thread(0,0)

. . .

Thread(0,1)

Thread(0,n)

Thread(1,0)

Thread(1,1)

Thread(1,n)

Thread(m,0)

Thread(m,1)

Thread(m,n)

. . .

. . .

.

.

.
.
.
.

.

.

.

. . .

. . .

. . .

.

.

.
.
.
.

.

.

.

Figure 4. Thread Hierarchy (Grid of Thread Blocks) (Source:
([21], 2010))

23-27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010

4 ICA 2010

Chip

Global Memory

Streaming Multiprocessor N

Streaming
Processor 1

Streaming
Processor 2

Streaming
Processor 8

Instruction
Unit

・・・

Registers Registers Registers

Constant
Cache

Texture
Cache

Streaming Multiprocessor 2

Streaming
Processor 1

Streaming
Processor 2

Streaming
Processor 8

Instruction
Unit

・・・

Registers Registers Registers

Shared Memory

Constant
Cache

Texture
Cache

Streaming Multiprocessor 1

Streaming
Processor 1

Instruction
Unit

・・・

Registers

Shared Memory

Constant
Cache

Texture
Cache

・・・

Streaming
Processor 2

Registers

Streaming
Processor 8

Registers

Figure 5. Hardware Model of NVIDIA GPU (Compute Ca-
pability 1.0 – 1.3) (Source: ([21], 2010))

RESULTS

NVIDIA's CUDA programming environment is used with
NVIDIA Geforce GTX 285 and GTX 295 GPUs. For com-
parison, we employ the PC with Intel Core i7 920 2.67GHz.
This processor has eight hyperthreaded cores, or effectively
scales 8 threads. We use FLOPS (Floating point number Op-
erations per Second) and FUPS (Fields Update Per Second)
for performance evaluation of GPU calculation. 1 FUPS
means the capability of updating acoustic fields point once
per second. In this study, we use single precision floating-
point numbers.

We adopt a simple uniform media (i.e., air) as a calculation
model. Uniform square grids are employed for CPU and GPU
calculation. We calculate the pressure distribution at each
time. Moreover, in FDTD analysis we don’t consider absorb-
ing boundary condition, whereas GCIP analysis automati-
cally sets this condition.

 2-D Acoustic Field Calculation (using single GPU)

We estimated the calculation time required for a 2-D simple
acoustic model except for the absorbing boundaries. First, we
show calculation time using single Geforce GTX 285 GPU.
Table 1, 2, and 3 show results of comparison of the calcula-
tion time between the GPU and CPU results, where the
analysis region is 1024 × 1024 cells and whole calculation

Table 1. Calculation Time of FDTD method
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 3.23 3.99 0.33
GTX 285 0.34 37.90 3.16

Table 2. Calculation Time of GCIP(3,1) method
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 57.58 2.69 0.019
GTX 285 2.06 75.06 0.52

Table 3. Calculation Time of GCIP(7,1) method
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 100.66 2.90 0.011
GTX 285 2.12 137.76 0.51

time is divided into 1024 time steps. Here, all measurements
are made on the above 285 GPU and Intel Core i7 processor
machine with 12 GB of memory.

These tables also provide results of FLOPS and FUPS. FDTD
results using GPU is ca. 9.5 times faster than 8-threads CPU
calculation. The GCIP(3,1) method using GPU is ca. 28 times
faster than 8-threads CPU calculation. Moreover, the
GCIP(7,1) method using GPU is ca. 47.5 times faster than
CPU results. Relative comparison of the run-time between
the CIP result and FDTD result reveal the following: CIP
analysis requires more run-time than FDTD analysis when
equivalent discretization is used. However, by using GPU
calculation, difference of required calculation time between
FDTD result and CIP result became small.

2-D Acoustic Field Calculation (using multi-GPUs)

Next, we show results of acoustic field calculation using
multiple GPUs. Table 4 shows the comparison results of
FDTD calculation between the GPU results and CPU result,
where the analysis region is 8192 × 8192 cells and whole
calculation time is divided into 1024 time steps. All meas-
urements are made on the above 295 GPU and Intel Core i7
processor machine. This table gives the calculation time in
case of 1-GPU, 2-GPUs, 4-GPUs, and 8-GPUs. This result
illustrated FDTD calculation on 8 GPUs is ca. 48 times faster
than 8-thread CPU calculation.

Table 5 and 6 show the comparison results of GCIP calcula-
tion between the GPU results and CPU result, where the
analysis region is 3072 × 3072 cells and whole calculation
time is divided into 1024 time steps. All measurements are
made on the above 295 GPU and Intel Core i7 processor
machine. These tables also give the calculation time in case
of 1-GPU, 2-GPUs, 4-GPUs, and 8-GPUs. This result reveals
the followings: GCIP(3,1) calculation on 8 GPUs is ca. 117.5
times faster than 8-thread CPU calculation. On the other hand,
GCIP(7,1) calculation on 8 GPUs is ca. 114.7 times faster.

Next, Fig. 6, 7, and 8 respectively show the calculation time
by FDTD method and GCIP methods against the number of
grids in the case of 1-GPU, 2-GPUs, 4-GPUs, and 8-GPUs
computing. This indicates that the overhead introduced by the
data transference between multi-GPUs caused the increase of
calculation time when the number of grids is small. On the

Table 4. Calculation Time of FDTD method
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 176.91 4.66 0.39
GTX 295 * 1 26.07 31.63 2.64
GTX 295 * 2 13.33 61.86 5.16
GTX 295 * 4 6.81 121.09 10.09
GTX 295 * 8 3.68 224.09 18.67

Table 5. Calculation Time of GCIP(3,1) method
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 415.95 3.35 0.023
GTX 295 * 1 20.13 69.13 0.48
GTX 295 * 2 10.58 131.53 0.91
GTX 295 * 4 5.63 247.17 1.72
GTX 295 * 8 3.54 393.10 2.73

Table 6. Calculation Time of GCIP(7,1) method
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 540.01 4.87 0.018
GTX 295 * 1 22.19 118.46 0.44
GTX 295 * 2 11.98 219.41 0.81
GTX 295 * 4 6.66 394.67 1.45
GTX 295 * 8 4.71 558.07 2.05

23-27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010

ICA 2010 5

other hand, the calculation time almost linearly increases
with the increase of the number of grids if it becomes larger.
That is because operation time is dominant as compared to
data transference time with the increase of simulation area.

We show results of calculation time in case of the large-scale
analysis using multi-GPUs. Table 7 shows FDTD results,
where the analysis region is 23552 × 23552 cells and whole
calculation time is divided into 1024 time steps. FDTD calcu-
lation on 8 GPUs is 52.8 times faster than multi-thread calcu-
lation on CPU.

Table 8 and 9 show GCIP results, where the analysis region
is 10240 × 10240 cells. GCIP(3,1) calculation on 8 GPUs is
153 times faster than 8-thread calculation on CPUs. On the
other hand, GCIP(7,1) calculation on 8 GPUs is 179.6 times
faster than 8-thread calculation on CPU. As a comparison of
table 5 and 6 with table 8 and 9, we can see the multi-GPUs
calculation by GCIP methods is effective for the analysis of
the large-scale region.

Table 7. Calculation Time of FDTD method
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 1463.16 4.66 0.39
GTX 295 * 8 27.72 245.89 20.49

Table 8. Calculation Time of GCIP(3,1) method
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 4532.48 3.41 0.024
GTX 295 * 8 29.62 522.01 3.63

Table 9. Calculation Time of GCIP(7,1) method
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 6185.25 4.72 0.017
GTX 295 * 8 34.44 848.02 3.12

3-D Acoustic Field Calculation (using single GPU)

Table 10 shows results of comparison of the calculation time
for 3-D acoustic simulation between the GPU and CPU re-
sults, where the analysis region is 256 × 256 × 256 cells and
whole calculation time is divided into 1024 time steps. Here,
all measurements are made on the above 285 GPU and Intel
Core i7 processor machine. It is clarified that 3-D FDTD
acoustic calculation using GPU is ca.16.5 times faster than 8-
threads CPU calculation. Therefore, in single GPU FDTD
calculation, 3-D acoustic analysis is more accelerated than 2-
D analysis.

Table 11 and 12 show the comparison results of GCIP calcu-
lation between the GPU results and CPU result, where the
analysis region is 128 × 128 × 128 cells and whole calcula-
tion time is divided into 1024 time steps. These tables indi-
cate the followings; the 3-D GCIP(3,1) acoustic calculation
using GPU is ca. 37 times faster than 8-threads CPU calcula-
tion. Moreover, the GCIP(7,1) method using GPU is ca. 53
times faster than CPU results. In single GPU GCIP calcula-
tion, 3-D acoustic analysis is more accelerated than 2-D
analysis, similarly.

Table 10. Calculation Time of FDTD method
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 115.20 2.68 0.15
GTX 285 6.98 44.30 2.46

Number of Grids (106)

Ca
lc

ul
at

io
n

tim
e

[s
]

 8 GPU (GTX 295)
 4 GPU (GTX 295)
 2 GPU (GTX 295)
 1 GPU (GTX 295)

0.01 0.1 1 10 100 1000

0.1

1

10

100

Figure 6. Calculation Time (FDTD method)

Number of Grids (106)

Ca
lc

ul
at

io
n

tim
e

[s
]

 8 GPU (GTX 295)
 4 GPU (GTX 295)
 2 GPU (GTX 295)
 1 GPU (GTX 295)

0.01 0.1 1 10 100

1

10

100

Figure 7. Calculation Time(GCIP(3,1) method)

Number of Grids (106)

Ca
lc

ul
at

io
n

tim
e

[s
]

 8 GPU (GTX 295)
 4 GPU (GTX 295)
 2 GPU (GTX 295)
 1 GPU (GTX 295)

0.01 0.1 1 10 100

1

10

100

Figure 8. Calculation Time (GCIP(7,1) method)

3-D Acoustic Field Calculation (using multi-GPUs)

Next, we show results of 3-D acoustic field calculation using
multiple GPUs. Figure 9 depicts the present division model
for parallel computing. We divide the analysis domain in-
tomultiple sub-domains along z-direction. The number of
sub-domains is corresponding to that of multi-GPUs. Table
13 shows the comparison results of FDTD calculation be-
tween the GPU result and CPU result, where the analysis
region is 512 × 512 × 512 cells. All measurements are made
on the above 295 GPU and Intel Core i7 processor machine.

23-27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010

6 ICA 2010

Table 11. Calculation Time of GCIP(3,1) method
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 466.17 1.99 0.0046
GTX 285 12.62 73.51 0.17

Table 12. Calculation Time of GCIP(7,1) method
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 702.03 2.50 0.0031
GTX 285 13.27 132.05 0.16

This table gives the calculation time in case of 8-GPUs. This
result illustrated FDTD calculation on 8 GPUs is ca. 59 times
faster than 8-thread CPU calculation.

Figure 10 shows the calculation time by FDTD method
against the number of grids in the case of 8-GPUs computing.
In this figure, the results of following four cases are shown:
(1) case X; analysis domain expands along x-direction, (2)
case Y; analysis domain expands along y-direction, (3) case
Z; analysis domain expands along x, z-direction, (4) case
XYZ; analysis domain equally expands along x, y, and z-
direction. These results illustrates that analysis domain
should expand along the division direction.

CONCLUSIONS

This study made an examination on decreasing the calcula-
tion time in numerical analysis for sound wave propagation
in time domain using single GPU and multi-GPUs computing.
As a result, it is clarified that multi-GPU FDTD calculation is
faster than multi-CPU FDTD calculation by 48 times at the
maximum in 2-D acoustic analysis. On the other hand, multi-
GPU GCIP calculation needs less calculation time than multi-
CPU calculation by about 1/100 times. Therefore, the multi-
GPUs calculation is very effective for GCIP methods as an
acceleration tool.

Moreover, for large-scale acoustic simulation, these results
show the feasibility of high-speed and high-precise simula-
tion analysis by hardware acceleration using multi-GPU cal-
culation. In near future we intend to examine more effective
thread model for 3-D GPU calculation.

REFERENCES
1 K. S. Yee: IEEE Trans. Antennas Propag., vol. AP- 14,

no. 4, pp. 302-307, May 1966.
2 K. S. Kunz and R. J. Luebbers, The Finite Difference

Time Domain Method for Electromagnetics, CRC Press,
1993.

3 J. Virieux: Geophysics, vol. 49, no. 11, pp. 1933–1942,
Nov., 1984.

4 Zhang, C., LeVeque, R.J.: Wave Motion, vol. 25, no.3,
pp. 237–263, 1997

5 Kudo, H., Kashiwa, T., Ohtani, T.: vol.85, no.9, pp. 15–
24, 2002.

6 Sendo, Y., Kudo, H., Kashiwa, T., Ohtani, T.: Electron-
ics and Communications in Japan, vol.86, no.11, pp. 30–
37, 2003.

7 Sakamoto, S., Seimiya, T., Tachibana, H.: Acoustical
Science and Technology vol.23, no.1, pp. 34–39, 2002

8 M. Sato: Jpn. J. Appl. Phys. 46 (2007) 4514 .
9 K. Okubo, T. Tsuchiya, R. Seta, N.Tagawa, IEEE Ultra-

sonics Symposium, Rome, 2009
10 H. Takewaki, A. Nishiguchi and T. Yabe: J. Comput.

Phys., vol. 61, pp. 261–268, 1985.

Table 13. Calculation Time of FDTD method
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 836.97 2.96 0.16
GTX 295 * 8 14.17 174.59 9.70

Figure 9. Division model

Number of Grids (106)

C
al

cu
la

tio
n

tim
e

[s
]

 X
 Y
 Z
 XYZ

0 50 100

0

10

20

30

40

50

Figure 10. Calculation Time versus number of grids

11 T. Yabe, X. Feng and T. Utsumi: J. of Comput. Phys.,

vol. 169, pp. 556–593, 2001.
12 K. Okubo and N. Takeuchi: IEEE Trans. Antennas

Propag., vol. 55, No. 1, pp.111-119, Jan. 2007.
13 K. Okubo, S. Oh, T. Tsuchiya and N. Takeuchi: IEICE

Trans. Fundamentals, vol. E90-A, No. 9, pp.2000-2005,
Sept. 2007.

14 M. Konno, K. Okubo, T. Tsuchiya, and N. Tagawa,: Jpn.
J. Appl. Phys., 48 (2009) 07GN01

15 T. Tsuchiya, K. Okubo and N. Takeuchi: Jpn. J. Appl.
Phys., 47 (2008) pp. 3952-3958

16 M. Konno, K. Okubo, T. Tsuchiya and N. Tagawa: Jpn.
J. Appl. Phys. , 47 (2008), pp.3962-3963

17 G. D. Smith, Numerical Solution of Partial Differential
Equations, Oxford University Press, 1965.

18 T. Tsuchiya and H. Sekoguchi, Journal of the Japan
Society for Simulation Technology, 27, 4, pp.245-254,
2008.

19 http://gpgpu.org/
20 www.nvidia.com/object/cuda_home.html
21 http://developer.download.nvidia.com/compute/cuda/3_

0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf

