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ABSTRACT 

Numerical analysis for sound wave propagation in time domain has been investigated widely as a result of computer 
development. Now, the development of accurate numerical schemes in time domain is an important technical issue. 
When we analyze large-scale sound wave propagation, the reduction of the calculation time is a necessary require-
ment. Recently, GPU (Graphic Processing Unit) is used as an acceleration tool for the calculation in various study 
fields. This movement is called GPGPU (General Purpose computing on GPUs). In the last few years the perform-
ance of GPU keeps on improving rapidly. This study makes an examination on decreasing the calculation time in 
acoustic field numerical analysis using GPU. We implement time-domain acoustic simulation (FDTD method, CIP 
method, and GCIP method) on GPU by CUDA (Compute Unified Device Architecture). 

INTRODUCION 

To date, numerical analysis for sound wave propagation in 
time domain has been investigated widely as a result of com-
puter development. Acoustic simulation in time domain is an 
effective technique for the estimation of time-series sound 
pressure data (e.g., nonlinear acoustic propagation phenome-
non, acoustical measurements and instrumentation, architec-
tural acoustics). Now, the development of accurate numerical 
schemes in time domain is an important technical issue.  

The finite difference time domain (FDTD) method [1-8] is 
the most popular scheme used in time-domain acoustic simu-
lation. However, we know that, using Yee's leapfrog algo-
rithm, finite difference approximation certainly causes error 
owing to numerical dispersion. In the past study, the authors 
have proposed an acoustic simulation technique using gener-
alized constrained interpolation profile method (GCIP 
method) [9], which is an expanded CIP method [10-16]. It is 
a method of characteristic [17] with very high accuracy; i.e., 
it enables the calculation with less-numerical dispersion. 
However, this method requires more calculation time than the 
conventional dispersive schemes.  

When we analyze large-scale sound wave propagation, the 
reduction of the calculation time is a necessary requirement. 
Of course, there are usually trade-off relationships between 
required calculation time and numerical accuracy. Generally, 
calculation time and computational cost are proportional to 
the number of grid points. Additionally, more accurate 
schemes also require more computational cost. 

Recently, GPU (Graphic Processing Unit) is used as an ac-
celeration tool for the calculation in various study fields [18]. 
This movement is called GPGPU (General Purpose comput-

ing on GPUs) [19]. In the last few years the performance of 
GPU keeps on improving rapidly. That is, a PC (personal 
computer) with GPUs might be a personal supercomputer. 
GPU computing gives us the high-performance computing 
environment at a lower cost than before. Therefore, the use of 
GPUs contributes to a significant reduction of the calculation 
time in large-scale sound wave propagation. 

This study makes an examination on decreasing the calcula-
tion time in acoustic field numerical analysis using GPU. We 
implement time-domain acoustic simulation (FDTD method, 
CIP method, and GCIP method) on GPU by CUDA (Com-
pute Unified Device Architecture) [20-21]. We examine suit-
able algorithm and efficient thread models of CUDA for 
single- and multi- GPU computing. 

ACOUSTIC NUMERICAL SIMULATION 

Governing equations for linear acoustic fields 

The governing equations for linear acoustic fields are given 
in Eq. (1) and Eq. (2). 
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In those equations, ρ  denotes the density of the medium, K  
is the bulk modulus, p is sound pressure and v  is the parti-
cle velocity. Here we assume that the calculation is for a 
lossless and homogeneous medium.  
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Moreover, for simplicity, assuming ( , 0, 0)xv v=
r  in order 

to analyze one-dimensional (1-D) acoustic field propagation 
in the x-direction，we can obtain the following equations 
from Eq. (1) and Eq. (2). 
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FDTD method 

We can obtain Eqs. (5) and (6) from Eqs. (3) and (4) by em-
ploying second-order central difference approximation on a 
staggered grid.  
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where tΔ is the timestep, and xΔ is the grid size. Figure 1 
depicts the grid model used in three-dimensional (3-D) 
FDTD analysis. 

GCIP(l,m) method 

By addition and subtraction of Eq. (3) and Eq. (4), we obtain 
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In those equations, Z indicates the characteristic impedance 
(i.e. KZ ρ= ) and c  represents the sound velocity in 

medium (i.e. ρ/Kc = ). 

In addition, through simple spatial differentiation of the equa-
tions, the derivatives are given as 

  

Figure 1. FDTD grid model 
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Therein, xx ∂∂=∂ / Figure 2 depicts the grid model used in 
GCIP analysis, in which both acoustic field components and 
the derivatives of fields are located on the same grid (i.e., 
collocated grid). 

We show the means to calculate the fields of the (n + 1) time 
step from the fields of n time step, applying the CIP method 
to discretized acoustic field components. We define +xF , 

−xF , +xG  and −xG  as follows:  

xx ZvpF +=+ ,  (9) 

xx ZvpF −=− ,  (10) 

xxxx vZpG ∂+∂=+  (11) 

xxxx vZpG ∂−∂=− . (12) 

Consequently, these components on grid points ( xix Δ= ) at 
the time step n are given +xF , −xF , +xG  and −xG   as 
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Next, applying the Hermite interpolation ( H  and H′ ) to 
)(iF n

x±  and )(iGn
x±  yields the following equations related 

to propagation to the x± -direction. 
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Here, H(l,m) represents the Hermite interpolation with the l-th 
order using additional m moments. For example, H(3,1) ex-
presses the Hermite interpolation with the 1st order using 
physical values and their derivatives. That is, Hermite inter 

 

Figure 2. GCIP grid model 
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polation in case of the GCIP(3,1) method, represented as  
H(3,1), is given as 
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On the other hand, Hermite interpolation H(7,1) used in the 
GCIP(7,1) method is given as 
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where )()( xh m
k  is assumed Hermite interpolation function. 

That is, the present method involves the use of the values of 
the acoustic field and their spatial derivatives at two or four 
grid points. 

Moreover, using the following Eqs. (21) to (24), one can 
obtain acoustic field components ( p  and xv ) of time step 
(n+1). 
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GPU PROGRAMMING BY CUDA 

Recently, GPU has evolved into a highly parallel, multi-
threaded, many core processor with great computational abil-
ity and very high memory bandwidth owing to the huge com-
puting demand for real-time and high-definition 3D graphics  

[4]. Figure 3 shows the performance comparison between 
GPUs and typical CPUs. 

In November 2006, NVIDIA introduced CUDA, a general 
purpose parallel computing architecture. CUDA comes with a 
software environment that allows developers to use C as a 
high-level programming language. GPU should be used as an 
acceleration tool for the calculation in computational acous-
tics. 

Figure 4 depicts CUDA’s grid model and block model. The 
blocks of the kernel grid, which is invoked by a CUDA pro-
gram on the host CPU, are enumerated and distributed to 
multiprocessors with available execution capacity. The 
threads of a thread block execute concurrently on one 
Streaming Multiprocessor (SMP). As thread blocks terminate, 
new blocks are launched on the vacated SMP. 

A SMP consists of eight Streaming Processor (SP) cores, a 
multithreaded instruction unit, on-chip constant cache, tex-
ture cache and shared memory. GPU have several SMPs; for 
example, GeForce GTX 285 owns 30 SMPs, GeForce GTX 
295 owns 2 × 30 SMPs. That is, GeForce GTX 285 has 240 
parallel cores. Figure 5 shows the Hardware Model of 
NVIDIA GPU (Compute Capability 1.0 – 1.3). 

We can use multiple GPUs programming as CUDA devices, 
if the computer system loads same type GPUs. Multiple 
GPUs computation needs to transfer boundary data between 
neighboring nodes across the PCI Express bus. Therefore, in 
multiple GPUs programming, we must consider the overhead 
introduced by the transference. 
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 Figure 3. Performance comparisons between GPUs and 
typical CPUs [4] (Source: ([21], 2010)) 
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Figure 4. Thread Hierarchy (Grid of Thread Blocks) (Source: 
([21], 2010)) 
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Figure 5. Hardware Model of NVIDIA GPU (Compute Ca-
pability 1.0 – 1.3) (Source: ([21], 2010)) 

 

RESULTS 

NVIDIA's CUDA programming environment is used with 
NVIDIA Geforce GTX 285 and GTX 295 GPUs. For com-
parison, we employ the PC with Intel Core i7 920 2.67GHz. 
This processor has eight hyperthreaded cores, or effectively 
scales 8 threads. We use FLOPS (Floating point number Op-
erations per Second) and FUPS (Fields Update Per Second) 
for performance evaluation of GPU calculation. 1 FUPS 
means the capability of updating acoustic fields point once 
per second. In this study, we use single precision floating-
point numbers. 

We adopt a simple uniform media (i.e., air) as a calculation 
model. Uniform square grids are employed for CPU and GPU 
calculation. We calculate the pressure distribution at each 
time. Moreover, in FDTD analysis we don’t consider absorb-
ing boundary condition, whereas GCIP analysis automati-
cally sets this condition. 

 2-D Acoustic Field Calculation (using single GPU) 

We estimated the calculation time required for a 2-D simple 
acoustic model except for the absorbing boundaries. First, we 
show calculation time using single Geforce GTX 285 GPU. 
Table 1, 2, and 3 show results of comparison of the calcula-
tion time between the GPU and CPU results, where the 
analysis region is 1024 × 1024 cells and whole calculation  

Table 1. Calculation Time of FDTD method 
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 3.23 3.99 0.33 
GTX 285 0.34 37.90 3.16 

 

Table 2. Calculation Time of GCIP(3,1) method 
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 57.58 2.69 0.019 
GTX 285 2.06 75.06 0.52 

 

Table 3. Calculation Time of GCIP(7,1) method 
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 100.66 2.90 0.011 
GTX 285 2.12 137.76 0.51 

time is divided into 1024 time steps. Here, all measurements 
are made on the above 285 GPU and Intel Core i7 processor 
machine with 12 GB of memory. 

These tables also provide results of FLOPS and FUPS. FDTD 
results using GPU is ca. 9.5 times faster than 8-threads CPU 
calculation. The GCIP(3,1) method using GPU is ca. 28 times 
faster than 8-threads CPU calculation. Moreover, the 
GCIP(7,1) method using GPU is ca. 47.5 times faster than 
CPU results. Relative comparison of the run-time between 
the CIP result and FDTD result reveal the following: CIP 
analysis requires more run-time than FDTD analysis when 
equivalent discretization is used. However, by using GPU 
calculation, difference of required calculation time between 
FDTD result and CIP result became small. 

2-D Acoustic Field Calculation (using multi-GPUs) 

Next, we show results of acoustic field calculation using 
multiple GPUs. Table 4 shows the comparison results of 
FDTD calculation between the GPU results and CPU result, 
where the analysis region is 8192 × 8192 cells and whole 
calculation time is divided into 1024 time steps. All meas-
urements are made on the above 295 GPU and Intel Core i7 
processor machine. This table gives the calculation time in 
case of 1-GPU, 2-GPUs, 4-GPUs, and 8-GPUs. This result 
illustrated FDTD calculation on 8 GPUs is ca. 48 times faster 
than 8-thread CPU calculation. 

Table 5 and 6 show the comparison results of GCIP calcula-
tion between the GPU results and CPU result, where the 
analysis region is 3072 × 3072 cells and whole calculation 
time is divided into 1024 time steps. All measurements are 
made on the above 295 GPU and Intel Core i7 processor 
machine. These tables also give the calculation time in case 
of 1-GPU, 2-GPUs, 4-GPUs, and 8-GPUs. This result reveals 
the followings: GCIP(3,1) calculation on 8 GPUs is ca. 117.5 
times faster than 8-thread CPU calculation. On the other hand, 
GCIP(7,1) calculation on 8 GPUs is ca. 114.7 times faster.  

Next, Fig. 6, 7, and 8 respectively show the calculation time 
by FDTD method and GCIP methods against the number of 
grids in the case of 1-GPU, 2-GPUs, 4-GPUs, and 8-GPUs 
computing. This indicates that the overhead introduced by the 
data transference between multi-GPUs caused the increase of 
calculation time when the number of grids is small. On the  

Table 4. Calculation Time of FDTD method 
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 176.91 4.66 0.39 
GTX 295 * 1 26.07 31.63 2.64 
GTX 295 * 2 13.33 61.86 5.16 
GTX 295 * 4 6.81 121.09 10.09 
GTX 295 * 8 3.68 224.09 18.67 

Table 5. Calculation Time of GCIP(3,1) method 
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 415.95 3.35 0.023 
GTX 295 * 1 20.13 69.13 0.48 
GTX 295 * 2 10.58 131.53 0.91 
GTX 295 * 4 5.63 247.17 1.72 
GTX 295 * 8 3.54 393.10 2.73 

Table 6. Calculation Time of GCIP(7,1) method 
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 540.01 4.87 0.018 
GTX 295 * 1 22.19 118.46 0.44 
GTX 295 * 2 11.98 219.41 0.81 
GTX 295 * 4 6.66 394.67 1.45 
GTX 295 * 8 4.71 558.07 2.05 
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other hand, the calculation time almost linearly increases 
with the increase of the number of grids if it becomes larger. 
That is because operation time is dominant as compared to 
data transference time with the increase of simulation area.  

We show results of calculation time in case of the large-scale 
analysis using multi-GPUs. Table 7 shows FDTD results, 
where the analysis region is 23552 × 23552 cells and whole 
calculation time is divided into 1024 time steps. FDTD calcu-
lation on 8 GPUs is 52.8 times faster than multi-thread calcu-
lation on CPU.  

Table 8 and 9 show GCIP results, where the analysis region 
is 10240 × 10240 cells. GCIP(3,1) calculation on 8 GPUs is 
153 times faster than 8-thread calculation on CPUs. On the 
other hand, GCIP(7,1) calculation on 8 GPUs is 179.6 times 
faster than 8-thread calculation on CPU. As a comparison of 
table 5 and 6 with table 8 and 9, we can see the multi-GPUs 
calculation by GCIP methods is effective for the analysis of 
the large-scale region. 

 

Table 7. Calculation Time of FDTD method 
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 1463.16 4.66 0.39 
GTX 295 * 8 27.72 245.89 20.49 

Table 8. Calculation Time of GCIP(3,1) method 
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 4532.48 3.41 0.024 
GTX 295 * 8 29.62 522.01 3.63 

Table 9. Calculation Time of GCIP(7,1) method 
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 6185.25 4.72 0.017 
GTX 295 * 8 34.44 848.02 3.12 

 

3-D Acoustic Field Calculation (using single GPU) 

Table 10 shows results of comparison of the calculation time 
for 3-D acoustic simulation between the GPU and CPU re-
sults, where the analysis region is 256 × 256 × 256 cells and 
whole calculation time is divided into 1024 time steps. Here, 
all measurements are made on the above 285 GPU and Intel 
Core i7 processor machine. It is clarified that 3-D FDTD 
acoustic calculation using GPU is ca.16.5 times faster than 8-
threads CPU calculation. Therefore, in single GPU FDTD 
calculation, 3-D acoustic analysis is more accelerated than 2-
D analysis. 

Table 11 and 12 show the comparison results of GCIP calcu-
lation between the GPU results and CPU result, where the 
analysis region is 128 × 128 × 128 cells and whole calcula-
tion time is divided into 1024 time steps. These tables indi-
cate the followings; the 3-D GCIP(3,1) acoustic calculation 
using GPU is ca. 37 times faster than 8-threads CPU calcula-
tion. Moreover, the GCIP(7,1) method using GPU is ca. 53 
times faster than CPU results. In single GPU GCIP calcula-
tion, 3-D acoustic analysis is more accelerated than 2-D 
analysis, similarly. 

Table 10. Calculation Time of FDTD method 
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 115.20 2.68 0.15 
GTX 285 6.98 44.30 2.46 

Number of Grids (   106)

Ca
lc

ul
at

io
n 

tim
e 

[s
]

 8 GPU (GTX 295)
 4 GPU (GTX 295)
 2 GPU (GTX 295)
 1 GPU (GTX 295)

0.01 0.1 1 10 100 1000

0.1

1

10

100

 
 

Figure 6. Calculation Time (FDTD method) 
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Figure 7. Calculation Time(GCIP(3,1) method) 
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Figure 8. Calculation Time (GCIP(7,1) method) 
 

3-D Acoustic Field Calculation (using multi-GPUs) 

Next, we show results of 3-D acoustic field calculation using 
multiple GPUs. Figure 9 depicts the present division model 
for parallel computing. We divide the analysis domain in-
tomultiple sub-domains along z-direction. The number of 
sub-domains is corresponding to that of multi-GPUs. Table 
13 shows the comparison results of FDTD calculation be-
tween the GPU result and CPU result, where the analysis 
region is 512 × 512 × 512 cells. All measurements are made 
on the above 295 GPU and Intel Core i7 processor machine. 
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Table 11. Calculation Time of GCIP(3,1) method 
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 466.17 1.99 0.0046
GTX 285 12.62 73.51 0.17 

Table 12. Calculation Time of GCIP(7,1) method 
Device Calc Time[s] GFLOPS GFUPS

Core i7(8 threads) 702.03 2.50 0.0031
GTX 285 13.27 132.05 0.16 

 

This table gives the calculation time in case of 8-GPUs. This 
result illustrated FDTD calculation on 8 GPUs is ca. 59 times 
faster than 8-thread CPU calculation. 

Figure 10 shows the calculation time by FDTD method 
against the number of grids in the case of 8-GPUs computing. 
In this figure, the results of following four cases are shown: 
(1) case X; analysis domain expands along x-direction, (2) 
case Y; analysis domain expands along y-direction, (3) case 
Z; analysis domain expands along x, z-direction, (4) case 
XYZ; analysis domain equally expands along x, y, and z-
direction. These results illustrates that analysis domain 
should expand along the division direction.  

 

CONCLUSIONS 

This study made an examination on decreasing the calcula-
tion time in numerical analysis for sound wave propagation 
in time domain using single GPU and multi-GPUs computing. 
As a result, it is clarified that multi-GPU FDTD calculation is 
faster than multi-CPU FDTD calculation by 48 times at the 
maximum in 2-D acoustic analysis. On the other hand, multi-
GPU GCIP calculation needs less calculation time than multi-
CPU calculation by about 1/100 times. Therefore, the multi-
GPUs calculation is very effective for GCIP methods as an 
acceleration tool.  

Moreover, for large-scale acoustic simulation, these results 
show the feasibility of high-speed and high-precise simula-
tion analysis by hardware acceleration using multi-GPU cal-
culation. In near future we intend to examine more effective 
thread model for 3-D GPU calculation. 
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Figure 9. Division model 
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Figure 10. Calculation Time versus number of grids 
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