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ABSTRACT

This paper presents an analytical study of the sound power radiated from a two dimensional flat plate airfoil in a
turbulent stream. A classical approach for describing analytically the response of a flat plate, with a finite chord, to the
impingement of turbulence is extended to be valid at all frequencies. Analytical asymptotic expressions, valid at low
and high frequencies, are provided for the upstream, downstream and total sound power. A study of the effects of chord
length on the total sound power at all reduced frequencies ispresented. The isolated airfoil model presented in this
paper will subsequently be used as a benchmark to study the effects of cascade in broadband interaction noise of fans.

I. INTRODUCTION

This paper presents the results of a study of the sound power
(per unit span) due to an isolated 2D flat plate airfoil in a turbu-
lent stream. The model for sound power presented in this study
is to be subsequently compared with the 2D cascade interac-
tion noise model due to Cheong et al. [1], where the unsteady
blade loading is computed numerically, in order to study the
effects of cascade on interaction broadband noise of fans. The
derivation of sound power presented in this report extends the
classical results of Amiet [2] to a 2D problem. This problem
has been first addressed by Atassi et al. [3], who used numer-
cial schemes to compute the unsteady pressure jump across the
flat plate, but further insight into the physics is presentedin this
paper by using analytical expressions for the unsteady blade
loading due to the impingement of a turbulent gust. The char-
acteristics of the incoming turbulence are expressed in terms
of the Liepmann turbulent velocity spectrum, for the sake of
consistency with the model by Cheong et al. [1]. The airfoil
response to the turbulent upwash is expressed in terms of the
analytical response functions due to Amiet [4, 5].

Three main results are shown in this paper. First, the "switch"
condition introduced by Amiet [2] for the use of either a low
frequency or the high frequency flat-plate response function is
refined in order to remove possible discontinuities in the noise
spectrum, which can occur at low observer angles. Analytical
asymptotic expressions, valid at low and high frequency, ofthe
sound power per unit span are then derived. Finally, the effects
of the airfoil chord length on the sound power are investigated
for the full range of reduced frequency. Three different scaling
laws of the sound power with the airfoil chord are identified.

II. POWER SPECTRAL DENSITY OF THE BROAD-
BAND NOISE RADIATED FROM A 2D FLAT PLATE

This section presents an expression for the power spectral den-
sity (PSD) of the broadband noise due to the impingement of
homogeneous and isotropic turbulence on the leading edge of
a 2D flat plate airfoil. This model extends the classical result
of Amiet [2] for a 3D airfoil to a 2D airfoil (see Fig.1). A
derivation of the PSD similar to the one of this section, but for
a skewed isolated airfoil and where the pressure jump∆p is
computed numerically, can be found in Ref. [3].
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Figure 1: Configuration of the 2D problem of turbulence-flat
plate interaction noise.

First, the homogeneous and isotropic turbulent velocity field
is assumed to be a "frozen" velocity pattern as it passes the
leading edge of the flat plate, and the upwash turbulent velocity
can therefore be written as

w(X, t) =
1

2π

∞̂

−∞

W (kX)e−ikX(X−Ut)dkX , (1)

whereW is the upwash velocity in the wavenumber domain
and is defined in a frame moving with the base flow as

W (kX) =

∞̂

−∞

w(X)eikXXdX. (2)

For a single harmonic vortical gust, with upwash velocity of
the formw0e−kX(X−Ut), the pressure jump is given by

∆p(X, t) = 2πρ0Uw0g(X,kX ,M)eikXUt , (3)

whereM =U/c0 andg(X,kX ,M) is the non-dimensional trans-
fer function between the turbulent upwash velocity and the
pressure jump. In this study, the flat plate response functions
g derived by Amiet [4, 5] are used, following the same ap-
proach as in Ref. [6], while setting the spanwise wavenumber
to zero in order to consider a fully 2D problem. The complete
expression of the unsteady pressure jump, in the time domain,

ICA 2010 1



is obtained by combining Eqs.1 and3 as

∆p(X, t) = ρ0U

∞̂

−∞

W (kX)g(X,kX ,M)eikXUtdkX . (4)

The unsteady pressure jump in the frequency domain can be
deduced from Eq.4 as

∆ p̂(X,ω) =

∞̂

−∞

∆p(X, t)e−iωtdt,

= 2πρ0W (KX)g(X,KX,M) , (5)

whereKX = ω/U . Considering that the surface of the flat plate
is rigid, the radiated acoustic pressure due to the unsteadypres-
sure jump∆p is given from Green’s theorem by

p(x,y, t) =
−1
2π

∞̂

−∞

b̂

−b

∆ p̂(X,ω)
∂G
∂y

(x,y,X,ω)eiωtdXdω.

(6)
The 2D Green’s function, with effects of mean flow, is given
by

G(x,y,X,ω)=
−ieik0M(x−X)/β 2

4β
H(2)

0

(

k0

β 2

√

(x−X)2+β 2y2

)

,

(7)

wherek0 = ω/c0, β =
√

1−M2 and whereH(2)
0 is the Hankel

function of the second kind and of order 0. The derivative of
Eq.7 with respect toy is given by

∂G
∂y

(x,y,X,ω) =
iyeik0M(x−X)/β 2

4β
√

(x−X)2+β 2y2

×H(2)
1

(

k0

β 2

√

(x−X)2+β 2y2

)

. (8)

Assuming that the observer is in the far-field, the Hankel func-

tion H(2)
1 and the flow-corrected distance between source and

observer(x−X)2+β 2y2 can be approximated, respectively, as

H(2)
1 (ζ )≈

√

2
πζ

e−iζ+i3π/4, (9)

(x−X)2+β 2y2 ≈ σ − Xx
σ

, (10)

whereσ =
√

x2+β 2y2. Considering that the second term of
Eq.10can be neglected in amplitude terms, substituting Eqs.9
and10 into Eq.8 leads to the far-field approximation

∂G
∂y

(x,y,X,ω) =
iy
4

√

2k0

πσ3 e
−i

k0
β2 [σ−Xx/σ−M(x−X)]+i 3π

4 . (11)

The PSD of the acoustic pressure is given by

Spp(x,y,ω) =

∞̂

−∞

〈p∗ (x,y, t) p(x,y, t + τ)〉e−iωτdτ, (12)

where the brackets〈.〉 represent the ensemble average. Substi-

tuting Eq.6 into 12 yields after some algebra

Spp(x,y,ω) =
1

2π

∞
ˆ ˆ

−∞

b
ˆ ˆ

−b

SQQ(X1,X2,ω1,ω2)ei(ω1−ω2)t

×∂G∗

∂y
(x,y,X1,ω1)

∂G
∂y

(x,y,X2,ω2)δ (ω −ω2)dX1dX2dω1dω2.

(13)

The cross-spectrum of the unsteady pressure jumpSQQ between
two pointsX1 andX2 of the plate surface is written as

SQQ(X1,X2,ω1,ω2) =〈∆ p̂∗ (X1,ω1)∆ p̂(X2,ω2)〉
=(2πρ0)

2〈W ∗ (KX1)W (KX2)〉 (14)

×g∗ (X1,KX1,M)g(X2,KX2,M) ,

whereKX1 = ω1/U andKX2 = ω2/U .

Assuming homogeneous turbulence, settingX2−X1 = δX and
using the definition of the upwash velocity spectrum yields

〈W ∗ (KX1)W (KX2)〉=2πδ (KX1−KX2)

∞̂

−∞

eiKX2δX

×〈w(X1)w(X1+δX)〉dδX

=2πδ (KX1−KX2)Φww(KX2) , (15)

whereΦww is the 1D velocity spectrum of the turbulent up-
wash. The Liepmann 1D turbulent velocity spectrum is used
here for consistency with the model of Ref. [1], to which the
current model will be compared in subsequent work, and is
given by

Φww(KX) =
u2L
2π

1+3K2
XL2

(

1+K2
XL2

)2 . (16)

The final expression for the PSD of the acoustic pressure radi-
ated to the far-field is obtained by substituting Eqs.11, 14 and
15 into Eq.13 to give

Spp(x,y,ω) =
πρ2

0b2y2Uk0

2σ3 Φww(KX) |L (x,y,KX)|2 , (17)

whereL is a non-dimensional unsteady loading term defined
as

L (x,y,KX) =
1
b

b̂

−b

g(X,KX,M)e
i

k0
β2 (M−x/σ)X

dX. (18)

Since the main interest of this study is sound power, it is con-
venient to express the location of the far field observer in polar
coordinates(r0,θ ). Equations.17 and18 can, therefore, be re-
written as

Spp(r0,θ ,ω) =
πρ2

0b2sin2θUk0

2r0A(θ ,M)3
Φww(KX) |L (θ ,KX)|2 , (19)

where the notationA(θ ,M) =
√

1−M2sin2θ has been intro-
duced for the sake of brevity, and where

L (θ ,KX) =
1
b

b̂

−b

g(X,KX ,M)e
i

k0
β2

(

M− cosθ
A(θ ,M)

)

X
dX. (20)

Following the approach of Amiet [6], the unsteady loading
term L is defined differently depending on the value of a
chord-based acoustic reduced frequencyµa = ωb

c0β 2 = KXMb
β 2 .

2 ICA 2010



If µa < π/4, the Sears-like flat-plate response function intro-
duced in ref. [4] is used and Eq.20becomes

Llow (θ ,KX) =
1
β

S(µh)eiµh f (M)

{

J0

(

µaM
cosθ

A(θ ,M)

)

−iJ1

(

µaM
cosθ

A(θ ,M)

)}

, (21)

whereJ0 andJ1 are Bessel functions of the first kind,S is the
well known Sears function (Ref. [7]), f (M) = (1−β ) lnM +
β ln(1+β )− ln(2), and a chord-based hydrodynamic reduced
frequency has been introduced asµh =

ωb
Uβ 2 = µa

M .

If µa > π/4, the high frequency response function due to Amiet [5]
is used and Eq.20becomes

Lhigh(θ ,KX) = L1 (θ ,KX)+L2 (θ ,KX) , (22)

where the functionsL1 and L2 represent the leading edge
scattering and the trailing-edge back-scattering of the sound,
respectively, and are given by

L1 (θ ,KX) =

√
2

πβ
√

µh (1+M)Θ1
E∗ (2Θ1)eiΘ2, (23)

L2 (θ ,KX) =
eiΘ2

πΘ1β
√

2πµh(1+M)

[

i
(

1−e−i2Θ2

)

(24)

+(1− i)E∗
(

4µaβ 2
)

−
√

2

1+ cosθ
A(θ ,M)

E∗ (2Θ3)



 ,

where the conjugate of the Fresnel integralE∗ (z) is defined as

E∗ (z) =
1√
2π

ẑ

0

e−iζ
√

ζ
dζ , (25)

and where the following notations have been introduced for the
sake of brevity

Θ1 = µa

(

1− cosθ
A(θ ,M)

)

, (26)

Θ2 = β 2µh+µa

(

M− cosθ
A(θ ,M)

)

, (27)

Θ3 = µa

(

1+
cosθ

A(θ ,M)

)

. (28)

The validity of Amiet’s approach for "switching" betweenLlow
andLhigh, depending on the value ofµa, is discussed in sec-
tion IV. and and refinements of the "switch" condition are in-
troduced.

III. ANALYTICAL FORMULATION FOR SOUND POWER

In practical applications, such as the prediction of fan broad-
band noise from aircraft engines, it is generally of interest to
predict separately the upstream and downstream sound power.
In this section, an analytical expression is derived for theto-
tal sound powerP , from which the expressions for the up-
stream and downstream sound power (notedP+ andP−, re-
spectively) are deduced.

The general definition of the time averaged acoustic intensity
vectorI in an isotropic potential flow with uniform velocity is
given by (see for instance Morfey [8])

I = pu+
M

ρ0c0
p2+Mp(u.M)+ρ0c0u(u.M) (29)

whereM = U/c0 is the Mach number vector of the mean flow,
p is the acoustic pressure fluctuation,u is the acoustic velocity
fluctuation vector and the upper bar denotes the time average.

The sound intensityIR in the direction of the observer can be
deduced from Eq.29as

IR(r0,θ ,ω) =
1
2

Re

{

p̂û∗R+
Mcosθ
ρ0c0

| p̂|2

+M2cosθ p̂û∗x +Mρ0c0ûRû∗x
}

, (30)

whereûR andûx are the frequency domain components of the
acoustic velocity fluctuations in the radial and the streamwise
directions respectively. The coordinates(r0,θ ,ω) have been
omitted in the right hand side for the sake of brevity.

The acoustic velocities ˆuR and ûx can be expressed as a func-
tion of the far-field pressure spectrum ˆp by, first, considering
the velocity potential defined as

p(r0,θ , t) =−ρ0(
∂
∂ t

+U
∂
∂x

)Φ(r0,θ , t) , (31)

which gives in the frequency domain

p̂(r0,θ ,ω) =−iρ0c0

(

k0− iM
∂
∂x

)

Φ(r0,θ ,ω) . (32)

Equation32can be rewritten by use of the chain rule, and after
some algebra, as

p̂(r0,θ ,ω) =−iρ0c0k0
A(θ ,M)−Mcosθ

β 2A(θ ,M)
Φ(r0,θ ,ω) . (33)

The acoustic velocity fluctuations in the radial and polar direc-
tions are expressed from the definition of the velocity potential
as

ûR(r0,θ ,ω) =
∂Φ(r0,θ ,ω)

∂ r0
, (34)

ûθ (r0,θ ,ω) =
1
r0

∂Φ(r0,θ ,ω)

∂θ
. (35)

The acoustic velocity fluctuation in the axial directions isde-
rived from the above as

ûx (r0,θ ,ω) = ûR(r0,θ ,ω)cosθ − ûθ (r0,θ ,ω)sinθ . (36)

Substituting equations34 to 36 into Eq. 33 and considering
only the solutions of orderO(1/r0) yields the direct relation
between acoustic velocities and pressure

ûR(r0,θ ,ω) = A(θ ,M)
p̂(r0,θ ,ω)

ρ0c0
, (37)

ûx (r0,θ ,ω) =
(

A(θ ,M)cosθ −Msin2θ
) p̂(r0,θ ,ω)

ρ0c0
. (38)

The expression of the time averaged sound intensity in the di-
rection of the observer is then obtained by substituting Eq.37
and Eq.38 into 30 as

IR(r0,θ ,ω) =
| p̂(r0,θ ,ω)|2

2ρ0c0
F (θ ,M), (39)

where the functionF (θ ,M) is defined by

F (θ ,M) =
β 4A(θ ,M)

(A(θ ,M)−Mcosθ )2
. (40)

The above analysis shows that the acoustic intensity towards
the observer, with effects of mean flow, can be obtained from
the PSD of the acoustic pressure multiplied by a functionF (θ ,M),
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Figure 2: Configuration for upstream and downstream power
calculation for a 2D airfoil with stagger angleα.

given by Eq.40. The total sound power per unit span is then
obtained by integrating the expected value of Eq.39 over a
cylinder of unit height, of center(r0,θ ) = (0,0), radiusr0 and
elemental lengthdl = r0dθ to give

P (ω) =
r0

2ρ0c0

2π̂

0

Spp(r0,θ ,ω)F (θ ,M)dθ . (41)

Substituting Eq.19 into 41finally yields

P (ω) =
π
4

β 4Mk0ρ0b2Φww(KX)

×
2π̂

0

|L (θ ,KX)|2sin2θ
A(θ ,M)2 (A(θ ,M)−Mcosθ )2

dθ . (42)

It is generally of interest, for ducted turbofan, to predictsepa-
rately the sound power radiated upstream and downstream of
the duct, denoted respectively byP+ andP−. Equation42 is
therefore extended to allow predictions ofP±, which must be
sensitive to variations in stagger angleα. As shown in Fig.2,
the expression for the upstream and downstream powerP±

can be deduced from the expression of the total powerP =
P++P− by making the change of variablesθ ′ = θ −α and
integrating between−π/2 andπ/2. Equation42 is therefore
modified as

P
± (ω) =

π
4

β 4Mk0ρ0b2Φww(KX)

×
±π/2
ˆ

∓π/2

|L (θ ′,KX)|2sin2θ ′

A(θ ′,M)2 (A(θ ′,M)−Mcosθ ′)2
dθ . (43)

The total sound power level in dB, as a one-sided function of
angular frequency, can therefore be computed as

PWL(ω) = 10log10

(

2P (ω)∆R

10−12

)

, (44)

where a factor 2 is introduced to take into account the negative
frequencies and where∆R is the airfoil span.

IV. REFINED CONDITION FOR THE "SWITCH"
BETWEEN INCOMPRESSIBLE AND COMPRESS-
IBLE RESPONSE FUNCTIONS

Since there is no analytical flat plate response functiong (in
Eq. 20) valid at all frequencies, Amiet introduced in Ref. [2]
a critical acoustic reduced frequencyµa = π/4 below which

the low frequency incompressible solution (Eq.21) is used and
above which the high frequency compressible solution (Eq.22)
is used. The conditionµa = π/4 physically means that the
"switch" between the two solutions occurs when the flow-corrected
acoustic wavelength is equal to a quarter of the airfoil chord.
This approach is meant to provide a nearly closed analytical
solution of the interaction noise problem but is valid only if
the functionsLlow andLhigh are continuous in the neighbor-
hood of µa = π/4. A check for this continuity is performed
in this section and extensions for the conditionµa = π/4 are
proposed.

First, the valueµa = π/4 is considered small enough so that the
Bessel functions in Eq.21 can be approximated to unity. Us-
ing the approximationS(ζ ) ≈ 1/

√

1+2πζ (see for instance
Ref. [3]), Llow can then be approximated atµa ≈ π/4 as

Llow (θ ,KX)≈
1
β

√

M
M+2πµa

eiµa f (M)/M . (45)

The behaviour ofLhigh = L1+L2 at the "switch" condition
µa = π/4 can be investigated by considering the low frequency
asymptotic expressions forL1 and L2. Using the low argu-
ment asymptotic expression of the conjugate Fresnel integral

E∗ (ζ ) =
√

2
π
√

ζ e−iζ (1+O (ζ )) , (46)

the low frequency asymptotic expression forL1 andL2 are
deduced from Eqs.23and24, respectively, as

lim
ω→0

L1(θ ,KX) =

√

M
1+M

√

8
π3µa

ei(Θ2−2Θ1), (47)

and

lim
ω→0

L2 (θ ,KX) =

√

M
1+M

eiΘ2

µa

(

1− cosθ
A(θ ,M)

)

×
[

i
(

1−e−i2Θ1
)

√

2π3µa
+

2
π2 (1− i)e−i4µa

(

β 2eiM2 −1
)

]

. (48)

Note that Eq.48 presents the factor 1/
(

1− cosθ
A(θ ,M)

)

as an

amplitude term, whereas no dependency on the observer angle
θ is observed in Eqs.45 and47. The presence of this factor
implies that the low frequency asymptotic expression of the
term L2 tends to infinity as the observer angle tends to zero.
This non-physical behaviour comes from the fact that the de-
coupling of the leading-edge and the trailing-edge solutions,
asLhigh = L1+L2, is not valid at low frequencies. Accord-
ing to Landahl [9] more terms would be needed to capture the
complete behaviour ofL at low frequencies, i.e.L = L1 +
L2 +L3 + .... This becomes an issue because non-physical
discontinuities can appear in the noise predictions when the ob-
server angleθ is small and whenµa approchesπ/4, as shown
in Fig. 3 (a).

In order to deal with this issue, a refined condition for the
"switch" between the compressible and incompressible solu-
tions is introduced asµa =

π
4(1−cosθ/A(θ ,M))

. Using this refined
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Figure 3:|L |2 (in dB) as a function ofµa using Amiet’s condition (×) and the new condition (+) for the "switch" between incom-
pressible and compressible response function.M = 0.8 and (a)θ = 20deg, (b)θ = 45deg, (c)θ = 90deg, (d)θ = 135deg and (e)
θ = 160deg.

condition, the solution forL is therefore defined as

Llow for µa <
π
4
, (49)

Lhigh ≈ L1 for
π
4
< µa <

π

4
(

1− cosθ
A(θ ,M)

) , (50)

Lhigh ≈ L1+L2 for µa >
π

4
(

1− cosθ
A(θ ,M)

) . (51)

Figure3 shows the variation of|L |2 with µa using the new
"switch" condition and the "switch" condition used by Amiet[2],
for several observer angles,M = 0.8 andb = 0.1. It appears
that the new condition for the "switch" between incompress-
ible and compressible response functions prevents the discon-
tinuities that can otherwise appear in the specturm of|L |2 at
low θ . The physical reason for this is still under investigation.

V. HIGH AND LOW FREQUENCY ASYMPTOTIC
EXPRESSIONS FOR SOUND POWER

V.1. Total sound power

In this section, asymptotic expressions for the total soundpower
are derived from Eq.42 in the low and high frequency limit.
First, the turbulent velocity spectrumΦww, given in Eq.16, ex-
hibits asymptotic behaviour in the limits of low and highkXL
as

lim
kXL→0

Φww =
u2L
2π

, (52)

lim
kXL→∞

Φww =
u2L
2π

3

(kXL)2
. (53)

Furthermore, from Eqs.21to24, the term|L |2 exhibits asymp-
totic behaviour in the limit of low and high acoustic reduced
frequencyµa as

lim
µa→0

|L |2 = 1
β 2 |S(µh)|2 , (54)

lim
µa→∞

|L |2 = 1

β 2π2µhµa(1+M)
(

1− cosθ
A(θ ,M)

) . (55)

Note that Eq.55 is only valid for θ 6= 2π. Noting from the
definition of the Sears function (Ref. [7]) that limζ→0S(ζ ) = 1
and substituting Eqs.52 to 55 into 42yields

lim
ω→0

P (ω) =
β 2

8
Mk0ρ0b2u2L

2π̂

0

dlow (θ ,M)dθ , (56)

lim
ω→∞

P (ω) =
3β 6Mρ0u2

8π2LK3
X

2π̂

0

dhigh(θ ,M)dθ , (57)

where

dlow (θ ,M) =
sin2θ

A2(A−Mcosθ )2
, (58)

dhigh(θ ,M) =
sin2θ

A2(A−Mcosθ )2 (1+M)
(

1− cosθ
A

) , (59)

and whereA(θ ,M) has been abreviated toA, for the sake of
brevity.
The functionsdlow and dhigh represent the directivity of the
acoustic intensity in the direction of the observer in the low
and high frequency limit, respectively. Note that the directivity
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functionsdlow anddhigh tend in the low Mach number limit to

lim
M→0

dlow (θ ,M) = sin2θ , (60)

lim
M→0

dhigh(θ ,M) = sin2 θ
2
, (61)

which is in agreement with the classical result stating that, in
the low Mach number limit, interaction noise presents the di-
rectivity of a dipole at low frequency and of a cardioid at high
frequency (see for instance Ref. [10]). The integrals overdlow
anddhigh in Eqs.56 and57 can be computed analytically to
give

2π̂

0

dlow (θ ,M)dθ = 2π
1−β
M2β 4 , (62)

2π̂

0

dhigh(θ ,M)dθ =
2π
β 6 . (63)

The final asymptotic expressions for the total sound power (per
unit span) in the low and high frequency limits are therefore
obtained by substituting Eqs.62 and63 into Eqs.56 and57 to
give

lim
ω→0

P (ω) = ρ0c2
0k0b2MI2

t L
π (1−β )

4β 2 , (64)

lim
ω→∞

P (ω) = ρ0c2
0M3I2

t
3

4πLK3
X

, (65)

whereIt =
√

u2/U2 is the turbulence intensity. Note that, in
the low Mach number limit, Eq.64is consistent with the low re-
duced frequency expression of Atassi et al. [3] (Eq. 43), where
ρ0, b andΦww were set to unity. However, unlike the expres-
sion of Atassi et al., the low frequency asymptotic expression
for sound power given in Eq.64 is valid at any Mach number
and provides an absolute estimation of the sound power, since
the low frequency asymptote of the Liepmann velocity spec-
trum is included.
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Figure 4: Predicted PWL and low and high frequency asymp-
totes forM = 0.05, 0.1, 0.2, 0.4, 0.8.

Figure4 presents a comparison, for several values ofM, of the
general expression for sound power level given in Eq.42 with
the asymptotic expressions given in Eqs.64 and65. The input
parameters used are the same used in Ref. [2], i.e. an airfoil
with a span of∆R= 53.34cm and a half-chord ofb= 22.86cm,
a turbulent integral lengthscal ofL= 3.175cm and turbulent in-

tensity of
√

u2/U = 4.4%. The air density and speed of sound
are set toρ0 = 1.2 andc0 = 340m.s−1. The results shown in

Fig. 4 validate the asymptotic expressions for sound power per
unit span derived in this section.

V.2. Upstream and downstream sound power

Similarly to the results shown for the total sound powerP in
the previous section, it is possible to derived analytical asymp-
totic expression forP± from Eq.43 in the limits of low and
high frequency. By integrating Eqs.56and57overθ according
to Fig. 2, the low and high frequency asymptotic expressions
for the upstream and downstream sound power are given by

lim
ω→0

P
± (ω) =

β 2

8
Mk0ρ0b2u2L

∓π/2
‰

±π/2

dlow
(

θ ′,M
)

dθ , (66)

lim
ω→∞

P
± (ω) =

3β 6Mρ0u2

8π2LK3
X

∓π/2
‰

±π/2

dhigh
(

θ ′,M
)

dθ . (67)

Using the definitions ofdlow anddhigh (Eqs.58and59, respec-
tively), analytical solutions for the integrals in Eqs.66 and67
can be obtained and substitued in Eqs.66 and67 to give the
final asymptotic expressions for the upstream and downstream
power as

lim
ω→0

P
± (ω) = ρ0c2

0k0b2MI2
t L

f±low (α,M)

4β 2 , (68)

lim
ω→∞

P
± (ω) = ρ0c2

0M3I2
t

3 f±high(α,M)

4π2LK3
X

, (69)

where the non-dimensional functionsf±low and f±high are given
by

f±low (α,M) =
π
2
(1−β )∓sin−1 (Mcosα)

±Mcosα
√

1−M2cos2α , (70)

f±high(α,M) = πH (∓1)±cos−1 (Mcosα)

∓cosα
√

1−M2cos2α, (71)

and whereH (∓1) is the Heaviside step function of argument
∓1, which is thus equal to 0 in the upstream case and 1 in
the downstream case. As expected, the sum of the downstream
and the upstream version of the asymptotic expression forP±

(Eqs.68 and69) yields the asymptotic expression for the total
sound powerP (Eqs.64 and65).

Figure5 presents a comparison, forM = 0.2 and 0.8 andα =
0o,30o and60o, of the general expression for sound power level
given in Eq.42with the asymptotic expressions given in Eqs.68
and 69. The configuration used is the same as the one pre-
sented in section V.1. As expected, the asymptotic expressions
for P± agree well with the predictions made using the exact
Eq.43 in the low and high frequency limits.

The functionsf±lowand f±high, introduced in Eqs.70and71, rep-

resent the effects of stagger angle onP±. Figure 6 shows
the variation of the functionsf±low and f±high, normalised by
(

f+low+ f−low

)

/2= π
2 (1−β ) and

(

f+high+ f−high

)

/2= π
2 , with

stagger angleα, for different Mach numbers. It appears that
the difference between the upstream and downstream expres-
sion of f±lowand f±high decays withα and is eventually null at
α = 90o. This is due to the fact that the directivity of the in-
teraction noise is symmetrical with the chord of the flate plate.
Note also that, as expected, all the sound power is radiated
downstream whenα = 0 andM = 1.
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VI. EFFECTS OF CHORD LENGTH ON SOUND
POWER
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Figure 7: Effect of chord length on PWL forM =
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The effects of chord length on sound power level are controlled
only by the airfoil response function and vary depending on
the value of the acoustic and hydrodynamic reduced frequen-
cies,µa =

ωb
c0β 2 andµh = ωb

Uβ 2 . Figure7 presents the variation

of PWL with µh, varying b, keepingω fixed and for a range
of Mach numbers. The same input parameters described in sec-
tion V.1 are used. The scaling of PWL with the half chordb
is different in three distinct ranges of reduced frequencyµh.
The physical meaning of the low, medium and high reduced
frequency ranges is described below and represented in Fig.8.

First, when(µh,µa) � π/4, the wavelength of the vortical
gust (i.e. the hydrodynamic wavelength) and the acoustic wave-
length are large compared to a quarter of the chord 2b of the
flat plate. The noise sources on the flat plate surface can, there-
fore, be considered as compact dipoles which radiate coher-
ently along the chord, hence theb2 scaling observed in Fig.7.
This behaviour is proved mathematically in section V., where
the low frequency asymptotic expressions of sound power (Eq. 64)
clearly scales withb2.

When(µh,µa)�π/4, the hydrodynamic and the acoustic wave-
length are small compared to a quarter of the the chord 2b of
the flat plate. The response of a flat plate of finite chord can,
therefore, be approximated by the response of a semi-infinite
flat plate (L ≈ L1). Thus, the effects of finite chord length
are negligible in the limit of high hydrodynamic and acoustic
reduced frequencies and PWL is independent ofb, as observed
in Fig. 7. This behaviour is also proved mathematically in sec-
tion V., where the high frequency asymptotic expressions of
sound power (Eq.65) do not depend onb.

Note that the low and high frequency scalings of the leading
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µa < π/4 < µh
µa < µh � π/4 µh > µa � π/4

hydrodynamic wave

acoustic wave

P ∼ b2 P ∼ b1 P ∼ b0

Figure 8: Physical representation of the low, medium and high reduced frequency ranges of the effects of chord length.

edge noise have been first observed by Amiet [11], for the case
of turbulence ingestion in a rotor and for the sound pressure
level perceived by an observer on the rotor axis. The present
results confirm those findings using analytic asymptotic expres-
sions for sound power level.

In the sub-rangeµa < π/4 < µh, a different scaling of PWL
with b is observed. This sub-range, which becomes significantly
large at low flow speeds, represents physically the frequen-
cies where the wavelength of the vortical gust is significantly
smaller than the acoustic wavelength. In that region, the hy-
drodynamic wavelength is smaller than a quarter of the chord
(µh > π/4) whereas the acoustic wavelength is larger than a
quarter of the chord(µa < π/4). This phenomenon, therefore,
leads to a scaling of PWL withb only, as shown in Fig.8.
This b-scaling arises from equations45 and 47, which both
show that|L |2 ∼ b−1 in the sub-rangeµa < π/4 < µh. To
the knowledge of the authors, the existence of a mid-frequency
band where the sound power scales withb is presented here for
the first time.

VII. CONCLUSION

The contributions of this paper are listed as follows :

• Analyical expressions have been derived for the upstream,
downstream and total sound power per unit span due to
the interaction of a turbulent flow with the leading edge
of a 2D flat plate airfoil.

• Amiet’s "switch" condition between the low and high
frequency airfoil response functions has been refined
in order to remove possible discontinuities in the noise
spectrum, which can occur at low observer angles.

• Low and high frequency asymptotic expressions for the
upstream, downstream and total sound power per unit
span have been obtained, where the integral over the
observer angle has been solved analytically.

• The scaling of the sound power with the airfoil chord
has been established over the full frequency range. It
has been shown that PWL scales differently with the
half-blade chordb dependending on the value of the
hydrodynamic and acoustic reduced frequencies. Three
scaling laws have been identified as PWL∼ b2 at low
frequencies, PWL∼ b1 at mid frequencies and PWL∼
b0 at high frequencies.

The expressions presented in this report are to be compared
with a 2D cascade interaction noise model, where the unsteady
loading is computed numerically, in order to study the effects
of cascade on the interaction noise of fans.
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