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ABSTRACT

This paper presents an analytical study of the sound povdtatesl from a two dimensional flat plate airfoil in a
turbulent stream. A classical approach for describingyditally the response of a flat plate, with a finite chord, te th
impingement of turbulence is extended to be valid at alldegies. Analytical asymptotic expressions, valid at low
and high frequencies, are provided for the upstream, doaarst and total sound power. A study of the effects of chord
length on the total sound power at all reduced frequencigseisented. The isolated airfoil model presented in this
paper will subsequently be used as a benchmark to studyfdwesebf cascade in broadband interaction noise of fans.

I. INTRODUCTION

This paper presents the results of a study of the sound power
(per unit span) due to an isolated 2D flat plate airfoil in dotur

lent stream. The model for sound power presented in thiystud
is to be subsequently compared with the 2D cascade interac-
tion noise model due to Cheong et dl,[where the unsteady
blade loading is computed numerically, in order to study the
effects of cascade on interaction broadband noise of fams. T
derivation of sound power presented in this report extehes t
classical results of Amiet?] to a 2D problem. This problem
has been first addressed by Atassi et 3l.\who used numer-

cial schemes to compute the unsteady pressure jump aceoss th
flat plate, but further insight into the physics is preserietis
paper by using analytical expressions for the unsteadyeblad
loading due to the impingement of a turbulent gust. The char-
acteristics of the incoming turbulence are expressed mger

of the Liepmann turbulent velocity spectrum, for the sake of
consistency with the model by Cheong et 4l. [The airfoil
response to the turbulent upwash is expressed in terms of the
analytical response functions due to Amiét$].

Three main results are shown in this paper. First, the "&Witc
condition introduced by AmietZ for the use of either a low
frequency or the high frequency flat-plate response fundso
refined in order to remove possible discontinuities in thiseo
spectrum, which can occur at low observer angles. Analytica
asymptotic expressions, valid at low and high frequencihef
sound power per unit span are then derived. Finally, theisffe
of the airfoil chord length on the sound power are invesédat
for the full range of reduced frequency. Three differentiaga
laws of the sound power with the airfoil chord are identified.

II. POWER SPECTRAL DENSITY OF THE BROAD-
BAND NOISE RADIATED FROM A 2D FLAT PLATE

This section presents an expression for the power speemnal d
sity (PSD) of the broadband noise due to the impingement of
homogeneous and isotropic turbulence on the leading edge of
a 2D flat plate airfoil. This model extends the classical itesu
of Amiet [2] for a 3D airfoil to a 2D airfoil (see Figl). A
derivation of the PSD similar to the one of this section, lout f

a skewed isolated airfoil and where the pressure jltpps
computed numerically, can be found in Red]. [
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Figure 1: Configuration of the 2D problem of turbulence-flat
plate interaction noise.

First, the homogeneous and isotropic turbulent velocitld fie

is assumed to be a "frozen" velocity pattern as it passes the
leading edge of the flat plate, and the upwash turbulent itgloc
can therefore be written as

Wt = o [ 7 (ke B Vid, ()

where?/ is the upwash velocity in the wavenumber domain
and is defined in a frame moving with the base flow as

W (ky) = /w(X)ékdex. 2

For a single harmonic vortical gust, with upwash velocity of
the formwge * (X~UY) the pressure jump is given by

Ap(X,t) = 2mpoUwog (X, kx, M) €Ut @3)

whereM =U /cg andg (X, kx, M) is the non-dimensional trans-
fer function between the turbulent upwash velocity and the
pressure jump. In this study, the flat plate response fumstio

g derived by Amiet #, 5] are used, following the same ap-
proach as in Ref.g], while setting the spanwise wavenumber
to zero in order to consider a fully 2D problem. The complete
expression of the unsteady pressure jump, in the time dgmain



is obtained by combining Eq%.and3 as
Ap(X.) = poU [ 7 (k) g%,k M)V (4)

The unsteady pressure jump in the frequency domain can be
deduced from E4 as

AP(X, w) = /Ap(x7t)e’i‘*’tdt7

:znpOW(KX)g(X7KX>M)> (5)

whereKyx = w/U. Considering that the surface of the flat plate
is rigid, the radiated acoustic pressure due to the unsteady
sure jumpAp is given from Green’s theorem by

o b
P(X,Y;t) // f)Xw xy,X,w)ei‘*’thdw.
—b

(6)

The 2D Green'’s function, with effects of mean flow, is given
by

_jgikoM(x=X)/B?
G(X7y7x7w) = LH(Z) ( kO

48 o \ g2 (x— X) B2y2>7
)

whereky = w/cy, B = v1-MZ? and whereHéz) is the Hankel
function of the second kind and of order 0. The derivative of
Eq. 7 with respect to is given by

ivekoM (x—X) /82
%0 (xyx, @) =2
y 4P/ (x=X)? + B2y?
x H?) (% (x—X)2+ﬁ2y2). ®)

Assuming that the observer is in the far-field, the Hanketfun

tion Hf) and the flow-corrected distance between source and

observerfx — X)2 + B2y? can be approximated, respectively, as
2

HEP (@) = | o, ©)
XX

(x—X) +B2y2~a—? (10)
whereg = /x2 4+ 32y2. Considering that the second term of
Eq.10can be neglected in amplitude terms, substituting Bgs.
and10into Eq.8 leads to the far-field approximation

0G / 2k0 — X M (x—X)]
a_y (X7 y7X7 (IJ) 4 7_[0.3 I_Z[U X/o b ) (11)
The PSD of the acoustic pressure is given by
Spp (XY, w) = / (P (XYt PO Y, t+1)) e ¥TdT,  (12)

where the bracket§) represent the ensemble average. Substi-

tuting Eq.6 into 12 yields after some algebra

Spp (XY, @ zn////SQQ (X1, Xa, @y, wp) €(@r =2t

*

9G
oy wr) ay (XY, X2, ap) 6 (W — ap) dX dXpdwr day.

(13)

(X7 y7 X17

The cross-spectrum of the unsteady pressure Babetween
two pointsX; andX; of the plate surface is written as

Soq (X1, X2, @i, wp) = (AP (X1, wr) AP (X2, wp))
= (21po)? (7 * (Kx1) # (Kx2)) (14)
xg" (X1,Kx1,M) g (X, Kx2, M),

whereKy; = wy /U andKy, = ap/U.

Assuming homogeneous turbulence, setiag X; = 6X and
using the definition of the upwash velocity spectrum yields

(7 (Kx1) 7 (Kx2)) =275 (K1 — Kx) / KX

% (W(X0) W(Xg + X)) d8X

=27110 (Kx1 — Kx2) Pww(Kx2), (15)

where @y, is the 1D velocity spectrum of the turbulent up-
wash. The Liepmann 1D turbulent velocity spectrum is used
here for consistency with the model of Ref],[to which the
current model will be compared in subsequent work, and is
given by

WL 1+3KZL2

I (16)
21 (14K2L2)?

CDWW(KX) =

The final expression for the PSD of the acoustic pressure radi
ated to the far-field is obtained by substituting Ejs.14 and
15into Eq.13to give

mp2b2y2U kg
Spp (XY, w) = 0273

where.Z is a non-dimensional unsteady loading term defined
as

P (Kx) [-Z (%, Y, Kx)[?, (17)

o 3 (M-x/)X

Z (%Y, Kx) = b/gXKxJ\A) dX. (18)

Since the main interest of this study is sound power, it is con
venient to express the location of the far field observer iapo
coordinategro, 6). Equations17 and18 can, therefore, be re-
written as

npgb?sinf8U kg

2
2I’0A(67M) WW(KX)|$(97KX)| ) (19)

where the notatiod\(6,M) = \/1— M2sir?6 has been intro-
duced for the sake of breV|ty and where

SJP (I’07 67 ) -

b
" ik (M_ coB_
2(0.160 = 5 90w dR M ax a0
—b

Following the approach of Amiet], the unsteady loading

term .Z is defined differently depending on the value of a

chord-based acoustic reduced frequepgy= - cOBZ = K>l<3"2/'b_
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If ua < /4, the Sears-like flat-plate response function intro-
duced in ref. 4] is used and ERObecomes

1 : 9

whereJy andJ; are Bessel functions of the first kin8,is the
well known Sears function (Ref7]), f (M) = (1—8)InM +

BIn(1+B) —In(2), and a chord-based hydrodynamic reduced

frequency has been introducedjas= U‘*’—;z = %

(21)

If ua > 11/4, the high frequency response function due to Ant [
is used and EcRObecomes
ghlgh(&KX) :$1(97KX)+$2(97KX)7 (22)

where the functions?; and % represent the leading edge
scattering and the trailing-edge back-scattering of thendp
respectively, and are given by

V2

_ * O,
$1(67Kx)_nﬁ Hh(l'HVl)OlE (201)€®,  (23)
¢ _ g (1 2o,
jz(e,Kx)anlB\/mP(l e ) (24)
HADE (4?) - [ (263)] ,
A(6,M)

where the conjugate of the Fresnel intedtélz) is defined as

1 et

E*(Z):EO ﬁd57

(25)

and where the following notations have been introducecdher t
sake of brevity

cod
O]_:IJa <1—W> 9 (26)
02 B tha (M- 4 S0 ) @D
O3 = lia (1+ %). (28)

The validity of Amiet’s approach for "switching" betwegfio,
and Zigh, depending on the value @k, is discussed in sec-
tion IV. and and refinements of the "switch" condition are in-
troduced.

IIl. ANALYTICAL FORMULATION FOR SOUND POWER

In practical applications, such as the prediction of fanaldro
band noise from aircraft engines, it is generally of intetes
predict separately the upstream and downstream sound power
In this section, an analytical expression is derived fortthe

tal sound powerZ?, from which the expressions for the up-
stream and downstream sound power (noféd and &, re-
spectively) are deduced.

The general definition of the time averaged acoustic intgnsi
vectorl in an isotropic potential flow with uniform velocity is
given by (see for instance Morfeg])

M -
[ :W+—Cop2+M p(u.M) -+ pocou (u.M)

o (29)

ICA 2010

whereM = U/cy is the Mach number vector of the mean flow,
pis the acoustic pressure fluctuations the acoustic velocity
fluctuation vector and the upper bar denotes the time average

The sound intensityr in the direction of the observer can be
deduced from EqR9 as

1 ...  Mco9 .,
In(r0.6.0) =3Re{ p+ oo |

+M2cogpa; + M pocoaRo;} . (30)
whereur andu are the frequency domain components of the
acoustic velocity fluctuations in the radial and the stre&@saw
directions respectively. The coordinatés, 6, w) have been
omitted in the right hand side for the sake of brevity.

The acoustic velocitiesg™and Uy can be expressed as a func-
tion of the far-field pressure spectrumby, first, considering
the velocity potential defined as

17 7
p(r0767t) = _pO(E +U07X)q)(r0767t)7

which gives in the frequency domain

31

p(ro, 6, w) = —ipoCo (ko—iM ;-)()Cb(ro,e,w). (32)

Equation32 can be rewritten by use of the chain rule, and after
some algebra, as

A(6,M) —McosH

P(r0,6,) = —ipocoko ™ o

®(rg,0,w). (33)

The acoustic velocity fluctuations in the radial and polaech
tions are expressed from the definition of the velocity paén
as

0P (rg, 0, w)

On (10,6, 0) = 2202 (34)
. 10d(rp,0,w
0o (10.6,00) = 70, (@)

The acoustic velocity fluctuation in the axial directionsles
rived from the above as

Ox (ro, 0, w) = Or(ro, 8, w) coB — Ug (rg, B, w)sinB.  (36)

Substituting equation84 to 36 into Eqg. 33 and considering
only the solutions of orde®(1/rp) yields the direct relation
between acoustic velocities and pressure

e (10, 6. ) = A(B.M) P12 @7
y _ - p(ro, 0, w)
Gy (10,0, ) = (A(a M) cosd — Msmze) S @9

The expression of the time averaged sound intensity in the di
rection of the observer is then obtained by substituting3q.
and Eq.38into 30 as

_|p(ro,0,w)?
lR(rO767w)_WF(97M)7 (39)
where the functiorr (6,M) is defined by
4
Fom = PAGM (40)

(A(68,M) —Mcosd)?’

The above analysis shows that the acoustic intensity t@vard
the observer, with effects of mean flow, can be obtained from
the PSD of the acoustic pressure multiplied by a fund&g¢f, M),
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Figure 2: Configuration for upstream and downstream power
calculation for a 2D airfoil with stagger angte

given by Eq.40. The total sound power per unit span is then
obtained by integrating the expected value of Bf.over a
cylinder of unit height, of centerg, 8) = (0,0), radiusrg and
elemental lengtldl = rod8 to give

7 (w) Zpoc()/Sjp (ro,0,w)F (6,M)d6.  (41)

Substituting Eq19into 41 finally yields
T
P () = B*Mkopob® Puw (Kx)

X/ |.Z (8,Kx)|?sin?@
A A(6,M)?(A(6,M) — Mcosd)

,d6.  (42)

It is generally of interest, for ducted turbofan, to prediepa-
rately the sound power radiated upstream and downstream of
the duct, denoted respectively By+ and 22 ~. Equatiord2is
therefore extended to allow predictions@#*, which must be
sensitive to variations in stagger angie As shown in Fig2,

the expression for the upstream and downstream powér

can be deduced from the expression of the total po#er

2T + 2~ by making the change of variablé$= 6 — a and
integrating between-1/2 and /2. Equationd2 is therefore
modified as

P (@) = 7 B*MKopob? Pun (Kx)
T 2@ kPsive
, Kx)I sl
. / AE MPEAE.M) Moo 20 (3

Fr/2

The total sound power level in dB, as a one-sided function of
angular frequency, can therefore be computed as

27 (w) AR) 7

10 12 (“44)

PWL(w) = 10log;q (
where a factor 2 is introduced to take into account the negati
frequencies and whe&R is the airfoil span.

IV. REFINED CONDITION FOR THE "SWITCH"
BETWEEN INCOMPRESSIBLE AND COMPRESS-
IBLE RESPONSE FUNCTIONS

Since there is no analytical flat plate response funcggm
Eq. 20) valid at all frequencies, Amiet introduced in Re2]
a critical acoustic reduced frequengy = 711/4 below which

the low frequency incompressible solution (2d) is used and
above which the high frequency compressible solution 22).

is used. The conditiomuy = 1/4 physically means that the
"switch" between the two solutions occurs when the flow-ected
acoustic wavelength is equal to a quarter of the airfoil dhor
This approach is meant to provide a nearly closed analytical
solution of the interaction noise problem but is valid orfly i
the functionsZq,, and.%,gn are continuous in the neighbor-
hood of ua = /4. A check for this continuity is performed
in this section and extensions for the conditipn= 17/4 are
proposed.

First, the valugiy = /4 is considered small enough so that the
Bessel functions in EQR1 can be approximated to unity. Us-
ing the approximatior8({) ~ 1//1+ 2mn{ (see for instance
Ref. [3]), Low can then be approximated @ ~ 17/4 as

1/ M
< Haf(M)/M
2 M+2Wﬁe’ . (45)

The behaviour ofhigh = 21 + .2 at the "switch" condition

Ua = 11/4 can be investigated by considering the low frequency
asymptotic expressions fa#; and .%,. Using the low argu-
ment asymptotic expression of the conjugate Fresnel iategr

= \/%ﬁe*‘f (1+0(Q)

the low frequency asymptotic expression & and.%» are
deduced from Eq®3 and24, respectively, as

/ | © d(©-201)
I|m f]_ 6 Kx l+|\/| 7_[3 (47)
[ M d®
lim fg(eﬂ(x) =
w—0 1+M Lia (1_ A((:gfll))

i(1-e ™) 2 1411 ( p2M2
x{ernzu—.)e 2 <5é —1) . (48)
cosh

Note that Eq.48 presents the factor/](l— W) as an

amplitude term, whereas no dependency on the observer angle
0 is observed in Eq#45 and47. The presence of this factor
implies that the low frequency asymptotic expression of the
term %, tends to infinity as the observer angle tends to zero.
This non-physical behaviour comes from the fact that the de-
coupling of the leading-edge and the trailing-edge sohsio
as.Zhigh = 1 + £, is not valid at low frequencies. Accord-
ing to Landahl §] more terms would be needed to capture the
complete behaviour o/ at low frequencies, i.e¥ = .21 +
S+ %3+ ... This becomes an issue because non-physical
discontinuities can appear in the noise predictions wheiokh
server anglé is small and whem, approchest/4, as shown

in Fig. 3 (a).

ﬁow(& KX) ~

(46)

and

In order to deal with this issue, a refined condition for the
"switch" between the compressible and incompressible- solu

tions is introduced agg = WM' Using this refined
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Figure 3:|,$|2 (in dB) as a function ofuy using Amiet’s condition k) and the new condition) for the "switch" between incom-
pressible and compressible response functn= 0.8 and (a)0 = 20deg, (b)0 = 45deg, (c)8 = 90deg, (d)0 = 135deg and (e)

6 = 160deg.

condition, the solution forZ is therefore defined as

Ziow for ia < %, (49)
T
Lhigh= 241 for 7 < Ua < g\ (50)
a(1-a%)
T
ghigh ~ L+ 2 for g > o8\ (51)
4(1- %%)

Figure 3 shows the variation of¥ 2 with Ua Using the new
"switch" condition and the "switch" condition used by Anfi2},

for several observer anglelsl = 0.8 andb = 0.1. It appears
that the new condition for the "switch" between incompress-
ible and compressible response functions prevents therdisc
tinuities that can otherwise appear in the specturrh.iﬁ’f2 at

low 6. The physical reason for this is still under investigation.

V. HIGH AND LOW FREQUENCY ASYMPTOTIC
EXPRESSIONS FOR SOUND POWER

V.1. Total sound power

In this section, asymptotic expressions for the total squovder
are derived from Eg42 in the low and high frequency limit.
First, the turbulent velocity spectrué,, given in Eq.16, ex-
hibits asymptotic behaviour in the limits of low and higgL
as

WL
lim dyyw=——o 52
kel—0 W 2m (52)
wL 3
lim dppy=——-=. 53
kil 27T (kyL)2 (53)
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Furthermore, from Eq21t0 24, the terr’d,ff|2 exhibits asymp-
totic behaviour in the limit of low and high acoustic reduced
frequencyu, as

lim |.2|? = | (kn)I%, (54)
Ha—0 B
Jim |22 = ! (55)

B212injia (14 M) (1— ﬁg?ﬁ.)) .

Note that Eq.55 is only valid for 6 # 2m. Noting from the

definition of the Sears function (Ref]) that lim;_,S({) = 1
and substituting Eq$2 to 55into 42 yields
p? T
lim 2 (w) :—MkopobzuzL/de (6,M)d6,  (56)
w—0
BGMpOUZ
al)@oo@(w 7T2LK3 '/dhlgh (6,M)d (57)
where
sifo
dow(OM)= — — —— 58
low ( ) AZ(A—MCOSH)Z (58)
sinfo
Chigh (6, M) = , (59)

AZ(A—Mcos)2 (1+M) (1_ %)

and whereA(6,M) has been abreviated #y for the sake of
brevity.

The functionsdioy, and dyign represent the directivity of the
acoustic intensity in the direction of the observer in the lo
and high frequency limit, respectively. Note that the diréty



functionsd,oy anddyign tend in the low Mach number limit to

lim diow (8,M) = sirf8, (60)
M—0

. 0
Jim drign (6. M) = sir? 2. (61)

which is in agreement with the classical result stating, timat
the low Mach number limit, interaction noise presents the di
rectivity of a dipole at low frequency and of a cardioid athhig
frequency (see for instance Ref(]). The integrals oved,qy
anddpigh in Egs.56 and57 can be computed analytically to
give

21

[ dhow(0.)d0 =22 (62
0

27'{ 2

/dhigh(G,M)dG - B—’GT 63)

The final asymptotic expressions for the total sound powear (p
unit span) in the low and high frequency limits are therefore
obtained by substituting Eq62 and63 into Egs.56 and57 to
give

Jim 2 (w = poCakob?MIZL (iB B), (64)
3
Jim 2 (w) = pocMIZ_—~ K (65)

wherely = \/@/U2 is the turbulence intensity. Note that, in
the low Mach number limit, EcG4is consistent with the low re-
duced frequency expression of Atassi et 8](Eq. 43), where

Po, b and d,, were set to unity. However, unlike the expres-
sion of Atassi et al., the low frequency asymptotic expi@ssi
for sound power given in E4 is valid at any Mach number
and provides an absolute estimation of the sound powes sinc
the low frequency asymptote of the Liepmann velocity spec-
trum is included.

120,
100-
80}

60} -

PWL (dB)

40p

—PWL
--low f asymptote |:

---high f asymptote}: S =
0 : R
10° 10" 10° 10° 10"
frequency (Hz)

Figure 4: Predicted PWL and low and high frequency asymp-
totes forM = 0.05, 0.1, 0.2, 0.4, 0.8.

20f

Figure4 presents a comparison, for several valueslpbf the
general expression for sound power level given in&xwith
the asymptotic expressions given in E64.and65. The input
parameters used are the same used in Rgfi.p. an airfoil
with a span oAR=53.34cm and a half-chord d&f=22.86cm,
a turbulent integral lengthscal bf= 3.175cm and turbulent in-

tensity of vV ?/U = 4.4%. The air density and speed of sound
are set tgop = 1.2 andcg = 340m.s L. The results shown in

Fig. 4 validate the asymptotic expressions for sound power per
unit span derived in this section.

V.2. Upstream and downstream sound power

Similarly to the results shown for the total sound pow#rin

the previous section, it is possible to derived analytisghap-
totic expression forZ+ from Eq.43in the limits of low and
high frequency. By integrating E¢s6 and57 over 6 according

to Fig. 2, the low and high frequency asymptotic expressions
for the upstream and downstream sound power are given by

Fr/2
2 _ 9
lim gzi(w):B—MkopobZUZL diow (6/,M) d6, (66)
w—0 8
irr/z
) SBGMpou2
ot
+m/2

Using the definitions ofl;q,, anddhign (Egs.58 and59, respec-
tively), analytical solutions for the integrals in Eg6 and67
can be obtained and substitued in E66.and67 to give the
final asymptotic expressions for the upstream and downmtrea
power as

f (a,M)
:t 201121
Ilmj = PoCakob?MI; L°W4T, (68)
3t (a,M)
lim 2% (e M3z 69
im, =M e 0 ©9

where the non-dimensional functiorig,, and ‘ﬁgh are given
by

fow (@ M) = g(l—ﬁ) Fsin* (Mcos)
+Mcost/1—M2cofa,  (70)
ftﬁgh(O’?M) = 1H (T1) + cos * (Mcos)

Tcoxry/ 1—MZ2coa, (71)

and whereH (1) is the Heaviside step function of argument
F1, which is thus equal to 0 in the upstream case and 1 in
the downstream case. As expected, the sum of the downstream
and the upstream version of the asymptotic expressiog#or
(Egs.68 and69) yields the asymptotic expression for the total
sound power? (Eqs.64 and65).

Figure5 presents a comparison, fit = 0.2 and 08 anda =
0°,30°and 60, of the general expression for sound power level
given in Eq42with the asymptotic expressions given in E6R.
and 69. The configuration used is the same as the one pre-
sented in section V.1. As expected, the asymptotic expmessi
for 22+ agree well with the predictions made using the exact
Eq.43in the low and high frequency limits.

The functlonsflﬁwandfhlgh, introduced in Eqs70and71, rep-

resent the effects of stagger angle gfi*. Figure 6 shows

+ + ;
the variation of the functiond;, and fhigh, normalised by

(fiowt fiow) /2= F(1—B) and (fyigy + fgy) /2= &, with
stagger angle, for different Mach numbers. It appears that
the difference between the upstream and downstream expres-
sion of f5, .and lﬁgh decays withar and is eventually null at

o = 90°. This is due to the fact that the directivity of the in-
teraction noise is symmetrical with the chord of the flatéela
Note also that, as expected, all the sound power is radiated
downstream when =0 andM = 1.
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VI. EFFECTS OF CHORD LENGTH ON SOUND
POWER
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Figure 7: Effect of chord length on PWL foM =
0.01250.025 0.05,0.1,0.2,0.4, 0.8. up = 7 is marked by a
+ andpug = 7 is marked by ax.

The effects of chord length on sound power level are coroll
only by the airfoil response function and vary depending on
the value of the acoustic and hydrodynamic reduced frequen-
cies, s = CO“’—I?Z andu, = uszz Figure7 presents the variation
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of PWL with up, varying b, keepingw fixed and for a range

of Mach numbers. The same input parameters described in sec-
tion V.1 are used. The scaling of PWL with the half chdrd

is different in three distinct ranges of reduced frequepgy

The physical meaning of the low, medium and high reduced
frequency ranges is described below and represented i8.Fig.

First, when(un, Ha) < 1/4, the wavelength of the vortical
gust (i.e. the hydrodynamic wavelength) and the acoustewa
length are large compared to a quarter of the chdrafzhe

flat plate. The noise sources on the flat plate surface cam-the
fore, be considered as compact dipoles which radiate coher-
ently along the chord, hence thé scaling observed in Fig.

This behaviour is proved mathematically in section V., veher
the low frequency asymptotic expressions of sound powerg&q
clearly scales witi?.

When(p, Ua) > 11/4, the hydrodynamic and the acoustic wave-
length are small compared to a quarter of the the chordf2
the flat plate. The response of a flat plate of finite chord can,
therefore, be approximated by the response of a semi-iafinit
flat plate (Z ~ .Z1). Thus, the effects of finite chord length
are negligible in the limit of high hydrodynamic and acoasti
reduced frequencies and PWL is independeiit, @5 observed

in Fig. 7. This behaviour is also proved mathematically in sec-
tion V., where the high frequency asymptotic expressions of
sound power (Ec65) do not depend ob.

Note that the low and high frequency scalings of the leading
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Figure 8: Physical representation of the low, medium and hégluced frequency ranges of the effects of chord length.

edge noise have been first observed by Anfig}, [for the case

of turbulence ingestion in a rotor and for the sound pressure
level perceived by an observer on the rotor axis. The present
results confirm those findings using analytic asymptoticesp
sions for sound power level.

In the sub-rangegia < 11/4 < Uy, a different scaling of PWL
with bis observed. This sub-range, which becomes significantly
large at low flow speeds, represents physically the frequen-
cies where the wavelength of the vortical gust is signifilyant
smaller than the acoustic wavelength. In that region, the hy
drodynamic wavelength is smaller than a quarter of the chord
(un > 11/4) whereas the acoustic wavelength is larger than a
quarter of the chordua < 11/4). This phenomenon, therefore,
leads to a scaling of PWL with only, as shown in Fig8.
This b-scaling arises from equatiods and 47, which both
show that|,,2’|2 ~b~1in the sub-rangeus < 11/4 < . To

the knowledge of the authors, the existence of a mid-frecpen
band where the sound power scales with presented here for
the first time.

VIlI. CONCLUSION

The contributions of this paper are listed as follows :

» Analyical expressions have been derived for the upstream,
downstream and total sound power per unit span due to
the interaction of a turbulent flow with the leading edge
of a 2D flat plate airfoil.

* Amiet’s "switch" condition between the low and high
frequency airfoil response functions has been refined
in order to remove possible discontinuities in the noise
spectrum, which can occur at low observer angles.

« Low and high frequency asymptotic expressions for the
upstream, downstream and total sound power per unit
span have been obtained, where the integral over the
observer angle has been solved analytically.

» The scaling of the sound power with the airfoil chord
has been established over the full frequency range. It
has been shown that PWL scales differently with the
half-blade chordb dependending on the value of the
hydrodynamic and acoustic reduced frequencies. Three
scaling laws have been identified as PWIb? at low
frequencies, PWLk- bl at mid frequencies and PWA
b? at high frequencies.

The expressions presented in this report are to be compared
with a 2D cascade interaction noise model, where the ungtead
loading is computed numerically, in order to study the dffec

of cascade on the interaction noise of fans.
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