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ABSTRACT

We present an efficient methodology to perform calculations of acoustic propagation and scattering by geometrical objects
in ducts with flows. In this paper a methodology with a linearized Navier-Stokes equations solver in frequency domain
is evaluated on a two-dimensional geometry of an in-duct area expansion. The Navier-Stokes equations are linearized
around a time- independent mean flow that is obtained from an incompressible Reynolds Averaged Navier-Stokes solver
which uses a k-ε turbulence model. A plane wave decomposition method based on acoustic pressure and velocity is used
to extract the up- and downstream propagating waves. The scattering of the acoustic waves by the induct area expansion
is calculated and compared to experiments. Frequencies in the plane wave range up to the cut-on frequency of the first
higher order propagating acoustical mode are considered. The acoustical properties of the area expansion is presented in
a scattering matrix form that can be used in acoustical two-port calculations on complex duct systems such as exhaust
system mufflers and ventilation systems.

INTRODUCTION

Traffic is a major source of environmental noise in modern
day society. The major noise sources on common road vehicles
are engine noise, transmission noise, tire noise and, at high
speeds, wind noise. At low speeds (<30-50 km/h), intake and
exhaust noise are particularly important during acceleration.
Subsequently, development of new vehicles is subject to in-
creasingly firmer governmental legislations. One common way
to reduce exhaust noise is to attach mufflers to the exhaust pipes.
However, to develop prototypes of mufflers for evaluation is
a costly and time-consuming process. As a consequence, in
recent years so-called virtual prototyping has emerged as an
alternative. Current industrial simulation methodologies are of-
ten rather crude, either neglecting mean flows or including only
one-dimensional mean flows. Hence, improved, but still effi-
cient, methods are needed to fully benefit from the possibilities
of virtual prototyping.

Outside the acoustic source regions, the acoustic quantities are
often small in comparison to the flow field quantities. In many
cases it can be assumed that the flow field affects the sound
waves, whereas the sound waves do not significantly affect the
flow field. These types of cases enable a two-stage treatment of
the acoustic wave propagation: firstly the mean flow can be cal-
culated without considering any acoustic waves, and secondly
the sound waves can be calculated with the flow field as input.
In addition, the perturbations are often small enough to justify
linearization. In such cases, a frequency domain approach can
be taken.

However, it should be pointed out that this two-stage treatment
is not always applicable. At certain conditions the acoustic
field actually does couple with the mean flow field, and small
changes in the acoustic field can disturb and alter the mean
flow field, which in turn affect the acoustic field. In these cases
a full treatment of the fluid dynamic equations are needed. A
typical example of such a case is whistling tones generated in
pipes. This paper describes the derivation and evaluation of

a method to simulate sound propagation in two-dimensional
confined geometries with arbitrary internal mean flows. A fre-
quency domain linearized Navier-Stokes equations methodol-
ogy is developed for acoustic wave propagation applications.
The method is validated on a case of an in-duct area expansion.

Since most research efforts have been aimed at jet noise gen-
eration, where unsteady simulations are needed, few studies
have paid attention to the possibilities of frequency-domain
aeroacoustics. Examples are [1–3] where the Linearized Euler
Equations and the Linearized Lilley’s equation have been used.
Other internal aeroacoustic simulations on geometries relevant
to the work presented here, but performed with other method-
ologies can be found in, for example, [4–6]. The work presented
in this paper aims as a step in the development of a simulation
methodology for linear internal aeroacoustics.

THE LINEARIZED NAVIER-STOKES EQUATIONS

When studying propagation of aeroacoustic waves in flows
where dissipative effects are taken into account, the viscous
terms in the Navier-Stokes equations may not be neglected. In
this section we derive a frequency domain formulation of the
Navier-Stokes equations in which the viscous terms have been
retained.

The full compressible Navier-Stokes equations have been cho-
sen as a starting point. These can be written in dimensional
form as, [7]:

Continuity :
Dρ

Dt
+ρ

∂uk

∂xk
= 0

Momentum : ρ
Dui

Dt
= − ∂ p

∂xi
+

∂τi j

∂x j
+ρFi

Energy : ρ
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= −p
∂uk

∂xk
+Φ+

∂

∂xk

(
κ

∂T
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)
(1)
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Figure 1: Schematic sketch of the geometry of the area expansion.

with

Φ = τi j
∂ui

∂x j
, τi j = µ

(
∂ui

∂x j
+

∂u j

∂xi
− 2

3
∂uk

∂xk
δi j

)
(2)

and e = e(p,T ), p = ρRT , where ρ is the density, p is the
pressure, R is the universal gas constant, T is the absolute
temperature, ui is the velocity component in the i:th direction,
τi j is the viscous stress tensor, Fi is a volume force in the i:th
direction, e is the internal energy, κ is the thermal conductivity,
µ is the dynamic viscosity, Φ is the dissipation function, D/Dt
is the convective derivative, δi j is the Kronecker delta function,
and the Einstein summation convention is used.

We first assume that the solution can be written as a sum of a
time-independent meanflow term and a time-dependent pertur-
bation term. For a 2D approximation this yields:

ρ(xxx, t) = ρ0(xxx)+ρ ′(xxx, t), u(xxx, t) = u0(xxx)+u′(xxx, t),
v(xxx, t) = v0(xxx)+ v′(xxx, t), p(xxx, t) = p0(xxx)+ p′(xxx, t)

(3)
where u = u1 and v = u2, are the perturbation velocities in hori-
zontal and vertical directions, respectively. We then introduce
Eqs. (3) in Eqs. (1) and assume that second order perturbation
terms are sufficiently small to be neglected.

For simplicity we assume that the relation between pressure and
density can be regarded as isentropic. This is an assumption,
but is believed to make little difference [8], and is introduced to
decrease the implementational and computational effort. In this
case the pressure and density perturbations are related as where
c2 = γ p0/ρ0 is the square of the local adiabatic speed of sound,
γ is the ratio of specific heats and p0 and ρ0 are the pressure and
density of the mean flow, respectively [9]. With this relation,
the energy equation is disconnected from the Navier-Stokes
system of equations, and the size of the computational problem
is reduced considerably.

For 2D geometries we arrive at the following formulation of the
Linearized Navier-Stokes equations, as:

ρ̂ :

(u0 v0)∇ρ̂ +
(

∂u0

∂x
+

∂v0

∂y
− iω

)
ρ̂ = −

(
∂ρ0û

∂x
+

∂ρ0v̂
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)
(4)
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(6)

where ρ̂ , û and v̂ are the unknowns which represent the pertur-
bations of the density and velocities in horizontal and vertical
directions, respectively. Here u0 and v0 are the horizontal and
vertical velocities of the mean flow, respectively. Also, i is the
imaginary unit i2 =−1, ω is the angular frequency, µ is the dy-
namic viscosity of the fluid, F̂ is an externally applied volume
force field used to introduce acoustic waves into the system,
and ∇ = (∂/∂x ∂/∂y)T .

This is the form of the linearized Navier-Stokes equations that
is used throughout the work in this paper.

THE AREA EXPANSION

The test geometry and flow case was chosen to correspond to
the measurements of [10], which in addition has been analyzed
theoretically in [8, 11].

A sketch of the geometry is shown in Figure 1. The height
of the inlet duct was H = 5 cm, and the area expansion ratio
0.346, which yields a duct height of approximately 14 cm at
the expanded side. Due to computational limits, only a small
fraction of the total length of the duct system used in the experi-
ment was possible to simulate. The geometry in the experiments
was cylindrical axisymmetric, here however, as well as in the
theoretical model, a rectangular 2D approximation is made.

MEAN FLOW

The mean flow was calculated with a steady-state incompress-
ible k−ε RANS model in Fluent. A turbulent inlet flow velocity
profile was imposed at the left side of the duct system. The av-
erage flow velocity was set to match that of the experiments
[10], which were performed at a Mach number of 0.08. This
corresponds to a Reynolds number of about 9 ·104 based on the
duct height and mean flow velocity at the inlet.
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The inlet duct length of the mean flow simulation was extended
to 4 m, such that the velocity profile was stabilized at approxi-
mately x = -1, before reaching the start of the acoustical com-
putational domain in Figure 1. An ambient pressure outflow
boundary condition was imposed at the right boundary. Wall
functions at y+ ≈ 1 where used at the duct walls. The inlet
turbulent length scale was set to 3.5 mm, and the turbulent
intensity to 10%.

The mesh is structured and rectangular, and consists of 247120
nodes. A section of the mesh is shown in Figure 2. As can be
seen, the mesh is finest at the shear layers of the mean flow. The
velocity field as well as the vortcity field of the resulting mean
flow is shown in Figure 3 and Figure 4, respectively.

Figure 2: Overview of the mean flow mesh in the viscinity of
the area expansion. Every second node in the vertical direction,
and every fouth node in the horizontal direction is shown.

Figure 3: Magnitude of the velocity field with streamlines of
the mean flow, [m/s].

Figure 4: Vorticity field of the mean flow, [s−1].

SOUND FIELD

Once the mean flow is known, the perturbation field is calcu-
lated from the equation system (4-6). The frequencies were
chosen to correspond to those measured in the experiments of
[10], and is within the frequency range 200 Hz < f < 3000 Hz

The simulations were carried out in COMSOL Multiphysics,
on the mesh shown in Figure 5, yielding a system of 864510
degrees of freedom when using third order lagrangian inter-
polation shape functions. This mesh will resolve the acoustic
waves well enough, with just over 20 elements per acoustical
wavelength at the coarsest point at the highest frequency. Cal-
culations on this mesh resulted in an approximate solution time
of five minutes per frequency on a standard PC.

In Figures 6 and 7, examples of density perturbation fields

Figure 5: Overview of the computational mesh for the acoustical
calculations, shown in the viscinity of the area expansion.

and acoustic-induced vorticity fields are shown for two the
different frequencies f = 500 Hz and f = 2500 Hz. An acoustic
plane wave is inserted into the system from the left side and is
scattered at the area expansion. The linearized Navier-Stokes
eqs. support both irrotational and solenoidal parts, i.e. both
acoustic waves as well as vorticity contributions are present
in the perturbation field. The vortices can be seen to grow in
the shear layer of the mean flow, and are convected along the
stream lines of the mean flow.

Figures 8 and 9 shows the acoustic-induced vorticity. When
the acoustic waves are scattered at the area expansion edges,
some of the energy in the acoustic waves will be transformed
into vorticial energy. This energy transfer will thus act as a
dissipative effect on the acoustic waves, which leads to energy
losses from the sound waves.

Figure 6: Overview of the perturbed density field at 500 Hz.

Figure 7: Overview of the perturbed density field at 2500 Hz.

Figure 8: Overview of the perturbed acoustics-induced vorticity
field at 500 Hz.

It can be seen that the vorticial intensity is higher in Figure 9
than in Figure 8, i.e. the vorticial intensity increase with fre-
quency. If this is due to energy transfer from the acoustic waves
or due to amplification effects from the mean flow needs to be
investigated.

FREQUENCY SCALING

Due to the 2D approximation of the geometry, acoustical events
occur at different frequencies compared to the full 3D cylin-
drical geometry. According to the theory of [8, 11], it is pos-
sible to introduce a frequency scaling to enable a compari-
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Figure 9: Overview of the perturbed acoustics-induced vorticity
field at 2500 Hz.

son of acoustic propagation in 2D and 3D, the so-called non-
dimensional Helmholtz number He∗. The non-dimensional
Helmholtz number is defined as the Helmholtz number divided
by the Helmholtz number of the cut-on frequency of the first
higher-order propagating duct mode, i.e.

He∗ = He/Hecut−on. (7)

With this frequency scaling, the relation between the 2D fre-
quencies and the corresponding cylindrical 3D frequencies can
be identified as

f2D =
r
h

π

κ0
fcyl , (8)

where r is the radius of the downstream duct in cylindrical 3D,
h is the height of the downstream duct in 2D, and κ0 is the fist
zero to the zeroth order Bessel function.

ACOUSTICAL 2-PORTS

To quantify the low frequency acoustical behavior of in-duct
components, a so-called N-port formalism is often convenient
[12]. Here N is the number of ducts connected to the component.
In the case of area expansions and other geometry discontinu-
ities, the component is connected to one inflow duct and one
outflow duct, and can thus be formulated as an acoustic 2-port.
The methodology is valid in the plane wave region, i.e. below
the cut-on frequency of the first higher order propagating duct
mode.

Several formalisms exist, such as the Transfer matrix and the
Mobility matrix formalisms. The most general formulation is
the Scattering matrix approach [13], which for the scattering of
a 2-port system can be written as

(
ρ̂1−
ρ̂2−

)
=
(

R− T−

T+ R+

)
︸ ︷︷ ︸

SSS

(
ρ̂1+
ρ̂2+

)
(9)

where the waves are defined as in Figure 10. The Scattering ma-
trix S represents how incoming acoustic waves are transmitted
and reflected at the area expansion. This is called the passive
part, since sound generation processes are not included. In the
general case, all quantities are complex functions of frequency.

PLANE WAVE DECOMPOSITION

To obtain the up- and downstream propagating waves needed in
Eq. (9) we apply a plane wave decomposition to the simulated
solution. We assume that the acoustic field quantities can be
written as a sum of up- and downstream propagating plane
waves, as

ρ̂ = ρ̂+ + ρ̂−, û = û+ + û− (10)

Figure 10: Principles of the acoustic 2-port.

In a plane wave, the relation ρ̂ =±ρ0/c0 û is valid, and thus,
the wave decomposition can be written as

ρ̂+(x) =
1
2

(
ρ̂mean +

ρ0

c0
û
)

(11a)

ρ̂−(x) =
1
2

(
ρ̂mean −

ρ0

c0
û
)

(11b)

where mean is an averaging of the quantities over a duct cross
section with height H, i.e. for a 2D case as:

ρ̂mean(x) =
1
H

H∫
0

ρ̂(x,y)dy (12)

and correspondingly for the velocity perturbation.

RESULTS

With the acoustic wave amplitudes from the decompositions
Eq. (11) inserted into the 2-port formalism, the scattering matrix
Eq. (9) can be calculated.

The magnitude and phase of the scattering matrix elements are
shown in Figures 11-12, respectively, along with measurements.
As can be seen, the simulation results are in good agreement
with the experimental results.

If the assumption made in the derivations of the methodology
was to be found too restrictive, it would still be straight for-
ward to extend the methodology. A cylindrical axisymmetric
formulation could be achieved by altering the derivatives, and
anisentropy by including the energy equation into the system.

If the equations (4-6) are rewritten on cylindrical form, the
difference to the 2D results can be investigated. If the isentropy
assumption is shown to be invalid, it is only needed to include
a linearized form of the energy equation. This will however
increase the size of the computations and result in more time-
consuming calculations.

CONCLUSIONS

A methodology has been developed to efficiently simulate
acoustic wave propagation in duct systems with arbitrary, but
two-dimensional, geometries and arbitrary flows present. The
methodology is based on a frequency domain formulation of
the linearized Navier-Stokes equation with isentropic relations
between perturbed pressure and density, to disconnect the en-
ergy equation from the linearized system of equations. The
methodology was validated to measurements of the case of an
area expansion with a 0.08 Mach number mean flow, with good
results.
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Figure 11: Magnutudes of the scattering matrix elements at an in-duct area expansion of 0.346 area ratio and Mach number M = 0.08
flow. Green solid line: analytical solution [8, 11], red line with + marker: simulations, black diamond markers: experimental results [10].

Figure 12: Phase normalized by π of the scattering matrix elements at an in-duct area expansion of 0.346 area ratio and Mach number
M = 0.08 flow. Green solid line: analytical solution [8, 11], red line with + marker: simulations, black diamond markers: experimental
results [10].
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Future work will focus on expanding the methodology to also
include non-isentropic relations, and cylindrical and 3D geome-
tries.
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