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ABSTRACT

The harmonic plus noise model (HNM) is widely used for spectral modelling of sounds that combine harmonic and
noise components, like speech signals and signals produced by a series of musical instruments. A simplified and efficient
version of the HNM, developed by Stylianou et al., splits the frequency band of the signal into two bands: a harmonic part
for low frequencies and a noise-like part for high frequencies, separated by a time-varying cut-off frequency. In this study,
we propose to model the time trajectories of the parameters of this HNM model for non-stationary signals, especially
focusing on speech signals. This is done for time intervals up to several hundreds of milliseconds, thus significantly
longer than usual short-term time frames used in analysis/synthesis models and in speech coders. The goal is to capture
and exploit the long-term correlation of spectral components, as can appear across spectral parameters extracted from
consecutive short-term frames. Previous works by Firouzmand et al. dealt with long-term parametric modelling in the
more general framework of the sinusoidal model (i.e. long-term modelling of amplitude and phase parameters). We
propose to extend this work to the HNM framework in order to obtain a complete long-term HNM model. In this latter
case, the parameters to be modelled on the long-term basis are the spectral envelope (that encompasses the harmonic and
noise regions), the fundamental frequency (which characterizes the harmonic region) and the cut-off frequency (which
separates the harmonic and noise bands). To do this, the speech signal is first segmented into voiced (actually mixed
voiced/unvoiced) sections and unvoiced sections, and a discrete cosine model is used for representing the time-trajectory
of HNM parameters over each entire section. The proposed long-term HNM model can be used for music and speech
analysis/synthesis. It enables joint compact representation of signals (thus a promising potential for low bit-rate coding)
and easy signal manipulation directly from the long-term parameters (e.g. time stretching by direct interpolation). We
present several experimentations to prove the efficiency of this model. For instance, the proposed long-term HNM is
compared to the short-term version in terms of listening quality and data rate.

INTRODUCTION

Two main parametric modelling techniques for speech signals
have been used for years with great success. The first one is
the classical LP1 technique [1], which assumes that the speech
signal is the result of a linear locally time-invariant filtering
process between an excitation signal and the vocal tract filter.
This LP model has been applied successfully to speech coding,
hence the LPC2 family of vocoders. The second model, also
widely used, is the sinusoidal model, which represents speech
signals by a sum of sinusoids [2, 3]. Those sinusoids can be
harmonics of a fundamental frequency, leading to the harmonic
model, that best models monophonic signals such as speech
signals (single speaker). Alternately, they can remain gener-
alized sinusoids to model polyphonic sounds. The sinusoidal
model has been rather applied to speech transformations such
as time stretching. Both LP and sinusoidal/harmonic models
can be combined for further transformations involving separate
modification (or on the contrary preservation) of the spectral
envelope, such as frequency stretching / transposition.

A particular model based on the sinusoidal/harmonic model
is the harmonic plus noise model (HNM) [4], which splits the
frequency band into voiced and unvoiced sub-bands. Voiced sub-
bands are modelled by harmonic components, whereas unvoiced

1linear prediction
2linear prediction coding

bands are modelled by (coloured) noise. This model is dedicated
to represent sounds with a mixed harmonic/noise structure,
such as mixed voiced/unvoiced sounds of speech. A simplified
version of the HNM model was developed in [5] and further
works by Stylianou and collegues. This simplified version splits
the frequency band into two sub-bands: a harmonic band in the
low frequency region, and a noise band in the high frequency
region (random components with spectral coloration though
no clear temporal structure). Those two bands are separated by
the voicing cut-off (VCO) frequency denoted FV . According to
this model, the speech signal can locally (i.e. on a limited time
frame) be written as:

s(t) =
I

∑
i=1

Aicos[φi(t)]+ν(t), (1)

where t denotes the discrete time index, i denotes the harmonic
rank, ν is the high-frequency noise part of the signal, and φi is
the instantaneous phase for each harmonic i given by (2)

φi(t) = 2πiF0t +ϕi. (2)

where F0 is the fundamental frequency, A is the amplitude and
ϕi the phase at the origin of harmonic i.

Speech signals are non-stationary. Therefore, in speech analy-
sis/synthesis systems and speech coders based on parametric
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Figure 1: Voicing cut-off frequency variation of a speech signal
containing voiced and unvoiced sections. The analysis of FV is
provided by the method presented in [15]. It can be seen that,
globally, the spectrogram has a harmonic structure below FV ,
and a rather random/noisy structure above FV .

modelling, the speech parameters are generally processed on a
short-term frame-by-frame basis, i.e. on successive analysis and
synthesis frames that are approximately 20ms-long, to follow
the speech time-dynamics. Since the evolution of the vocal tract
is quite smooth and regular for many speech sequences, high
correlation between successive parameters can be underlined.
However, this long-run correlation has been relatively poorly
exploited in speech processing systems. Quite few papers have
considered the modelling and exploitation of this correlation be-
yond two or three successive frames. Let us however mention a
few examples. For linear prediction, the trajectories of ten LSF3

parameter vectors were modelled in [6] by a two-dimension
discrete cosine transform (2D-DCT), similarly to what is done
in block-based image compression. In [7], a fourth-order poly-
nomial model was used for the same task, and this approach
was applied to speech coding.

Recently, Firouzmand and collegues have presented a series of
works dealing with adaptive long-term (LT) modelling of the
time-trajectory of sinusoidal parameters [8, 9, 10, 11]. They
modelled the time-trajectory of amplitude, phase, and spec-
tral envelope parameters on quite long sections of speech (e.g.
entirely voiced sections of several hundreds ms). For each pa-
rameter trajectory, a single so-called long-term model was fitted
to the data using adaptive least-square optimization. Differ-
ent kinds of long-term models were tested, and a discrete co-
sine model (DCM) similar to the classical DCT transform was
favoured, as it provided good fitting to the data with few co-
efficients, together with good computational properties. This
work was extended to the LPC framework in [12, 13] with
the adaptive LT modelling of LSF vectors trajectories, and its
application to LSF coding.

This paper is a further extension of this series of works. We
propose to apply the long-term modelling approach to the 2-
band HNM framework, i.e. we propose a long-term modelling
of the time trajectories of the HNM model parameters. Those
parameters are here the spectral envelope (that ensures intrinsic
modelling of amplitude parameters), the fundamental frequency
F0, and the voicing cut-off frequency (an example of the time
evolution of the voicing cut-off frequency is given in the spectro-
gram of Fig.1). As in the previous works mentioned above, the
long-term frame boundaries are the voiced/unvoiced boundaries
(or more exactly the limits between mixed voiced/unvoiced sec-
tions and completely unvoiced sections). For the fundamental
frequency and the VCO frequency, we use the DCM. Of course,
those latter parameters are defined and thus long-term modelled

3line spectral frequency

Figure 2: Analysis of the short-term HNM

only for the voiced sections. For spectral envelope modelling,
we use a 2D-DCM model (2D is for two-dimension in fre-
quency and in time) similar to the one that was used in [11] for
the modelling of purely harmonic sections. However, we adapt
this model along the frequency dimension to the coexistence of
the two bands of the HNM model.

Note that the long-term models are not "directly" fitted to the
speech signal at each sample, they rather are fitted to the short-
term spectral parameters extracted for each analysis frame.
Therefore, we first carry out short-term analysis of the parame-
ters of interest, as described in the next section. Then we apply
long-term modelling to those parameters, as described in the
following section. We finally describe the synthesis of output
signals from the LT modelled parameters. We conclude this
paper with preliminary results that demonstrate the feasibility
of the proposed approach, i.e. speech signal can be represented
with a quite limited number of parameters using the proposed
LT model, while preserving good quality.

ANALYSIS OF THE SHORT TERM HARMONIC
PLUS NOISE MODEL

In this section, we describe the short-term analysis of the HNM
parameters to be long-term modelled. The main steps of analysis
are shown in Fig.2. They are detailed in the next subsections.
We first estimate the fundamental frequency F0, which is then
used to compute the VCO frequency. Once the two bands of the
model are separated, each one is analysed separately: harmonic
analysis is carried out for the low frequency band, and noise
analysis is carried out for the high frequency band.

Estimation of F0 and short-term frame boundaries

The Praat software4 is used to estimate the fundamental fre-
quency, with the autocorrelation method described in [14]. We
actually use the related pitch-mark analysis, i.e. the extraction
of markers between successive periods of signal, and the fun-
damental frequency is provided by inversing the pitch period.
This enables to provide further pitch-synchronous analysis, i.e.

4http://www.fon.hum.uva.nl/praat/
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a set of HNM parameters for each pitch-mark. In the following,
k denotes the short-term frame index, tk denotes the pitch-mark
value, which is the center of the analysis frame, and K de-
notes the number of short-term analysis frames (the number of
periods) within a long-term section of speech signal. This F0
estimation routine provides a data vector:

F0 = [F0(1), · · · ,F0(K)]. (3)

As detailed below, the size of the short-term analysis frames
are different according to the type of further parameters under
analysis.

Estimation of the voicing cut-off frequency Fv

The method described in [15] is used to estimate the VCO
frequency FV . This method is based on the computation of a
normalized spectrum for each frame and the maximisation of
a cumulative energy divided into a cumulative periodic energy
for the first band and a cumulative aperiodic energy for the
second band. For this method, the size of the analysis frame
must be equal to two pitch periods [15]. The VCO frequency
is considered as the last harmonic in the frame signal. If Ik
denotes the number of harmonics in the current analysis frame,
then we have: FV (k) = IkF0(k). We denote by FV the vector of
measured FV values:

FV = [FV (1), · · · ,FV (K)]. (4)

Estimation of the harmonic parameters

The harmonic analysis consists in estimating the amplitude
Ah(i,k) of the ith harmonic and the kth analysis frame, for i = 1
to Ik. For each analysis frame k, we thus obtain a harmonic
amplitude vector:

Ah(k) = [Ah(1,k), · · · ,Ah(Ik,k)]T , (5)

where T denotes vector transposition.

The estimation is based on the iterative analysis-by-synthesis
technique described in [3]. When the fundamental frequency is
previously estimated, as is the case here, this process is equiva-
lent to a basic least-square fitting between the harmonic model
and the signal within a given frame. In order to obtain quite
smooth amplitude parameters from one analysis frame to the
next one, we also use here two successive pitch periods around
the computing time index tk as short-term frame.

Estimation of noise parameters

This analysis consists of estimating the frequencies and ampli-
tudes of the spectral components of the upper noise-like band
of the kth analysis frame. This basically consists of detecting
the main peaks of this frequency region. For this, we use a basic
peak-picking algorithm, applied on FFT magnitude spectrum,
similar to the one described in [2]. Here, the size of the analy-
sis frame is fixed to 32ms (i.e. 512 points for 16KHz signals,
hence classical short-term analysis frame) but the frame is still
centered around time index tk. Let us denote Nk the number of
noise peaks in the spectrum. Fn(k) is the vector containing the
frequencies of the detected peaks, and An(k) is the vector of
corresponding amplitudes:

Fn(k) = [Fn(1,k), · · · ,Fn(Nk,k)]T , (6)

An(k) = [An(1,k), · · · ,An(Nk,k)]T . (7)

LONG TERM MODELLING OF THE HNM PARAM-
ETERS

Once the short-term HNM parameters are estimated for the
successive short-term frames of a long section of speech, their
trajectory can be modelled on a long-term basis by applying
an appropriate long-term model. The long-term modelling tech-
nique is first presented in a very general manner: we define the
long-term model and we present the basic technique for calculat-
ing its coefficients from data. Then we present the application of
this model to the HNM parameters. In this section, we assume
that the speech signal has been first segmented into voiced and
invoiced sections (using F0 values), and the presented long-term
modelling can be applied separately on each resulting section.
The size of the data K depends on the length and characteristics
(F0 trajectory) of the section, but this dependence is omitted in
the notations for simplicity.

The long-term model: DCM

The long-term model that is used in this study for each long-
term frame of speech signal is the Discrete Cosine Model
(DCM) that has been used in previous long-term studies within
the sinusoidal and LPC frameworks [8, 10, 9, 11, 12, 13]. This
model is defined as a linear combination of cosine functions
(8):

X̃(t) =
P

∑
p=0

cp cos(pπ
t
N

). (8)

where X denotes a general set of data to be modelled, and X̃
denotes the corresponding modelled data. C = [c0 c1 · · · cP] are
the P+1 coefficients vector of the DCM model, and P is called
the model order. The data index t runs arbitrary from 0 to N
within the modelled data frame (hence N is the maximum value
of t within the modelled data frame). In the present case of long-
term trajectory modelling, t is a time index but it can represent
any arbitrary physical quantity in other applications. For exam-
ple, the DCM was used in [16] and [17] to model the short-term
(log-scale) spectral envelope of speech/music signals, leading
to cepstral coefficients. In those studies, the index corresponded
to normalized frequency values, and N corresponded to the
Nyquist frequency. We will use this frequency-modelling ver-
sion in the 2D (two-dimension) version of the DCM model for
amplitude modelling.

In [18], the DCM model was compared with a polynomial
model and with a mixed cosine-sine model, within the sinu-
soidal modelling framework. Overall, the results were quite
close, but the use of the polynomial model possibly led to nu-
merical problems when the size of the modelled trajectory was
large. Therefore, in the present study we consider only the DCM.
Note finally that this model (or potential variants of it) is closely
related to the discrete cosine transform (DCT) used for signal
compression. Thus, this model has the ability to concentrate
the most important part of information contained in the data set
(say, its "global shape") into a limited number of coefficients.
In other words, the goal of such modelling is to reduce the data
dimension from K to P+1, with P significantly lower than K,
while preserving data trajectory. It is interesting to note that,
although the HNM parameters are initially defined frame-wise,
the model provides a modelled value for each time index t.
This property is expected to be very useful for straightforward
synthesis of the modelled speech signal from modelled parame-
ters, and also for potential transformations of this signal, as it
provides a direct and simple way to proceed time interpolation
for time-stretching/compression of speech: Interpolated HNM
parameters can be calculated using (8) at any arbitrary instant,
while the general shape of the parameter trajectory is preserved.
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Estimation of the long-term model coefficients

Let us now consider the calculation of the vector of model co-
efficients C, given that the order P is known (we will adjust P
empirically in the experiments section). For this aim, we define
the following vectors/matrices. The data set to be long-term
modelled (i.e. a given set of HNM parameter values extracted at
instants t1, · · · , tK ) is denoted X = [X(t1), · · · ,X(tK)]. The cor-
responding modelled vector is denoted: X̃ = [X̃(t1), · · · , X̃(tK)].

The (P + 1)×K DCM matrix that gathers the DCM terms
evaluated at instants t1, · · · , tK is given by:

M =



1 1 · · · 1

cos(π t1
N ) cos(π t2

N ) · · · cos(π tK
N )

cos(2π
t1
N ) cos(2π

t2
N ) · · · cos(2π

tK
N )

...
...

...
...

cos(Pπ
t1
N ) cos(Pπ

t2
N ) · · · cos(Pπ

tK
N )


(9)

So that we have:
X̃ = CM. (10)

C is estimated by minimizing the mean square error (MSE)
between the modelled and original data. Since the modeling
process aims at providing data dimension reduction for efficient
signal representation, we assume that P+1 < K, and the optimal
coefficient matrix is classically given by:

C = XMT ((MMT ))−1. (11)

A weight matrix W (with a weight vector on its diagonal and
zero elsewhere) can be introduced in this process to give more
importance to some points in the computation of the model. In
other words, such weighting constrains the model to be more
accurate around specific points/regions of the data where they
are granted large weight values. Finally note that in practice,
we used the "regularized" version (13) of (11) proposed in [17].
Here, a diagonal "penalizing" term is added to the inverted
matrix in (11) to fix possible ill-conditioning problems:

P =



1 0 · · · 0
0 8π2

. . .
...

... 8π2 p2

. . . 0
0 · · · 0 8π2P2


(12)

and finally, (11) becomes:

C = XWMT (MWMT +λP)−1, (13)

where λ is a regularization term fixed empirically to a small
value.

Application to the HNM parameters

The general guidelines of the application of the LT modelling
presented above to HNM parameters is given in Fig.3. Let us
remind that this modelling is applied independently for each suc-
cessive voiced or unvoiced section of speech. The dependence
of k on the section is omitted for simplicity. The fundamen-
tal frequency and the voicing cut-off frequency are modelled
separately, and they are only modelled for voiced sections (for
unvoiced sections, these parameters are set to zero for the whole
section). The spectral envelope is modelled for both voiced and
unvoiced sections.

Figure 3: Complete long-term DCM modelling schema

LT modelling of F0

LT modelling of F0 consists of applying equations (8) to (11)
to the F0 data vector (3). The resulting coefficients vector is
denoted CF0. Note that when applying the DCM along the time
axis (for F0 and FV ), we do not use the weighting and regulariz-
ing terms. Indeed, the temporal trajectory of the fundamental
frequency is generally quite smooth. Thus, the inverse matrix
in (11) is generally well conditioned. Also, all time frames are
assumed to have the same importance, hence no weight matrix
W is necessary along the time axis.

In the experiments presented in this paper, the DCM order P is
chosen empirically, respecting the two constraints of significant
data compression (PF0 << K) and good modelling accuracy.

LT modelling of FV

LT modelling of FV consists of applying equations (8) to (11)
to the VCO frequency data vector FV (4). The resulting coeffi-
cients vector is denoted CFV. As for the fundamental frequency
case, all frames are assumed to have the same contribution to
the model, and the time-trajectories are "sufficiently" smooth so
that the basic version of the DCM is used. The model order is
also set empirically in order to provide high data compression
and good modelling quality. Note that the VCO frequency FV
must be a multiple of the fundamental frequency. This constraint
is not a relevant issue when modelling the FV time trajectory,
i.e. when calculating the model coefficients, but it will be con-
sidered at the synthesis stage, when exploiting the modelled
trajectories.

2D-DCM modelling of the spectral amplitudes

The 2D-DCM modelling of amplitude parameters is similar to
the one proposed in [11]. It is applied in two steps: a first DCM
model is applied on the amplitude vector of each short-term
frame in the frequency dimension5, and then a second DCM is
applied on the resulting coefficients along the time dimension.
However, in [11] the spectral envelope was modelled only for
voiced sections of speech where the frequency band was as-

5we remind that this is similar to the spectral envelope modelling of [17].
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sumed to be totally harmonic, so that only harmonic amplitudes
were (short-term) analyzed and 2D-modelled. In the present
HNM framework, we analyse and model both harmonic and
noise spectral amplitudes. Nevertheless, in the present study,
we choose not to separate the two bands, and we apply a global
spectral envelope model for the whole band. In other words,
we use a single DCM to jointly model harmonic and noise-like
components amplitudes. So, a preliminary step is to concate-
nate Ah(k) and An(k) values to have a single amplitude vector.
We obtain for each short-term frame k a global vector A(k)
containing all harmonic and noise amplitudes: A(k) = [Ah(k)T

An(k)T ]T . The model matrix (9) is here evaluated at frequency
positions corresponding to the harmonics location and noise
peaks location:

M =



1 · · · 1 1 · · · 1

cos(π
F0(k)
0.5

) · · · cos(π
IkF0(k)

0.5
) cos(π

Fn(1,k)
0.5

) · · · cos(π
Fn(Nk ,k)

0.5
)

...
...

...
...

cos(P1π
F0(k)
0.5

) · · · cos(P1π
IkF0(k)

0.5
) cos(P1π

Fn(1,k)
0.5

) · · · cos(P1π
Fn(Nk ,k)

0.5
)


(14)

(Note that 0.5 represents the Nyquist frequency since (14) is
defined for normalized frequencies).

The DCM coefficients for frame k, D•,k = [d0,k, ... ,dP1,k]T , are
obtained by applying (13) to the transposed amplitude vectors:

DT
•,k = A(k)T WMT (MWMT +λP)−1. (15)

As mentioned before, P1 must be lower than the total number
of frequency points (harmonic and noise components) in each
frame k. It is also assumed that P1 is the same for each frame
in a given long-term section (however it can be different across
sections). So we set empirically P1 to the minimum number of
frequency points across all frames within the long-term section
minus one:

P1 = mink=1toK(Ik +Nk−1). (16)

In the present study, a weight diagonal matrix is used to give
more importance (hence modelling accuracy) to the harmonic
amplitudes than to the noise peaks during the short-term DCM
modelling of the spectral envelope, since this was shown to
ensure higher global quality for synthesized signals (the weights
for harmonics are set to 10 and the weights for noise peaks
are set to 1). A more rigorous criterion has to be defined and
tested to assess this important point, and it will be considered
more carefully in our future works. Also, it has been observed
that when calculating (15) without the regularization term λP,
the inverse matrix frequently happens to be ill conditioned.
This results in quite important modelling errors. In [17] the ill
conditioning is reported to be due to the non regular structure
of the spectrum, with quite large variations in amplitude values
(in contrast, in [11], the regularization was not a crucial point
because of the regular structure of the fully harmonic spectrum).
In the present study, we introduce the noise-like band, which
contains erratic values of frequencies and amplitudes, so that
the spectrum is more irregular, hence the need for regularization.
The value of λ is chosen empirically in this study to ensure
sufficiently smooth modelled amplitudes, while not loosing to
much modelling accuracy, especially for the first harmonics.

The columns vectors D•,k of the short term DCM coefficients
are concatenated in time, so that we obtain a matrix D contain-
ing all dm,k coefficients of a long-term section:

D = [D•,1. · · ·D•,K ]. (17)

Then, during the second step of 2D-modelling, LT modelling
can be applied on each of the spectral envelope coefficients dm,k,

Figure 4: HNM synthesis of speech signal from the DCM coef-
ficients

m = 0 to P1, using a second DCM along the time axis (with the
cosine matrix based on the time indexes). More specifically, the
time-trajectory DCM model is applied separately on each row
vector Dm,• of the matrix D:

Dm,• = [dm,1. · · ·dm,K ]. (18)

This provides a second set of coefficient vectors denoted CSE
(SE stands for spectral envelope). Note that, since all vectors
Dm,• have the same size, the set of vectors CSE can be calcu-
lated in a matrix form if the order P2 of the time-dimension
DCM is the same for all vectors Dm,• (i.e. in (11) X can be
D instead of Dm,•, and C would result in the concatenation of
row coefficient vectors). In such case, the dimension of the LT
coefficients matrix is (P2 +1)× (P1 +1).

Note that, as for F0 and FV modelling, we do not use weighting
and regularizing terms during this modelling of D in the time
dimension. Also, note that P2 is also chosen empirically in
the reported experiments to allow high data compression with
acceptable modelling quality.

SYNTHESIS OF THE MODELLED SPEECH SIG-
NAL

In this section, we describe the synthesis of the modelled speech
signal, i.e. generation of speech signal samples from LT mod-
elled HNM parameters. The different steps of this synthesis
process are given in Fig.4. The first step consists of obtaining a
time trajectory of each parameter of the HNM model (1) from
the corresponding long-term model coefficients. The second
step is the synthesis of the speech signal with (1) using the
modelled parameters trajectories.

F0 and FV trajectories from the LT model

The time trajectories of the modelled F0 and FV for each sam-
ple of the long-term section are simply computed from their
respective DCM coefficients using (8), since (8) is actually a
synthesis equation.
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Harmonic frequencies trajectory

The modelled trajectories of the harmonic frequencies are then
obtained by multiplying the modelled F0 trajectory with the
harmonic rank. However, attention is paid to limit the region of
interpolation of the harmonic frequencies to the region below
the FV trajectory. As FV is considered in this study as the upper
harmonic frequency, the modelled FV values at tk are "rounded"
towards the closest multiple of modelled F0 at tk, i.e.:

Ĩk = round
[

F̃V (tk)
F̃0(tk)

]
, (19)

F̃V (k)←− Ĩk× F̃0(k). (20)
Indeed, the beginning and ending locations of the harmonics
trajectory depend on the FV shape. This is handled by including
a harmonic "birth" and "death" process similar to the one used
in [2] for the sinusoidal partials. The birth and death process
is easy to manage since the number of modelled harmonics (or
equivalently the modelled FV value) is perfectly known at each
time instant t.

Harmonic phase trajectories

Once the harmonic frequencies are interpolated using the DCM
coefficients, the computed instantaneous phase trajectory (i.e.
the argument of synthesis cosine functions in (1) at each sample
t) of each harmonic is given by cumulative sum of the corre-
sponding modelled frequency:

φ̃i(t) = 2πi
t

∑
n=0

F̃0(n). (21)

This enables to directly exploit the interpolative nature of the LT
model, and ensures phase continuity. If a harmonic is split into
several segments within the same long-term section because
of the variations of the FV trajectory, several birth and death
processes can occur, and the phase update is only activated
during "living" portions of the harmonic.

Amplitude trajectories extraction from 2D-DCM

Amplitude (short-term) vectors are "decoded" from the 2D-
DCM model by applying equation (10) two times in a cascaded
manner, first along the time axis, then along the frequency
axis. Applying (10) first using CSE (and the appropriate cosine
matrix) leads to the modelled matrix of spectral coefficients
D̃. Then applying (10) a second time using each transposed
column vector D̃T

•,k of D̃ (with the appropriate cosine matrix)
leads to modelled amplitude vectors Ã(k).

It is important to note that the synthesis time indices can be
different from the analysis time indices tk used in the previous
sections. In other words, synthesis can be carried out at arbi-
trary instants, e.g. using fixed windows/hop size. This enables
to avoid the transmission of those indexes between analysis and
synthesis for data-rate saving (this also enables interpolation
facilities for speech transformations such as time-stretching for
example). Nevertheless, the same notation tk is used for the
synthesis instants for simplicity.
During the second step, we resample the spectral amplitude vec-
tors Ã(k) from the modelled spectral envelope. In the harmonic
band, we resample at F̃0(k) and its harmonics. The obtained
modelled amplitude vector in frame k is:

Ãh(k) = [Ã(1,k), ..., Ã(Ĩk,k)]T . (22)

In the same synthesis frame, the spectral amplitude in the noise-
like band, is regularly sampled from the spectral enveloppe
with a fixed frequency step dF to obtain the modelled noise
amplitude vector.

Ãn(k) = [Ã(Ĩk +1,k)...Ã(Ĩk + Ñk +1,k)]T , (23)

(a) mixed voiced and unvoiced speech section (signal test: sig2).

(b) entirely voiced speech section (speech signal sig1).

Figure 5: Time trajectories of original (dashed line) and long-
term modelled (solid line) fundamental frequency with different
model orders.

where Ñk is the number of synthesis noise peaks.

Speech signal synthesis

The modelled harmonic amplitudes Ãh(k) are linearly interpo-
lated in time from (synthesis) frame to frame in order to have
harmonic amplitude trajectories Ãh(i, t) defined at each time
sample t over the voiced long-term section (i.e. t = 1 to N). At
the time boundaries of each living harmonic, the amplitudes
are extrapolated to zero to manage the "birth" and "death" pro-
cesses.
Thus, the synthesized harmonic part of the signal is given by:

s̃h(t) =
Ĩ(t)

∑
i=1

Ãh(i, t)cos(φ̃i(t)). (24)

Note that the number of harmonics Ĩ(t) is variable because of
the harmonics birth and death processes.

The modelled amplitudes in the noise-like band are not directly
time interpolated. The synthesized noise signal is obtained by
an overlap-add technique applied to sinusoids with random
phase (uniformly distributed in [0 2π]) as described in [3, 19].
For each frame k, sinusoids of amplitude Ãn(k), normalized
frequencies F̃n(k) (regularly spaced by dF) and random phase
at origin Φn(k) are synthesized and summed to produce the
modelled noise-band signal s̃n,k(t):

s̃n,k(t) =
Nk

∑
m=1

Ã(Ĩk +m,k)cos(2πF̃n(m,k)t +Φn(m,k)). (25)

Synthesized noise signals for successive frames are then summed
using the overlap-add technique [3, 19] (using here a Hanning
window), to provide the complete synthesized noise signal s̃n(t).
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Figure 6: Trajectories of the original (dashed line) and the long-
term modelled VCO frequencies of sig2 speech signal. PF0 is
set to K/16.

The final synthesized signal is the sum of harmonic and noise
parts:

s̃(t) = s̃h(t)+ s̃n(t). (26)

Note that unvoiced speech sections are processed by simply
setting the VCO frequency and harmonic signal to zero, and
activating only the noise synthesis (conversely, some voiced sec-
tions may be totally harmonic, i.e. the VCO frequency is equal
to the Nyquist frequency, and only harmonic analysis/synthesis
is performed, but this case is very rare for 16kHz speech sig-
nals).

EXPERIMENTATION AND RESULTS

As the proposed long-term HNM is a "compact" version of the
short-term HNM, we evaluate in this section its performance
in terms of data reduction and listening quality. This is done
by comparing the long-term modelled HNM parameters with
the short-term ones. We evaluate the listening quality using
the objective quality assessment system PESQ6 and informal
subjective listening tests.

For the experimental procedure, we used two sets of 16 kHz
speech signals: the first set, denoted sig1, is composed of en-
tirely voiced signals produced by a female speaker. The sec-
ond set, denoted sig2, is composed of mixed voiced/unvoiced
signals, produced by male and female speakers. Each speech
sequence is about 1.5 sec long.

Accuracy of the long-term DCM modelling

In this section, we compare the long-term modelled HNM pa-
rameters to those obtained by the short-term HNM analysis
stage.

Long-term DCM modelling of F0

First, we compare the two time-trajectories (original and mod-
elled) of the fundamental frequency. The accuracy of the long-
term model depends on the model order PF0 which is here cho-
sen empirically. On Fig. 5(a), PF0 was set to dK/8e and dK/16e),
where d·e denotes the integer part, and we remind that K is the
length of the F0 data vector. We can see that, in both cases, the
trajectory of the modelled fundamental frequency F̃0 fits well
the one of the original F0 in the long sections, e.g. the two first
voiced sections of sig2 in Fig. 5(a). For short sections, e.g. the
two last voiced sections in Fig. 5(a) (where the corresponding
data lengths are respectively K = 13 and K = 10), PF0 is set to
0 when dividing K by 16. Additionnal experiments show that
setting PF0 = 2 is sufficient to ensure a good fitting of F0 trajec-

6Perceptual Evaluation of Speech Quality - International Communication
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Figure 7: Original (dashed line) and HNM modelled (solid
line) spectral envelopes for two model order values, within a
voiced/unvoiced frame. Ik = 36, F0 = 153Hz. Pmax is is long-
term DCM order given by (16).

tories in such short sections. A crucial issue lies in the definition
of a criterion for an automatic adjustment of the optimal model
order depending on the characteristics of the signal section be-
ing modelled. This point, that will be considered in our future
works, is confirmed by the results plotted on Fig. 5(b): Here the
voiced section is very long and a good model fitting is obtained
for PF0 = dK/32e.

Long-term DCM modelling of FV

In Fig.6, we can compare the trajectories of original and long-
term modelled VCO frequency, FV and F̃V , for the same signals
as in Fig.5. The choice of the model order PFV is also set empir-
ically. However, the choice of PFV seems to be more tricky than
for F0, since the time trajectory of FV has a more fluctuations
than the F0 trajectory. Thus, the FV trajectory model requires a
higher order value, as shown on Fig.6. Setting PFV = dK/4e pro-
vides quite faithful modelled trajectories, while PFV = dK/8e
provides smoothed trajectories. However, the second choice
may be better if it can be shown to preserve speech signal
quality.

2D long-term DCM modelling of spectral amplitudes A

Fig.7 shows an example of spectral DCM modelling (i.e. first
DCM along the frequency axis) for a mixed voiced/unvoiced
frame, containing both harmonic and noise-like frequencies.
Spectral envelopes modelled with two different model orders
are plotted: model order P1 given by (16), and half of this value.
In both cases, the original spectral envelope is well modelled.
The second order is used to prove that we can choose a low
DCM order -and thus a higher data compression rate- with a
good modelling efficiency.

As for the 2D modelling, Fig.8 depicts the amplitude time-
trajectories for the four first harmonics of sig2 (original trajec-
tories obtained from the short-term analysis are also plotted
for comparison). We can see that, along the time axis, a data
compression rate of 4 provides a good amplitude modelling
efficiency for the four plotted harmonics; In contrast, a data
compression rate of 8 seems to significantly alter some ampli-
tudes. Note also that the modelled amplitude trajectories are
likely to benefit from a smoothing filtering post-processing,
since modelling the trajectories of the spectral enveloppe coeffi-
cients using a "smooth" time model do not necessarily guaran-
tee that the resulting amplitude parameters have a smooth time
trajectory.
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(a) First harmonic

(b) Second harmonic

(b) Third harmonic

(b) Fourth harmonic
Figure 8: Trajectories of original (dashed line) and 2D long-
term modelled (solid line) amplitudes of the four first harmonics
of sig2.

Figure 9: Speech waveforms synthesized from short-term HNM
(top figure) and from long-term HNM (bottom).

Figure 10: Spectrograms of synthesized speech. Top: short-term
HNM. Bottom: long-term 2D HNM.

Synthesized signal

The speech signal synthesized from the long-term modelled
HNM parameters is finally compared to the speech signal syn-
thesized directly from the short-term HNM parameters (i.e.
without any DCM modelling). Both signals sounds good (this
point is further discussed in the following). Fig.9 and Fig.10
show the waveforms and the spectrograms of short-term and
long-term DCM synthesized speech (sig2). We note the simi-
larity of spectrograms, and also a correct shape for the speech
waveform. Differences in the speech waveforms are due to a
large extend to the long-term phase modelling (through long-
term modelling of frequency trajectories) that do not respect
original phase values (i.e. phase values at the origin are not
taken into account, and summation of frequencies lead to addi-
tional dephasing).

Data compression rate

To evaluate the "compression power" of the proposed long-term
HNM, we compare the number of parameters to be transmitted
between analysis and synthesis modules, for both short-term
HNM and long-term modelled HNM. Those parameters are
listed in Tab.1 (a) and (b). For the short-term HNM, and for
each frame k, we transmit the analysis frame time index tk,
the fundamental frequency F0(k), the VCO frequency FV (k),
Ik + Nk spectral amplitudes and Nk frequencies for the noise-
like part. For a long-term speech section of K frames, all those
parameters are summed. For the long-term HNM, for the same

8 ICA 2010



Proceedings of 20th International Congress on Acoustics, ICA 2010 23–27 August 2010, Sydney, Australia

Parameters notation data size
time index tk K

Fundamental frequency F0(k) K
VCO frequency FV (k) K

Spectral amplitudes A(i,k) K× (Ik +Nk)
Noise frequencies Fn(i,k) K×Nk

(a) case of short-term HNM analysis
Parameters notation size

section length N 1
Fundamental frequency CF0 PF0 +1

VCO frequency CFV PFV +1
Spectral amplitudes CSE (P1 +1)(P2 +1)

(b) case of long-term DCM modelling
Table 1: HNM parameters to be transmitted for a given long-
term speech signal.

long-term section, we transmit only the length of the section
N, PF0 +1 DCM parameters for F0, PFV +1 DCM parameters
for FV , and (P1 +1)× (P2 +1) parameters for representing the
spectral amplitudes. In addition, we do not need to transmit
analysis time indices tk and the Nk noise-like frequencies per
frame.

The importance of the obtained data compression depends on
the chosen values of the DCM ordres along the frequency and
the time axes. In this study, the short-term DCM ordre P1 is
fixed by (16) to the minimum value of Ik +Nk minus 1. Along
the time axis, PF0 = K/16, PFV = K/8, P2 = K/4. Thus the
sort-term analyzed parameters size is N1 = K(Ik +2Nk +3) but
only N2 = 7K

16 +[1+ K
4 ]mink{Ik +Nk}+3 is transmitted when

applying the long-term DCM.

Let us provide an example. The second voiced section of sig2
is 821ms long, it has K = 125 analysis frame, a mean value
of Ik + Nk ' 63 and a minimum value of 42, a mean value of
Nk ' 50. The short-term data size transmitted for this section is
N1 = 14500. When applying the long-term DCM with P1 = 41,
PF0 = 7, PFv = 15, P2 = 31, the data size to be transmitted is
N2 = 1370. The compression rate is thus larger than 10, while
preserving a good signal quality. It is important to note that
this compression rate is likely to be significantly increased by
applying a (series of) perceptual criterion.

Listening quality evaluation

Informal listening tests were carried out to evaluate the per-
ceived quality of the proposed long-term model, which provides
a good quality of the synthesized speech. The objective listen-
ing quality tests were carried out with PESQ. The scores are
listed in Tab.2.

The long-term DCM is compared to the short-term HNM (with-
out any DCM modelling). Tab.2 shows two PESQ sores: score1
evaluates the long-term DCM modelled speech signal compared
to the original speech signal and score2 evaluates the short-term
HNM modelled (without any DCM) speech signal compared to
the original speech signal.
We note from Tab.2 that the obtained PESQ scores are nearly 3
which, according to the ACR7 scale, characterizes a fair quality.
The higher scores values are obtained for seq1, (score1 = 2.76,
score2 = 3.54), which is an entirely voiced section, with high
fundamental frequencies. This can be due to the reduced noise-
like part in short-term frames, which can not be perfectly DCM
modelled.
In the last column of Tab.2, we calculate a PESQ score dif-
ference: (∆LT = score2− score1), reflecting the effect of the
long-term DCM modelling stage when applied on the short-

7Absolute Category Rating - ITU-T

sequence score1 score2 ∆LT
seq1 2.76 3.54 0.78
seq2 2.21 2.77 0.56
seq3 2.19 2.94 0.75
seq4 2.69 3.07 0.38
seq5 2.53 2.76 0.23
seq6 2.56 3.12 0.56

mean value 2.50 3.03 0.53
Table 2: PESQ listening quality scores for an entirely voiced
(seq1) and mixed voices/unvoices speech signals.

time HNM parameters. The obtained score difference is around
0.53.

CONCLUSION AND DISCUSSION

In this study, we presented a long-term HNM, i.e. a HNM with
long-term modelled parameters. The proposed model provides
an important data compression in terms of number of parame-
ters to be transmitted from HNM analyzer to HNM synthesizer:
Using appropriate (but not optimal) DCM orders, a data com-
pression rate up to about 10 can be obtained compared to the
short-term HNM analysis. The proposed long term model pro-
vides a good trade-off between data compression and listening
quality, as proved by informal listening tests and PESQ scores
nearly 3, which indicates an acceptable listening quality accord-
ing to the ACR scale. However, those performance are obtained
on a specific example, and extensive assessment remains to be
carried out on a large database. The long-term modelling can
be largely improved by adopting perceptual criteria to better
estimate the optimal DCM order. Hence, we plan to extend the
adaptive approach proposed in previous works for the harmonic
model [8, 9, 10, 11] to the HNM framework.

REFERENCES

[1] B.S. Atal, L. Hanauer, "Speech analysis and synthesis by
linear prediction of the speech wave", Journal of the Acous-
tical society of America, vol. 50, pp 637-655, February
1971.

[2] R. J. McAulay, T. F. Quatieri, "Speech analysis synthesis
based on a sinusoidal representation", IEEE Transactions
on Acoustics, Speech and Signal Processing, vol. 34, No.
4, August 1986.

[3] E. Bryan George, Mark J. T. Smith, "Speech Analysis syn-
thesis and modification using an analysis by synthesis over-
lap add sinusoidal model, IEEE Transactions on Acoustics,
Speech and Signal Processing", vol. 5, No. 5, September
1997.

[4] D. W. Griffin, J. S. Lim, "Multiband Excitation Vocoder,
IEEE Transactions on Acoustics, Speech and Signal Pro-
cessing", vol. 36, No. 8, August 1988.

[5] Y. Stylianou, "Applying the harmonic plus noise model
in concatenative speech synthesis, IEEE Transactions on
Acoustics, Speech and Signal Processing", vol. 9, No. 1,
January 2001.

[6] N. Farvardin, R. Laroia, "Efficient coding of speech LSP
parameters using the discrete cosine transformation", In-
ternational Conference on Acoustics, Speech and Signal
Processing, vol. 1, pp. 168-171, Glasgow, UK, 1989.

[7] S. Dusan, J. Flanagan, A. Karve, M. Balaraman, "Speech
compression by polynomial approximation", IEEE Trans-
actions on Audio, Speech and Language Processing 15(2),
387-395, 2007.

ICA 2010 9



23–27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010

[8] L. Girin, M. Firouzmand, S. Marchand, "Long term mod-
eling of phase trajectories within the speech sinusoidal
model framework", International Conference on Speech
and Language Processing, Jeju, South Korea, 2004.

[9] M. Firouzmand, L. Girin, "Perceptually weighted long term
modeling of sinusoidal speech amplitude trajectories", In-
ternational Conference on Acoustics, Speech and Signal
Processing, Philadelohia, USA, 2005.

[10] L. Girin, M. Firouzmand, S. Marchand, "Perceptual long
term variable rate sinusoidal modeling of speech", IEEE
Transaction on Speech and Audio Processing, 15(3), pp.
851-861, 2007.

[11] M. Firouzmand, L. Girin, "Long-Term flexible 2D cep-
stral modeling of speech spectral amplitude", International
Conference on Acoustics, Speech, and Signal Processing,
Las Vegas, Nevada, USA, 2008.

[12] L. Girin, "Long term quantization of speech LSF parame-
ters", International Conference on Acoustics, Speech and
Signal Processing, vol. 4, pp. 845-848, Honolulu, Hawaii,
USA, 2007.

[13] L. Girin, "Adaptive long term coding of LSF parameters
trajectories for large-delay/very-to utra-low bit rate speech
coding", Eurasip Journal of Audio, Speech and Music Pro-
cessing, volume 2010, Article ID 597036.

[14] P. Boersma, "Accurate short-term analysis of the funda-
mental frequency and the harmonics-to-noise ratio of a
sampled sound", Proceedings of the Institute of Phonetic
Sciences 17: 97-110. University of Amsterdam, 1993.

[15] K. Hermus, L. Girin, H. Van home, S. Irhimeh, "Esti-
mation of the voicing cutt off fraquency contour of nat-
ural speech based on harmonic and aperiodic energies",
International Conference on Acoustics, Speech and Signal
Processing, Las Vegas, Nevada, USA, 2008.

[16] T. Galas, X. Rodet, "An improved cepstral method for
deconvolution of source-filter systems with discrete cep-
stra: Application to musical sound signals", International
Computer Music Conference, pp. 82-84, Glasgow, UK,
1990

[17] O. Cappé, J. Laroche and E. Moulines, "Regularized es-
timation of cepstrum enveloppe from discrete frequency
points", IEEE Workshop on Applications of Signal Process-
ing to Audio and Acoustics, New Paltz, NY, USA, October
1995.

[18] M. Firouzmand, L. Girin, S. Marchand, "Comparing sev-
eral models for perceptual long-term modeling of ampli-
tude and phase trajectories of sinusoidal speech", European
Conference on Speech Communication and Technology,
pp. 357-360, Lisboa, Portugal, 2005

[19] M. W. Macon and M. A. Clements, "Sinusoïdal modeling
and modification of unvoiced Speech", Transactions on
Speech and Audio Processing, Vol. 5, No. 6, pp. 557- 560,
1997.

10 ICA 2010


	INTRODUCTION
	ANALYSIS OF THE SHORT TERM HARMONIC PLUS NOISE MODEL
	Estimation of F0 and short-term frame boundaries
	Estimation of the voicing cut-off frequency Fv
	Estimation of the harmonic parameters
	Estimation of noise parameters

	LONG TERM MODELLING OF the HNM PARAMETERS
	The long-term model: DCM
	Estimation of the long-term model coefficients
	Application to the HNM parameters
	LT modelling of F0
	LT modelling of FV 
	2D-DCM modelling of the spectral amplitudes


	SYNTHESIS OF THE MODELLED SPEECH SIGNAL
	F0 and FV trajectories from the LT model
	Harmonic frequencies trajectory
	Harmonic phase trajectories
	Amplitude trajectories extraction from 2D-DCM
	Speech signal synthesis


	EXPERIMENTATION AND RESULTS
	Accuracy of the long-term DCM modelling
	Long-term DCM modelling of F0
	Long-term DCM modelling of FV
	2D long-term DCM modelling of spectral amplitudes A
	Synthesized signal

	Data compression rate
	Listening quality evaluation

	CONCLUSION AND DISCUSSION

