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ABSTRACT

Biot’s theory of porous media is discussed in detail and critically. It is pointed out that the use of two and only two
displacement fields has a certain arbitrariness, and that models with additional displacement fields are possible. Biot’s
expression for the strain-energy per unit volume is justified in part, but it is pointed out that additional terms might
be included. The theory in the low-frequency limit is discussed in detail, and the partitioning of the disturbance into
three distinct types of fields is discussed. It is shown that there is sufficient latitude in the choice of coefficients in the
Biot low-frequency model that the coefficients can be adjusted to fit all the major parameters associated with the three
types of disturbances, but it is conjectured that the model will lead to inconsistencies for prediction of minor parameters.
Unless measurements of such minor parameters are known from independent experiments, the model cannot be tested
quantitatively. The use of the Biot model at higher frequencies is discussed, and it is shown that in the high-frequency
limit there are always two propagating modes where the displacement fields have zero curl. It is also shown that the
model predicts the attenuation at high frequencies to be independent of frequency. It is pointed out that the reported
observations of the second wave were for situations where the artificial porous medium was perfectly periodic. If the
medium is not periodic, it is doubtful that a second propagating wave exits.

INTRODUCTION

The papers on propagation in a fluid-saturated porous solid
which Biot published in the Journal of the Acoustical Society
in 1956 ([1], [2]) rank among the most highly cited papers in
the history of acoustics. The Google Scholar web site (June
2010) shows 3089 citations for the second paper. [The manner
by which Google Scholar counts citations is somewhat super-
ficial; most authors tend to cite both papers as a unit, so the
first paper is presumably cited as much or more than the first.]
These papers, along with a third [3] in 1962, can be taken as
what is called the Biot theory. For marine sediments, this, plus
modifications due to Stoll and his colleagues, have come to be
be known as the Biot-Stoll theory. [The principal account can
be found in a 1970 paper by Stoll and Bryan [4]. An exten-
sive discussion can be found in a 1989 book [5] by Stoll.] The
present paper argues that the apparent current whole-hearted
acceptance of the Biot theory, and especially of the later modifi-
cations associated with Stoll, has been made with insufficient
critical thought. The derivations, while appealing, are heuristic,
and there is little reason to expect broad applicability.

The piecing together of Biot’s assumptions in the present paper
is retrospective. Biot wrote a large number of papers on the
subject of porous media (many of which were reprinted in
a book [6] published by the Acoustical Society of America).
The references in the later Biot papers were almost exclusively
to earlier papers by Biot, and Biot restated his assumptions
differently in subsequent papers and he also revised his notation.

The present document is a work in progress and is incomplete.
It is being submitted at this time (June 10, 2010) to meet the
deadline for inclusion in the ICA conference proceedings. It
is intended that a more fuller account will be available by the
time of the conference and that it will be submitted for journal
publication.

SEPARATE FIELDS FOR SOLID AND FLUID

What appears to be the principal assumption underlying Biot’s
models is that the description of all phenomena of interest can
be cast in terms of two (and only two) displacement fields.
These were denoted by uuu and UUU . In retrospect, these can be
defined as the local averages of the particle displacements of
the solid and fluid matter, so that

uuu(xxx) =
1
Vs

� �
uuumic(xxx+ξξξ )dVs, (1)

UUU(xxx) =
1

Vf

� ��
UUUmic(xxx+ξξξ )dVf . (2)

Here the integrations are taken over small volumes centered
as the observation point xxx. The subscript “mic” is an abbrevi-
ation for microscopic. In the integration for the determination
of the locally-averaged solid displacement, the integration only
includes the volume Vs occupied by solid material (this restric-
tion being represented by a prime on the integral sign). In the
integration for the determination of the locally-averaged fluid
displacement, the integration only includes the volume Vf oc-
cupied by fluid material (this restriction being represented by
a double-prime on the integral sign). The total volume being
taken into consideration for this averaging process is

Vtotal =Vs +Vf. (3)

The size of the averaging volume Vtotal is not precisely defined,
but it is implicitly assumed that one can choose such a volume
sufficiently large that the averages, uuu(xxx) and UUU(xxx), are insen-
sitive to the changes of the size by factors of, say, 2. Radii of
the averaging volumes should be substantially greater that what
one might consider to be a representative grain size or a repre-
sentative pore size. They also should be substantially less than
length scales such as representative wavelengths that one might
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associate with a dynamic disturbance. The assertion that the
local averages can be defined in a meaningful manner is related
to the assertion that the porous medium, on a small scale, is
statistically homogeneous. Such a procedure of defining local
averages is generally well-accepted in models of continuous
media, and dates back to the kinetic theory of gases. The two
displacement fields may vary with position, but they should
vary negligibly over distances comparable to the size of the
averaging volume.

If the solid material should be composed of grains of materials
with different densities, the definition as given above would be
modified so that there were appropriate mass weighting, such
as

uuu(xxx) =

�
1

� � ρs,micdVs

�� �
ρs,micuuumic(xxx+ξξξ )dVs, (4)

where the local microscopic density might vary with position
xxx+ξξξ . This weighting is needed if the locally-averaged displace-
ments are to be used in any formulation that involves anything
consistent with Newton’s second law, where the time rate of
change of momentum is to be involved.

The basic idea of two displacement fields, rather than one, was
present in an earlier theory (1944) by Frenkel [7]. Frenkel cast
his theory in terms of velocities, rather than displacements, and
used v1 to denote the the “mean macroscopic velocity of the
particles of the solid phase,” v2 to denote the “mean velocity”
of the fluid matter. Biot [1] was aware of Frenkel’s earlier work,
but dismissed it with the statement: “the subject is summarily
treated and important features are neglected.” The terminology
in this statement is not clarified in Biot’s subsequent develop-
ment.

While one could conceivably argue that a two-displacement
field model is a reasonable basis for a tentative model of the
relevant acoustics of porous media, one could also argue that
the choice of two is to some extent arbitrary. A simpler model,
but perhaps without as many implications, would be a theory
based on a single displacement field, where the appropriate field
variable would be

uuueff =
ρsVsuuu+ρ f Vf UUU

ρsVs +ρ f Vf
(5)

or, equivalently, with the ratio of Vf to Vtot replaced by the
porosity χ . [In the first of his two 1956 papers, Biot uses the
symbol β for porosity.]

Alternately, a model with more than two displacement fields can
be envisioned. One could classify the solid grains by their sizes:
those that have sizes falling in the first range of sizes would
have an average displacement denoted by uuuI ; those that have
sizes falling in the second range of sizes would have an average
displacement denoted by uuuII . Similarly, fluid matter could be
classified by the “sizes” of the pores in which it is found: fluid
matter within pores that have sizes falling in the first range of
sizes would have an average displacement denoted by UUUI , fluid
matter in pores with sizes falling in the second range of sizes
would have an average displacement denoted by UUUII . One could
also distinguish grains by their shapes and pores by their shapes.
Other possibilities for classifying the solid matter and the fluid
matter can be thought of. Having more than two displacement
fields in the theory might be an unnecessary complication, but
such can not be dismissed out-of-hand.

As discussed further below, the choice of two displacement
fields has a direct theoretical consequence: the possibility of a
second propagating wave type in some ranges of frequencies.

A model with three displacement fields would lead to the the-
oretical possibility of two additional propagating wave types.
Whether such waves are real or just an artifact of the model,
arising because of the choice of the number of displacement
fields, is also discussed further below.

HYPOTHESIS THAT AVERAGES IMPLY DETAILS

While the following hypothesis is not explicitly stated in Biot’s
papers, it has been identified after an extensive careful reflec-
tion. The hypothesis is that if one knows the local geometry
completely, including the location of solid grains and of the
surfaces separating solid matter from fluid matter, and if one
knows the local averages and their derivatives, then one knows
the microscopic displacement at every point in the local region.
A limiting case is that where both average displacements are the
same, and this would be so if the displacement throughout the
averaging volume were uniform. The hypothesis is accordingly
refined so that the deviations within the averaging volume from
the averaged value are associated with differences in the two
averages.

Since the displacements are presumed small, linear relations
are appropriate, so one can write

ui,mic(xxx+ξξξ ) = ui(xxx)+∑
j

ai j(ξξξ )
�
u j(xxx)−Uj(xxx)

�

+ ∑
jk

pi jk(ξξξ )
∂u j

∂xk
+ ∑

jk
qi jk(ξξξ )

∂Uj

∂xk
(6)

Ui,mic(xxx+ξξξ ) =Ui(xxx)+∑
j

bi j(ξξξ )
�
u j(xxx)−Uj(xxx)

�

+ ∑
jk

ri jk(ξξξ )
∂u j

∂xk
+ ∑

jk
si jk(ξξξ )

∂Uj

∂xk
(7)

Here the coefficients depend on the local geometry and on
the choice of origin for the relative position vector ξξξ . They
are hypothesized to be independent of time during dynamical
disturbances.

The hypothesis is, at best, an approximation. A related statement
is that the coefficients, which might be called “local influence
functions,” actually exist. Whatever they may be, the definitions
of the local averages requires that

1
Vs

� �
ai jdVs = 0;

1
Vf

� ��
bi jdVf = 0. (8)

with analogous null relations for integrals over the remaining
coefficients.

The latter terms, involving the derivatives of the averaged dis-
placements, are expected to be considerably smaller than the
terms proportional to the averaged displacements. The coeffi-
cients may vary with position much more rapidly than do those
that multiply the average displacements.

In regard to the nature of the approximation implied by the hy-
pothesis, one can draw a parallel with the Rayleigh-Ritz method
in vibration analysis [8]. One has a mechanical system that can
vibrate in a large number of discrete natural modes. To simplify
the analysis, one assumes at the outset that all the vibrations of
interest can be represented as a superposition of a small number
of modes, where these “assumed modes” are not necessarily
natural modes. A continuous field is accordingly described by
a small number of discrete time-dependent functions. In the
case of the Biot theory as interpreted here, there are a relatively
small number of assumed modes in each local region. These
modes are not explicitly known at the outset, but it is asserted
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that they are unique and are independent of the nature of any
dynamical disturbance.

The analogy with the use of the Rayleigh-Ritz approximation
in vibration theory leads to the supposition that the two dis-
placement field approximation is inherently a low frequency
approximation, independent of any details introduced at other
stages of the model development. If one desires a model ap-
plicable to higher frequencies, then one must introduce more
“assumed modes.”

APPLICABILITY TO SUSPENSIONS

A question is raised as to whether Biot’s model applies to sus-
pensions, where small solid particles float around in a fluid
and rarely touch each other. In such a situation, the particles
are prevented from aggregating, such as would be caused by
gravity, because of thermal agitation. For sufficiently small am-
plitude disturbances in the fluid, one would expect the particles
to move with the fluid. Viscosity would play a passive role
but would have a sufficient effect that the no-slip condition [9]
would have to apply at the interface between the grains and the
fluid. In such a case, one expects the displacements uuu and UUU
to be nearly equal, so a single displacement model should be
sufficient at low frequencies, and if one desires to allow for the
possibility that the two are slightly different, then an appropriate
displacement field would be that given by Eq. (5).

The hypothesis stated above, that the averaged fields and their
spatial derivatives specify details, does not necessarily rule out
suspensions. While just where the individual grains are situated
may appear arbitrary, one can argue that once the configuration
is given, then the macro-strains can serve as boundary condi-
tions on a combined elastostatic and hydrostatic solution for the
details of the detailed displacements on a micro-scale. The ar-
gument may appear somewhat circular, in that the equations of
mechanics, in the sense of statics, has to be understood before
one determines the various coefficients that appear in Eqs. (6)
and (7).

MARINE SEDIMENTS

In a realistic marine sediment, gravity causes grains to touch,
and the sizes of the contact areas depends on depth h into
the sediment and on the acceleration of gravity g roughly as
(gh)2/3 [10]. The formulations developed by Biot, as best the
present authors can determine, make no explicit mention of
gravity. However, some of the coefficients in Eqs. (6) and (7)
are expected to depend markedly on whether the grains are
in contact and on the extent of the contact. Given that this is
taken into account, there appears to be no apparent restriction
that Biot-related models should not apply to marine sediments.
However, some of the parameters, such as those associated with
shear stresses, in the Biot models should depend on depth.

Another subtlety associated with sediments is that some of the
grains, especially the smaller ones, may actually be floating
within the pores that exist in the fluid regions separating the
larger grains. Again, this does not seem in itself to be a impedi-
ment to the applicability of Biot models.

ENERGY FUNCTIONS

The hypotheses discussed in the previous sections along with
some plausible statistical assumptions leads to the Biot expres-
sions for the kinetic energy per unit volume and potential energy
(strain energy) per unit volume.

Kinetic energy density

The kinetic energy per unit volume that one would ideally want
to approximate, in an analytical sense, is

T =
1

Vtotal

�� � 1
2

ρsv2
micdVs +

� �� 1
2

ρ f V 2
micdVf

�
(9)

with the abbreviations

vmic =
∂uuumic

∂ t
, VVV mic =

∂UUUmic
∂ t

, (10)

for the microscopic velocities. In the indicated integrals, the
integration is over the hypothesized small averaging volume. It
is presumed that, for a typical dynamical disturbance, the result
is insensitive to the precise size of the averaging volume, and
the plausibility of this assumption seems evident.

To express this kinetic energy per unit volume in terms of the
two displacement fields, one inserts the expressions of Eqs. (6)
and (7) into the above expression for T . For this calculation,
one can argue that the terms involving the the derivatives of the
average displacements have a negligible influence, so they can
be discarded.

As a result of the substitution, one recognizes the following
quantities that involve integrals over sums of products of local
influence functions

Iaa, jk =
1

Vtotal

� �
∑

i
ai jaikdVs; (11)

Ibb, jk =
1

Vtotal

� ��
∑

i
bi jbikdVf (12)

Here, one can argue that both of the above quantities are insen-
sitive to the precise size of the averaging volume. Furthermore,
if they medium is locally statistically homogeneous, they are,
at worst, slowly varying functions of the center point xxx of the
averaging volume. If the medium is statistically homogeneous
in the wider sense, then they are independent of xxx. A further
simplification results if the medium is statistically isotropic, so
that there is no preferred spatial direction. In this event, one has

Iaa, jk = Iaaδ jk (13)

where δ jk is the Kronecker delta. Analogous diagonalization
hold for the other integrals.

With all the assumption just described the kinetic energy per
unit volume becomes

T =
1
2
(1−χ)ρsv2 +

1
2

χρ f V 2

+
1
2

ρsIaa (v−VVV ) ··· (v−VVV )

+
1
2

ρ f Ibb (v−VVV ) ··· (v−VVV ) . (14)

With a suitable interpretation of symbols, this is recognized as
Biot’s expression for the kinetic energy per unit volume, which
is

T =
1
2

ρ11
∂uuu
∂ t

··· ∂uuu
∂ t

+ρ12
∂uuu
∂ t

··· ∂UUU
∂ t

+
1
2

ρ22
∂UUU
∂ t

··· ∂UUU
∂ t

(15)

The appropriate identifications for the elements of Biot’s mass
tensor are

ρ11 = [(1−χ)+ Iaa]ρs + Ibbρ f ; (16)
ρ12 =−ρsIaa −ρ f Ibb; (17)

ρ22 = [χ + Ibb]ρ f + Iaaρs, (18)
so that

ρ11 +ρ12 = (1−χ)ρs. (19)
ρ12 +ρ22 = χρ f . (20)
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Strain-energy per unit volume

From a microscopic viewpoint, the strain-energy per unit vol-
ume should properly be expressed in terms of the microscopic
strains

εi j,mic =
1
2

�∂ui,mic
∂x j

+
∂u j,mic

∂xi

�
(21)

Ei j,mic =
1
2

�∂Ui,mic
∂x j

+
∂Uj,mic

∂xi

�
(22)

For simplicity, it is here assumed that the solid matter is elastic
and isotropic so that the strain energy per unit volume within
the solid matter is

Us = µL ∑
i j

ε2
i j,mic +

1
2

λL

�

∑
k

εkk,mic

�2

(23)

where

µL =
νE

(1+ν)(1−2ν)
; νL = G =

E
2(1+ν)

(24)

are the two Lamè constants.

For the fluid matter there is no static resistance to shear, and the
strain energy per unit volume can be expressed

U f =
1
2

B f

�

∑
k

Ekk,mic

�2

(25)

where
B f = ρ f c2

f (26)

is the bulk modulus of the fluid.

In regard to the calculation of the microscopic strains, one notes
that, to (what might seem to be) a good approximation, Eqs. (6)
and (7) lead to

∂ui,mic
∂x j

=
∂ui
∂x j

+ ∑
j

aik(ξξξ )
�

∂uk
∂x j

− ∂Uk
∂x j

�

+ ∑
kl

∂ pikl
∂ξ j

∂uk
∂xl

+ ∑
kl

∂qikl
∂ξ j

∂Uk
∂xl

(27)

∂Ui,mic
∂x j

=
∂Ui
∂x j

+ ∑
j

bik(ξξξ )
�

∂uk
∂x j

− ∂Uk
∂x j

�

+ ∑
kl

∂ rikl
∂ξ j

∂uk
∂xl

+ ∑
kl

∂ sikl
∂ξ j

∂Uk
∂xl

(28)

These are to be inserted into the expression

V =
1

Vtotal

�� �
UsdVs +

� ��
U f dVf

�
(29)

which represents the strain-energy per unit volume.

While the algebra is cumbersome, one anticipates that the result
has to have the general form

V = ∑
i jkl

�
Ai jkl

∂ui
∂x j

∂uk
∂xl

+Bi jkl
∂ui
∂x j

∂Uk
∂xl

+Ci jkl
∂Ui
∂x j

∂Uk
∂xl

�

(30)
where the various coefficients, Ai jkl , etc., can be identified an
explicit carrying out of the algebraic manipulations. The as-
sumption of statistical local homogeneity requires that these
coefficients be insensitive to the size of the averaging volume
and also that they should be insensitive to the location of the cen-
ter of the averaging volume, so they vary slowly with position
over distances of the order of many grain diameters.

Biot, in his original discussion, invoked the notion that the
medium we statistically isotropic, and made various postulates
which in retrospect imply that the potential energy per unit
volume is of the form

V =
1
4

N ∑
i j

�
∂ui
∂x j

+
∂u j

∂xi

�2
+

1
2

A(∇∇∇ ···uuu)2

+Q(∇∇∇ ···uuu)(∇∇∇ ···UUU)+
1
2

R(∇∇∇ ···UUU)2 (31)

Here there are only four constants, these being denoted by N,
A, Q, and R.

One can naturally ask if this general form does indeed follow
from Eqs. (27), (28), (29), plus the assumption of statistical
isotropy. The present authors have not yet succeeded in formally
proving this, and there appears to be a possibility of yet one
more term, this being one proportional to the square of the
difference of the two curls, this term being

∆V1 = S (∇∇∇×××uuu−∇∇∇×××UUU) ··· (∇∇∇×××uuu−∇∇∇×××UUU) (32)

with yet another constant S. While it may indeed be true that
the constant S must be identically zero, the authors see no
philosophical reason at present for it being zero.

Another possible additional term is

∆V2 = T (uuu−UUU) ··· (uuu−UUU) (33)

While this is inconsistent with the approximations inherent in
Eqs. (27) and (28), one could still conceive of a spring-like term,
proportional to the square of the difference of the displacements
of the fluid and the solid. Such a term might be relevant for a
material containing closed holes containing fluid inside a solid
medium. The fluid is compressible, so the center of mass of
the fluid in any given hole could move relative to the solid, and
this tendency is opposed by the springing caused by the fluid’s
compressibility.

In the remainder of the paper, the reservations just mentioned
will be ignored, and the expression Eq. (31) will be used for the
potential energy per unit volume in a porous medium.

LAGRANGE-EULER EQUATIONS

Biot’s initial statement of his coupled equations follows directly
from Hamilton’s principle, and the coupled equations that result
can be viewed as Lagrange-Euler equations resulting from a
variational principle. The assumption that Hamilton’s principle
applies is rather innocuous, given all the assumptions concern-
ing the integrand in the Hamilton’s principle integral, an integral
over space and time.

In retrospect, it is apparent that Biot also, at least initially,
assumed that there were internal forces (dissipative forces)
within the material which were not implicitly contained in the
potential energy density function. His initial assumption was
that they could be lumped together as a force per unit volume
exerted on the solid portion by the fluid portion and a force per
unit volume exerted on the fluid portion by the solid portion.
These forces were related by Newton’s third law.

The difference of the kinetic and potential energy densities is
the Lagrangian density

L= T −V (34)

which in accord with Hamilton’s principle [11], satisfies the
Lagrange-Euler equations,

∂
∂ t

�
∂L

∂ (∂ui/∂ t)

�
+∑

j

∂
∂x j

�
∂L

∂
�
∂ui/∂x j

�
�

= fi (35)
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∂
∂ t

�
∂L

∂ (∂Ui/∂ t)

�
+∑

j

∂
∂x j

�
∂L

∂
�
∂Ui/∂x j

�
�

= Fi (36)

where the quantities on the right sides represent the forces per
unit volume exerted on the fluid matter by the solid matter and
conversely, these being equal and opposite in accordance with
Newton’s third law.

DISSIPATION TERMS

Biot, in his original exposition, followed the example of Frenkel
[7] and took the force terms not contained in the energy func-
tions to be proportional to the difference of the two velocities,
reminiscent of forces associated with dashpots, so that

Fi =−fi =−b
�

∂Ui
∂ t

− ∂ui
∂ t

�
=−b(Vi −vi) (37)

Here the quantity b can be regarded as the apparent dashpot
constant per unit volume. This form is such that the derived
equations, in the limit of vanishingly small frequencies, are
consistent with Darcy’s law for steady fluid flow through a
porous medium. The form is also consistent with the notion that
dissipation forces should be associated with the viscosity of the
fluid.

BIOT’S FIRST MODEL

If the Lagrange-Euler equations are written out explicitly with
the terms identified as discussed above, the result is

∂ 2

∂ t2 (ρ11ui +ρ12Ui)−∑
j

∂
∂x j

�
N
�

∂ui
∂x j

+
∂u j

∂xi

��

− ∂
∂xi

(A∇∇∇ ···uuu)− ∂
∂xi

(Q∇∇∇ ···UUU) =−b(vi −Vi) (38)

∂ 2

∂ t2 (ρ12uuu+ρ22UUU)−∇∇∇ ··· (Q∇∇∇ ···uuu)−∇∇∇ ··· (R∇∇∇ ···UUU)

=−b(VVV −v) (39)

Here both equations are written in a form appropriate for an
inhomogeneous medium. The first equation is written in an
indicial form, while the second is written in a vector form.

ENERGY CONSERVATION COROLLARY

A relevant consequence of the Euler-Lagrange equations is a sin-
gle equation which can be considered as an energy conservation
corollary

∂E
∂ t

+∇∇∇ ··· III =−D (40)

Here
E = T +V (41)

is the disturbance energy per unit volume, while

Ii =−∑
j

v j
∂V

∂
�
∂u j/∂xi

� −∑
j

Vj
∂V

∂
�
∂Uj/∂xi

� (42)

is the i-th component of the energy flux vector III (energy per
unit time per unit area, with direction in which the energy is
flowing). The quantity on the left,

D= b(VVV − vvv) ··· (VVV − vvv) , (43)

is the time rate at which energy is being dissipated per unit
volume.

DISTURBANCES AT LOW FREQUENCIES

Biot’s stated intent [1] in the first of his two 1956 papers was that
the equations as stated above were to apply for low frequencies.
If one accepts this restriction then those equations should be
examined primarily in that limit.

If one assumes that the medium is homogeneous, so that quan-
tities such as N, A, Q, R are independent of position, then a
simple consequence of the equations in the low frequency limit
is that any disturbance can be decomposed into disturbances of
three distinct types. One writes

UUU =UUUac +UUUD +UUU sh (44)

uuu = uuuac +uuuD +uuush (45)

Here the three subscripts stand for acoustic (ac), Darcy (D), and
shear (sh) modes. These modes are referred to in what follows
as the acoustic wave mode, the Darcy diffusion mode, and the
shear wave mode.

For the acoustic and Darcy modes, the curl of the two displace-
ment fields are identically zero. For the shear wave mode, the
divergence of the two displacement fields is zero.

In what follows the basic equations governing these modes
are explicitly given. The derivation of these from Biot’s initial
equations is abbreviated, for brevity.

Acoustic wave mode

The acoustic wave mode is one of two modes where the curls
of the displacements are zero, so that

∇∇∇×××UUUac = 0; ∇∇∇×××uuuac = 0 (46)

In the limit of zero frequency, the two displacement fields are
the same for this mode. A natural weighted average that might
be used for frequencies slightly different from zero is that given
by Eq. (5), which in Biot’s notation is written as

uuuac,eff =
(ρ11 +ρ12)uuuac +(ρ12 +ρ22)UUUac

ρ11 +2ρ12 +ρ22
, (47)

so that

uuuac = uuuac,eff +
ρ12 +ρ22

ρ11 +2ρ12 +ρ22
(uuuac −UUUac) (48)

UUUac = uuuac,eff −
ρ11 +ρ12

ρ11 +2ρ12 +ρ22
(uuuac −UUUac) (49)

If one adds, component by component, Eq. (38) with Eq. (39),
one obtains

ρac
∂ 2uuuac,eff

∂ t2 −ρacc2
ac∇2uuuac,eff

− D
ρac

∇2 (uuuac −UUUac) = 0 (50)

with the abbreviations

ρac = ρ11 +2ρ12 +ρ22 (51)

c2
ac =

2N +A+2Q+R
ρac

(52)

D = (2N +A+Q)(ρ12 +ρ22)− (Q+R)(ρ11 +ρ12) (53)

In Eq. (50), the term involving the difference of the two dis-
placements is assumed small, so a perturbation approach with
this recognition applied to either of Eqs. (38) or (39) results in

− D
ρacc2

ac

∂ 2uuuac,eff

∂ 2t
=−b

∂
∂ t

(uuuac −UUUac) (54)
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which integrates, in turn, to

uuuac −UUUac =
D

bρacc2
ac

∂uuuac,eff
∂ t

(55)

If this approximate expression is inserted into Eq. (50), the
following dissipative wave equation results

ρac
∂ 2uuuac,eff

∂ t2 −ρacc2
ac∇2uuuac,eff

− D2

bρ2
acc2

ac

∂
∂ t

∇2 (uuuac −UUUac) = 0 (56)

Darcy diffusion mode

For this mode, one has

∇∇∇×××UUUD = 0; ∇∇∇×××uuuD = 0 (57)

Also, the inertia terms in Eqs. (38) and (39) are of minor impor-
tance. Consistency of the two equations requires that

(2N +A)uuuD +QUUUD ≈−QuuuD −RUUUD, (58)

so that
uuuD ≈− Q+R

2N +A+2Q+R
(UUUD −uuuD) (59)

UUUD ≈ 2N +A+Q
2N +A+2Q+R

(UUUD −uuuD) (60)

The partial differential equation that results with the neglect of
the inertia terms is
�

(2N +A)R−Q2

2N +A+2Q+R

�
∇2 (UUUD −uuuD) = b

∂
∂ t

(UUUD −uuuD) (61)

which is recognized as the diffusion equation

∇2 (UUUD −uuuD) = κ ∂
∂ t

(UUUD −uuuD) (62)

with
κ =

b(2N +A+2Q+R)
(2N +A)R−Q2 (63)

An improved approximation results if the intertial terms are
treated as a perturbation. Manipulation of the two primary equa-
tions results in the equation

∂ 2

∂ t2 [(ρ11 +ρ12)(Q+R)uuuD − (ρ12 +ρ22)(2N +A+Q)UUUD]

+
�
(2N +A)R−Q2

�
∇2 (UUUD −uuuD)

= b(2N +A+2Q+R)
∂
∂ t

(UUUD −uuuD) (64)

To carry out the perturbation, one inserts Eqs. (59) and (60) and
thereby obtains

−G
∂ 2

∂ 2t
(UUUD −uuuD)+

�
(2N +A)R−Q2

�
∇2 (UUUD −uuuD)

= b(2N +A+2Q+R)
∂
∂ t

(UUUD −uuuD) (65)

where

G =
(ρ11 +ρ12)(Q+R)2 +(ρ12 +ρ22)(2N +A+Q)2

2N +A+2Q+R
(66)

At low frequencies the term involving the second derivative
with respect to time should have minor effect.

Shear wave mode

The shear wave mode is characterized by displacement fields
which have zero divergence, so that

∇∇∇ ···UUU sh = 0; ∇∇∇ ···uuush = 0 (67)

With this restriction, the Eqs. (38) and (39) reduce to

∂ 2

∂ t2 (ρ11uuush +ρ12UUU sh)−N∇2uuush =−b
∂
∂ t

(uuush −UUU sh) (68)

∂ 2

∂ t2 (ρ21uuush +ρ22UUU sh) = b
∂
∂ t

(uuush −UUU sh) (69)

Given that the frequency is sufficiently low, the “dissipation”
terms on the right dominate, and these require that the two
displacements fields be appropriately, just as was the case for
the acoustic mode.

Addition of the two equations above yields

ρsh
∂ 2uuush,eff

∂ t2 −N∇2uuush,eff

−N
ρ12 +ρ22

ρ11 +2ρ12 +ρ22
∇2 (uuush −UUU sh) = 0 (70)

with the abbreviations

ρsh = ρ11 +2ρ12 +ρ22 (71)

uuush,eff =
(ρ11 +ρ12)uuush +(ρ12 +ρ22)UUU sh

ρ11 +2ρ12 +ρ22
, (72)

so that

uuush = uuush,eff +
ρ12 +ρ22

ρ11 +2ρ12 +ρ22
(uuush −UUU sh) (73)

UUUsh = uuush,eff −
ρ11 +ρ12

ρ11 +2ρ12 +ρ22
(uuush −UUU sh) (74)

The third term in Eq. (70) is of minor importance and can be
replaced by a suitable expression using a perturbation technique.
To this purpose one inserts uuush → uuush,eff, UUU sh → uuush,eff into Eq.
(69 and finds

uuush −UUU sh =
ρ21 +ρ22

b
∂
∂ t

uuush,eff (75)

This, in turn, when inserted into Eq. (70) yields the dissipative
wave equation

ρsh
∂ 2uuush,eff

∂ t2 −ρshc2
sh∇2uuush,eff

− N (ρ12 +ρ22)
2

bρsh
∇2 ∂

∂ t
uuush,eff = 0 (76)

with the abbreviation

c2
sh =

N
ρsh

(77)

The quantity csh is recognized as the appropriate wave speed
for shear waves.

Plane shear waves are transverse waves in accordance with the
requirement that the divergences of the of the two displacement
fields are zero.
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ATTENUATION COEFFICIENTS

The Biot low-frequency predicts the low-frequency attenuation
coefficients for both the acoustic wave mode and the shear
wave mode. To derive the attenuation coefficients, one lets the
relevant amplitudes have time and spatial dependence as

ψ(x, t) = Re
�

ψoe−iωt eikx
�

(78)

where the wave number k is a complex number that depends on
the angular frequency ω .

Insertion of the above expression into the dissipative wave
equation for the acoustic mode yields

−ω2ρac +ρacc2
ack2 − i

D2

bρ2
acc2

ac
ωk2 (79)

If this is solved for k, with the root with positive real part
selected, and if the expression is expanded in a power series in
ω , the leading two terms

k =
ω
cac

+ i
D2

2bc5
acρ3

ac
ω2 (80)

From this one identifies

αac =
D2

2bc5
acρ3

ac
ω2 (81)

A similar calculation carried out for the dissipative wave equa-
tion for the shear wave mode yields

αsh =
N (ρ12 +ρ22)

2

2bc3
shρ2

sh
ω2 (82)

Both attenuation coefficients, in the considered low frequency
limit, vary with the frequency as the square of the frequency.

EXTENT OF VALIDITY

Allowing all possible choices for the seven coefficients that
appear in the Biot low frequency model, one naturally wonders
if the predictions described are consistent. One may argue that
there should indeed be three modes, that there be two propa-
gating modes and a diffusion mode, and that the attenuation
coefficients should be proportional to frequency squared. This
is all a plausible confirmation, but there are quantitative inter-
connections that may or may not be consistent with the model.

Let us assume that the following parameters can be indepen-
dently measured:

• ρ11 +ρ12
• ρ12 +ρ22
• cac
• csh
• κ
• αac/ω2

• αsh/ω2

The acoustic mode wave speed, if measured, gives an identifi-
cation for

• a1 = 2N +A+2Q+R

The shear mode wave speed, if measured, gives an identification
for

• a2 = N

Note also that the quantities

• a3 = κω2/αac

• a4 = κω2/αsh

are independent of the parameter b and consequently can be
regarded as functions of the four modulus constants.

Consequently, presuming that a1, a2, a3, a4 are all determined,
one has four equations in four unknowns, the unknowns being
N, A, Q, and R. The latter two equations are not linear equa-
tions, but still one presumes that a solution exists for the four
modulus constants. Once those quantities are determined, the
determination of the parameter b follows from the presumption
that κ has been independently measured.

However, if the Biot equations are to be used to predict the
parameter G that appears in Eq. (64), or to predict higher or-
der terms in power expansions in ω of phase velocities and
attenuation coefficients, the number of adjustable constants
is insufficient. One suspects that it would be fortuitous if the
low frequency equations would simultaneously predict such
parameters along with all those in the above bulleted list.

One disturbing feature of the model is that all of the presumably
measurable (in the low frequency limit) quantities depend on
the three density constants ρ11, ρ12 and ρ22 only in the combi-
nations ρ11 +ρ12 = (1−χ)ρs and ρ12 +ρ22 = χρ f . Here one
has three unknowns and only two equations.

EMERGENCE OF THE SLOW WAVE

In his first paper [1], Biot began with analyzing the case when
the parameter b was identically zero and discovered that there
were two (not just one) propagating waves for which the curl
of the two displacements was zero. In retrospect, this case was
inconsistent with the claim that the model was to be for low
frequencies. At low frequencies, the terms involving b (one time
derivative) dominate the intertial terms (two time derivatives),
except for the circumstances when the displacements are very
nearly the same. This is so for the acoustic wave mode, but not
so for the Darcy diffusion mode.

Evidently, if one does assume that the low frequency model
does actually apply at high frequencies, then the Darcy mode
must eventually morph into a propagating mode at high frequen-
cies. To investigate this possibility, one can derive two coupled
equations for the divergences ∇∇∇ ···uuu and ∇∇∇ ···UUU , and then examine
their circumstances. One sets

∇∇∇ ···uuu = Re
�

Aue−iωt eikx
�

(83)

∇∇∇ ···UUU = Re
�

AU e−iωt eikx
�

(84)

and then obtains the equations, in matrix form

−ω2 [ρ]{A}+ k2 [B]{A}= iωb [J]{A} (85)

where

[ρ] =
�

ρ11 ρ12
ρ12 ρ22

�
(86)

is the density matrix,

[B] =
�

2N +A Q
Q R

�
(87)

is the modulus matrix, and

[J] =
�

1 −1
−1 1

�
. (88)

The column vector

{A}=
�

Au
AU

�
(89)
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contains the wave amplitudes.

Because the amplitude vector has two components there must
be two “modes.” Dispersion relations for the two modes are
obtained by setting the determinant of the coefficients to zero,
so that

det [M] = 0 (90)

[M] =
�

−ω2ρ11 + k2(2N +A)− iωb −ω2ρ12 + k2Q+ iωb
−ω2ρ12 + k2Q+ iωb −ω2ρ22 + k2R− iωb

�

(91)
The resulting equation for k2 can be expressed

αk4 −
�

βω2 + iεbω
�

k2 +
�

γω4 + iδbω3
�
= 0 (92)

where
α = (2N +A)R−Q2 = det [B] (93)

β = Rρ11 +(2N +A)ρ22 −2Qρ12 (94)

γ = ρ11ρ22 −ρ2
12 = det [ρ] (95)

ε = 2N +A+2Q+R (96)

δ = ρ11 +2ρ12 +ρ22 (97)

In the low frequency limit, one root for k2 is proportional to ω
and the other is proportional to ω2. For frequencies slightly dif-
ferent from zero, the power series expressions can be developed
by iteration of the equations

k2 = i
εb
α

ω +
β
α

ω2 − ω3

k2 (iδb+ γω) (98)

k2 = ω2 δ
ε
(1− i[γ/(δb)]ω)

(1− i[β/(εb)]ω)
− i

αk4

εbω
1

(1− i[β/(εb)]ω)
(99)

The first solution corresponds to the Darcy diffusion mode, and
the second corresponds to the acoustic wave mode.

In the other limit, in the limit of high frequencies, both roots for
k2 are approximately proportional to ω2. One defines r1 and r2
as the two roots of the equation

αr2 −β r+ γ = 0 (100)

so that

r1,2 =
β

2α
∓
��

β
2α

�2
− γ

α

�1/2

(101)

Then the quadratic equation becomes

�
k2 −ω2r1

��
k2 −ω2r2

�
− i

�
bω
α

��
εk2 −δω2

�
= 0

(102)
Series expansions for the two roots for k2 can be developed by
iteration of the equations

k2
1 = ω2r1 + i

bω
α

ε
�
(k2/ω2)− (δ/ε)
(k2/ω2)− r2

�
(103)

k2
2 = ω2r2 + i

bω
α

ε
�
(k2/ω2)− (δ/ε)
(k2/ω2)− r1

�
(104)

and the first iteration yields

k2
1 = ω2r1 + i

bω
α

ε
�

r1 − (δ/ε)
r1 − r2

�
(105)

k2
2 = ω2r2 + i

bω
α

ε
�

r2 − (δ/ε)
r2 − r1

�
(106)

Both r1 and r2 are positive and one can conjecture that their
magnitudes are such that

r1 <
δ
ε
< r2 (107)

If such is so, then the right sides of the first-iterated equation
have positive imaginary parts.

So one determines that the wave speeds and attenuation coeffi-
cients of the two modes have wave speeds of

c1 = 1/
√

r1; c2 = 1/
√

r2 (108)

and attenuation coefficients of

α1 =
bεc1
2α

�
(δ/ε)− r1

r2 − r1

�
(109)

α2 =
bεc2
2α

�
r2 − (δ/ε)

r2 − r1

�
(110)

Note that the two attenuation coefficients in this limit are in-
dependent of frequency. (Biot’s original analysis assumed that
b was zero, but such an assumption was inconsistent with the
assertion that the model was to be applicable at low frequencies.
It possibly could be applicable at high frequencies also, but one
must nevertheless carry through the derivation as if the quantity
b were nonzero.)

One can term the solution with the higher wave speed the fast
wave, and presumably associate it with the acoustic mode that
exists at low frequencies. One possibly disturbing feature is that
his wave, while also nearly nondispersive, has a phase velocity
considerably different than that of the acoustic mode wave at
low frequencies.

The other wave, the one with lower speed, is presumably what
the Darcy diffusion mode morphs into at high frequency. Be-
cause the attenuation is independent of frequency, the attenu-
ation per wavelength becomes smaller and smaller as the fre-
quency increases. One can conjecture that the order of magni-
tude of the frequency at which the transition from diffusion to
propagating wave is where the real and imaginary parts of the
wave number, according to the high frequency approximation,
first become equal. Such leads to

ωtran = α1c1 =
bε

2αr1

�
(δ/ε)− r1

r2 − r1

�
(111)

[The authors have not attempted to estimate the numerical value
of this quantity.]

MODIFICATIONS IN LATER PAPERS

In later papers, Biot replaced his constant parameter b by a
frequency dependent operator. What he did in his second paper
[2] can be roughly characterized as a “patch job,” and Biot gave
two distinct formulas, one assuming that the fluid flow in the
pores was like fluid flow between parallel plates and the other
assuming that it was like fluid flow in circular ducts.

In the 1962 paper [3], viewed in retrospect, it appears that
the modification can be regarded as a replacement of b by a
frequency-dependent function, where the actual function could
be determined by fitting the overall model to experimental data.

Nevertheless, it does appear that, if all that is done is to re-
place b as a frequency dependent quantity b(ω), and if b(ω)
is bounded at high frequencies, then the conclusion that there
be two propagating waves at high frequencies has to remain a
consequence of the overall model.

The authors suspect that later modifications to the Biot model,
such as were introduced by Stoll [4] and by Chotiros and Isak-
son [12], will not change this prediction.
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THE BIOT-STOLL MODEL

A commonly used hybrid model, frequently termed the Biot-
Stoll model, dates back to a 1970 paper by Stoll and Bryan [4].
In essence, the model presumes that, for constant frequency
waves, the Biot model described above is correct, but only if all
the elastic constants are taken as complex constants, so that

A → AR + iAI ; Q → QR + iQI , (112)

etc., where the imaginary parts are presumed small compared
to the real parts. Given that one is using exp(−iωt) time de-
pendence, these imaginary parts are all expected to be negative
numbers.

What such a substitution does at low frequencies is to cause
the wave speeds to have a constant negative imaginary part.
This causes the attenuation at low frequencies to have a term
proportional to frequency in addition to one proportional to
frequency squared. There is some feeling that such a term in the
zero frequency would violate considerations of causality [13].

EXPERIMENTALLY OBSERVED SLOW WAVES

Experimental observation of a second propagating wave (a slow
wave) has been reported in papers by Plona [14] and by Johnson
and Plona [15]. In the text by Bourbie, Coussy, and Zinszner
[16], it is implied that these experiments confirm the validity of
the general Biot model.

NONEXISTENCE OF SLOW WAVE

A principal contention of the present paper is that the experi-
mental observations of the slow wave were for cases where the
simulated porous medium was perfectly periodic. One can show
that, unless the medium is perfectly periodic (or near perfectly
periodic) a slow wave cannot be produced.
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