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ABSTRACT

We describe selected aspects of the development and dfpisaf an elasto-acoustic fast integral solver desigoed t
analyze sound propagation inside a human head, to examicteamiems of energy transfer to the inner ear through air
and a bone-conduction path-ways, and to assess effecdwenheaoise-protection devices.

The approach uses an integral-equation formulation of stoeelasticity and overcomes memory and execution time
restrictions of conventional methods through the use ofralassy Fast Fourier Transform-based matrix compression
algorithm parallelized on distributed-memory systemsHSa computational technique dramatically reduces both the
storage and the solution time requirements: frogiN2) for the direct solution of a system of matrix equations to
approximatelyO(NIogN), whereN is the number of unknowns. Effectively, the method allows tmsolve the resulting
discrete dense linear system representation of the integuation with computational complexity comparable ta tha
required to solve a sparse system of linear equations.

The developed acousto-elastic volumetric integral equagdlver is capable of accurate large-scale numericallaimu
tions involving anatomically realistic models of a humamdhediscretized with several million of tetrahedral eletsen
and characterized by complex geometrical details and ldegsity contrasts. In order to gain confidence in the solver
adequacy to handle problems involving highly intricateistures of the middle and inner ear (which are essential for
reliable numerical simulations capable of discerning leemvdifferent mechanisms of energy transfer to the cochlea)
we carried out several solver self-consistency tests fimvg two different forms of integral equations) and comgghr

its predictions with those following from an analytical stbn of field distribution in an elasto-acoustic layeretiee.

We present results of representative numerical simulat@fnacoustic energy transfer processes to the cochlea for
a human head model containing a detailed geometry repeggemof the outer, middle, and inner ear. The geometry
model used consists of: (1) the outer surface of the skimaunding the skull and containing (2) the outer ear represent
by its exterior surface, the surface of the auditory canad] the tympanic membrane modeled as a finite-thickness
surface; (3) the middle ear, consisting of the system ofctessiand supporting structures; (4) the skull, described
by external surfaces of the bones constituting the skullinadiding (5) a set of surfaces representing the inner ear
(boundaries of the cochlea, the vestibule, and the semideir canals).

In addition, as an example of the code applicability to théfieation of the effectiveness of noise-protection desjce
we present results of numerical simulations for a model adadhprotected by a helmet equipped with various material
layers filling the space between the helmet and the surfatedfead.

INTRODUCTION Our approach is based on an integral-equation formulathuntw
we find, for the considered class of problems, preferable to
finite-element methods both because of its accuracy and its
ability of treating, without approximations, the open spéair)
surrounding the object of interest.

The main objective of our development of an acousto-elastic
integral equation solver is to provide a reliable numersiadl-
ulation tool for the analysis of acoustic and elastic wawappr
agation in the human head. Such numerical simulations can be

useful, in particular, (i) in the analysis of relative impace Since an adequate discretization of geometry details dbana
of alternative pathways of energy transfer to the humaniear, ically realistic models leads, immediately, to problemsin-
cluding bone and soft-tissue sound conduction, and thessse  ing millions of geometrical elements (e.g. tetrahedrofppses
ment of their role in the noise-induced damage to the human 3 challenge to efficient and accurate solutions of the uyitey!
hearing system1], (ii) in investigations of possible thermoa- acousto-elastic wave equations. The challenge was pariizu
coustic (e.g., microwave-pulse-induced) auditory effele], severe for conventional integral-equation formulatior®se
and, (iii) in the analysis of effectiveness of noise-prtitec discrete numerical representations were in terms of deife s
measures and noise-protective devices. ness matrices.
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Recently, this difficulty of conventional methods has beesro
come due to the development non-lossy, error controlled ma-
trix compression techniques, the FFT-based Adaptive tateg
Method (AIM) [3] and the Fast Multipole Method (FMMY].
Such techniques dramatically reduce both the computdtiona
storage and the solution time requirements: frogiN®) for

the direct solution of the matrix equations to approximatel
O(N logN), whereN is the number of unknowns. Effectively,
they allow one to solve a dense linear system of equatioris wit
computational complexity comparable to that required teeso

a sparse one.

In the approach we describe here, we utilize the FFT-based
AIM compression techniqued] initially developed in the con-
text of elecromagnetics and adapted to acoushicd his com-
pression technique, being optimal for volumetric problerss
well as problems involving sub-wavelength discretizagiftetra-
hedron size much smaller than the wavelength), is partigula
well suited to problems involving modeling of sound wave
interaction with biological tissues. In the following Siects

we briefly describe the FFT-based AIM solution method and
its implementation in our code, including, (i) an efficiertrp
allelization on distributed-memory systems and, (ii) a mod
fied integral-equation formulation which addresses nwoiatri
aspects of the solution technique associated with the tzoge
trast of densities of biological tissues and the surroupdin

We follow that discussion with a description of our approach
to geometrical modeling of the human head and its auditory
organs, in the context of relevant simulation tasks.

Finally, we provide examples of numerical simulations iavo

ing a human head and a helmet geometry. Results of such sim-
ulations may provide an insight into physics of sound wave
propagation in nontrivial geometries of a realisticallyaphld
human head and a helmet, and demonstrate the present capa-
bilities of our solver.

THE NUMERICAL SIMULATION APPROACH
INTEGRAL EQUATION FORMULATION

It is a well established fact that integral-equation foratigins
provide the most accurate solutions to wave problems. They
require, however, solving dense systems of linear equation
Traditional methods of solving such systems are charaeteri
by computational complexity and memory requirements of the
order of N3, whereN is the number of unknowns needed to
adequately reproduce both the geometrical details of amato
cal models and the variations of the fields. Hence, despiie th
reliability and accuracy, the traditional integral-eqaatbased
methods become computationally prohibitively intensivpro-
vide solutions for realistic problems of interest.

Recently, however, a significant progress has been made in
the development of fast frequency- and time-domain integra
equation solvers and, as the result, the ability of acclLaate

fast numerical simulations of wave propagation and scatter
ing in complex media has dramatically improved. Suitable ma
trix compression techniques, the FFT-based Adaptive tateg
Method (AIM) [3] and the Fast Multipole Method (FMMY],

have been developed, which allow solving large linear sets
of equations with dense matrices utilizing storage and wexec
tion times characteristic of problems involving sparsedin
systems. The physical idea behind the compression methods
is that interactions at large distances require less résnlu
than interactions at small distances. As the result, thepcem
tational complexity and memory requirements of the comypres
sion methods scale approximately linearly with the numlfer o
unknownsN.

In what follows, we describe the main features of our numeri-
cal simulation approach.

INTEGRAL EQUATION FORMULATION

SUMMARY OF THE INTEGRAL EQUATIONS IN
ELASTICITY

We briefly the describe here the considered types of therialteg
equations we use in our simulations, and then list the génera
forms of the equations themselves.

(A) Volumetric integral equations. Volumetric integral
equations, on the other hand, can be used for inhomogeneous
media, with (generally) different material propertiesigsed

to the individual tetrahedra into which the volume has besn d
cretized. We use here Lippmann-Schwinger equations wéth th
Green function associated with the infinite (unboundedkbac
ground medium — in our case, air. We consider two types of
volumetric integral equations:

(i) Equations derived from differential equations in their
first-order form. In this case the unknowns in the in-
tegral equations are the displacement and stress tensor
fields defined in the considered volume.

(i) Equations derived from differential equations in thei
second-order form. In this formulation the unknowns
are only the components of the displacement field.

subparagraph(A ) Equations in the “first-order” form. In the
following we describe the “first-order” version of volumietr
integral equations. In such a formulation, derived fromitamé
equation in its first-order form, the unknowns are the vejoci
v; .= —iku; (wherek is the wave number in the background
medium), the pressurg:= — % )4 and the symmetric trace-
less parig;j of the stress tensayj. The equations involve the
Green functiorg(r) = exp(ikr)/(4mr) of the Helmholtz equa-
tion in the background medium, as well as its derivatives,

grm( ) (3 5mn k2 + dmdn) g(r) : (1)

The obtained system of integral equations, E@®),(is then
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with a dimensionless material parameter
__ N
¢= A+ im0 3

We discretize the above integral equations in terms of piece
wise linear basis functions. Each such basis function isckss
ated with the vertices of the tetrahedral mesh, and supporte
on sets of tetrahedra adjacent to the considered vertex.
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In designing our integral-equation formulation we pay &ipar
ular attention to the problem of a possible discontinuoumaie
ior of the material properties, which is, clearly, alwaysgant
when considering a mechanically dense (biological) maiteri
immersed in air.

Such problems are known to cause difficulties in solving-inte
gral equations in acoustics and, in that case, we have devise
an approachf] in which the original system of equations is
reformulated in terms of a surface problem associated Wwéh t
contrast interface(s) (characterized by a large ratio oéifies

of the adjacent materials) and a “residual” volumetric peah
The analogous problem in elasticity appears to be condijera
more complex, and we have put much effort into deriving ap-
propriate forms of integral equations, in both first- andosekt
order formulations ((i) and (ii) above).

Properties of the integral equations in high-contrast
problems. The volumetric integral equationg)(and @?)
have quite different (although equivalent) forms; theyreha
however, common features, which become relevant in prob-
lems involving large contrast. Such cases, in our appboati

are characterized by large ratios of material density aed th
Lamé parametek values in the considered material and in the
background mediumAg, with moderate values of the wave
propagation speed, i.e.,

P A
—~—>1. 4
" 7o 4

In this limit only some terms in the integral equations armeo
inant and, moreover, they represent contributions of fates
at which there occur large jumps in the paramefend A
with respect to their background medium valygsand Ag.
This structure of the equations facilitates their disaagton
and solution in high-contrast problems.

(B) Surfaceintegral equations. The surface integral equa-
tions — or boundary integral equations, BIEs — are appleabl
to piecewise homogeneous materials, and provide solufons
the displacement and traction fields defined on interfacgs se
arating different material regions. Fields in the indiatlue-
gions are described in terms of the appropriate Green fumgti
for elastic materials. We use this type of equations in tte fo
lowing situations

1. Modeling of man-made objects of possibly complex ge-
ometrical shapes, but consisting of only few homoge-
neous materials.

2. Solution of the auxiliary surface problems arising in so-
lution of the volumetric integral equations for materi-
als characterized by large-contrast discontinuitiesén th
material properties (we return to this problem below).

3. More generally, verification and checks of the solutions
obtained with the volumetric-equations code in the case
of piecewise homogeneous materials.

We first present the general form of the surface integral equa
tions for a set of homogeneous regiddg separated by inter-
faces; one of these regiory, is the unbounded background
medium. The displacement and traction fields are assumed to
be continuous across the interfaces. The resulting sysfem o
integral equations simply consists of two equations pearint
face (oriented surface§y, separating the regior@y, (on the
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negative side of the interface) afx} (on its positive side),
%u(r)+/sm Q' [F(Lr)-u(r) + Gh(r,r") ()]

=3[ TR uie) - GRE ) )] =
=5 u(r)forres,,,

Bu) - [ 1T ue)+ G 1)

(5a)

n Sn;ﬂ /3” o' [T (') u(r') + G (r.r') ()] =
e

=35 u(r)forres,,,
%u(r)—/Srm d?r PR,y -u(r’) + G (r,r') - t(r)bigr]

(5b)

dZ/FIt,/~ / G-,!l—,/~t/ - (5
+Sni;9n S, r[Fatr’)-ur’)+Ga(r,r')-t(r')] = (5¢)
i#m
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With reference to Figl, Eq.6Eb) represents contributions to the
displacement field: on the interfacesy, due to the displace-
ment and traction fields andt on the same interface (the first
integral) and on other interfaceS,, forming boundaries of
the regionQn, with other regiong);, i # n. These intervals in-
volve Green function&y, and My, (defined by Eqgs.%?) and
(??) in Sec.??), describing propagation of the fields in the
region Qn. Similarly, Eq.6d) represents contributions to the
field u on the interfac&y, due to the fields on the boundaries
of the other regionQ,, adjacent to the interface. The r.h.s.s
of Egs. ) are the incident fields due to distant sources in the
regionQq (hence the delta-function®y anddyp).

ELEMENTS OF THE MATRIX COMPRESSION

Our fast integral equation solver is based on the FFT-based
compression method, described in detail in RBef] The main
reason for choosing the FFT-based compression method rathe
than the FMM approach is that it provides superior efficiency
in the treatment of both volumetric problems and sub-wagtle
(tetrahedron size much smaller than the wavelength) dizare
tions. Sub-wavelength geometry regions constitute domina
portion of the head geometry model.

The essence of the FFT-based compression is to introduce, in
addition to the original basis functions (supported, @gtetra-
hedra), an auxiliary set of far-field equivalent sourcesied

at nodes of a regular Cartesian grid. The two coexistingerepr
sentations of the basis functions, the original and thelianyi
one, are "far-field equivalent” in the sense of generatirgg th
same far-field, i.e., the field beyond the near-field-rangseof
eral tetrahedron sizes or several grid spacings (thesetao-q
tities are chosen to be of the same order). The Cartesiae-repr
sentation of the sources and fields leads to a Toeplitz form of
the far-field component of the stiffness matrix, and allomse
putation of the corresponding term in the matrix-vectordsro
uct by means of FFTs. At the same time, the near-field of the
matrix is, by construction, sparse. Thus, the complexitthef
matrix-vector product is reduced froB®(N?), characteristic of

a dense matrix, t®(N logN).

ELEMENTS OF THE PARALLELIZATION

An indispensable element of the solver is its parallel imple
mentation designed for distributed-memory systems, ssch a
PC clusters. It includes a parallel implementation of thiee
mensional FFTs, based on the FFTW packageafich, in



spite of the massive all-to-all communication involved imeo
of its stages, achieves a near-perfect scaling on parditl,
tributed memory architectures (in our computations, gogip
with the InfiniBand interconnect network) up to thousands of
processors.

Other elements of the solver have also been designed to fully
scale with the number of processors, in both storage and com-
putation time. This feature is mostly due to a partitionifthe
object geometry, in our case, into “slices” defined in terrhs o
one of the coordinates of the Cartesian grid. In this wayheac
processor handles primarily only one geometry slice and, in
some auxiliary operations, at most few of the adjacentslice

Our solver implements a volumetric integral-equationgaagh

in which, depending on the choice of the basis functions and
the specific form of the equations, the unknowns are displace
ments, components of the stress tensor, or pressuresassoci
with nodes or with tetrahedra of a volumetric tetrahedrasime

In addition to utilizing the FFT-based matrix compressiond a
parallelization, the solver employs a formulation differfrom
conventional Lippmann-Schwinger integral equations, tzetel

ter suited to large density contrast problerijs The improved
solution scheme consists of (i) casting integral equatiotts

a form which exhibits separation of volume and surface com-
ponents; (ii) solving the surface problem; (iii) solvingetiol-
umetric problem with a new source term defined in terms of
the obtained surface solution; and (iv) constructing thalfin
solution as a proper combination of the surface and volume so
lutions. The implemented procedure is rigorous and does not
suffer from ill-conditioning in the limit of large densityon-
trasts. Its application is essential in problems involvinglog-

ical tissues in air (i.e., density ratios exceeding 1000).

THE GEOMETRICAL MODEL AND MECHANICAL
PROPERTIES OF MATERIALS

We constructed a simple, yet relatively realistic geonaatri
model of a human head consisting of skin, skull and brain
tissue, with the cochlea embedded in the skull. We also con-
structed a model of a helmet and a padding material placed
between the head and the interior of the helmet surface. The
components of the model are shown in Figiand3.

The above elements constitute a minimal yet relevant set-of g
ometry components required in carrying out simulationsnef e
ergy deposited within the cochlea region and, subsequently
the determination of auditory effects of the propagatingava
The helmet geometry allows us to investigate the influence of
the padding material, as well as of possible air gaps between
the head and the helmet structure on the energy distribution
inside the head model.

Our present parallelized version of the solver allows ustto o
tain solutions for such models, discretized with severdioni
of unknowns, within the time span of a few hours.

EXAMPLES OF REPRESENTATIVE NUMERICAL
SIMULATIONS

In this Section we present some preliminary illustratiofthe
capabilities of our solver.

In Fig. 4 we show pressure distribution in a human head model

in the presence and the absence of a helmet. We assumed a steel
helmet and the space between the helmet and the head filled
with cork. Frequency of the harmonic acoustic wave, indiden
laterally on the right ear of the head model was 5 kHz. Ge-
ometries were discretized with tetrahedron sizes (edggheh

of about 3 mm, resulting in () ~ 2,700,000 tetrahedra for
the head, and (H) ~ 4,700,000 for the head and helmet sys-
tem. The computations were carried out on a Linux clustdr wit
the InfiniBand interconnect network, on 108 processorsher t
model (a) and 128 processors for the model (b). The total com-
putation times were (a) about 50 minutes and (b) about 2 hours
the longer time for the case (b) due mostly to the larger num-
ber of iterations in the solution. One iteration require@l glin

the problem (a) and 6.6 s in the problem (b). We estimate that,
in both cases, the overall computation time can be reduced by
30 to 50 % by optimizing the matrix construction stage of the
code.

The results show a nontrivial behavior of the solutions and e
hibit physical phenomena which may be relevant in the design
of protective devices.

In the case of the head, Fig(a), the pressure is maximal at
the entrance to the ear canal, and it is relatively smootidy d
tributed inside the head. In fact, the solution is suggestiva
resonance-type (P-wave) behavior: the pressure changes si
along the approximately vertical line seen in the Figure.

The solution for head and helmet system, Fifp), is quite
different. It exhibits a distinct oscillatory behavior atp the
surface of the helmet and in the region filled by cork. This re-
gion appears to have properties of a “waveguide’. Because of
the cork density being significantly lower than that of the-su
rounding materials (the helmet and the head), and the iegult
impedance mismatch at the boundaries, the wave tends to be
trapped in that region. Since the refractive index of conkds
much different from that of air, wave oscillations are rizially
rapid. We stress, however, that the physical picture sugdes
by Fig. 4(b) would change if we included dissipative (attenu-
ation) effects in the filling material, e.g., if we considegra
strongly damping porous material characterized by a cample
refractive index.

We note that, for the particular frequency considered hbee,
presence of a helmet completely changes the pressuréodistri
tion in the head, but does not reduce its maximum value (we
note that the data Figd(a) and Fig4(b) are plotted in differ-
ent scales).

SUMMARY

We described our approach to numerical simulation of acous-
tic and elastic wave propagation in the human head based on
integral equation formulation and, applicable to quatititeas-
sessment of the importance of various energy transfer mecha
nisms (such as bone conduction), effects of noise and naise p
tection measures. Our a fast, parallelized volumetricgirate
equation solver allows efficient treatment of large scatebpr
lems discretized with millions of tetrahedral elementsofn

der to get confidence into able numerical simulations capabl
of discerning between different mechanisms of energy teans

to the cochlea), we carried out several solver self-cosstst
tests (involving two different forms of integral equatipsd
compared its predictions with those following from an ana-
lytical solution of field distribution in an elasto-acowstay-
ered sphere. We illustrated these developments with prelim
nary computation results showing effects of a helmet enclos
ing a human head model, and exhibiting a nontrivial behavior
of the solution for realistic geometries.
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Figure 1: A schematic representation of regi@hsnd inter-
facesSappearing in integral equatiobs

Figure 2: The external ear, the cochlea, and the skull models
used in the simulations.

incident
wave

Figure 3: Model of the external head surface and the helmet.
The arrow indicates the direction of the incident wave.



@) (b)

Figure 4: Pressure distributions in the coronal plane fpth@
human head model and (b) the system consisting of the human
head model and a steel helmet, with the in-between spaa fille
by cork. The models are subject to an acoustic wave of unit
pressure amplitude and frequency 5 kHz, incident from tfie le
The maximum pressure value is about 4 in (a) and 15 in (b).

(@) (b)

Figure 5: Pressure distributions in the coronal plane fpth@
human head model and (b) the system consisting of the hu-
man head and a steel helmet models, with the in-between space
filled by cork. The models are subject to an acoustic wave of
unit pressure amplitude and frequency 5 kHz, incident from
the left. The maximum pressure value is about 4 in (a) and 15
in (b).
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