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ABSTRACT

We describe selected aspects of the development and applications of an elasto-acoustic fast integral solver designed to
analyze sound propagation inside a human head, to examine mechanisms of energy transfer to the inner ear through air
and a bone-conduction path-ways, and to assess effectiveness of noise-protection devices.

The approach uses an integral-equation formulation of acousto-elasticity and overcomes memory and execution time
restrictions of conventional methods through the use of a non-lossy Fast Fourier Transform-based matrix compression
algorithm parallelized on distributed-memory systems. Such a computational technique dramatically reduces both the
storage and the solution time requirements: fromO(N3) for the direct solution of a system of matrix equations to
approximatelyO(NlogN), whereN is the number of unknowns. Effectively, the method allows one to solve the resulting
discrete dense linear system representation of the integral equation with computational complexity comparable to that
required to solve a sparse system of linear equations.

The developed acousto-elastic volumetric integral equation solver is capable of accurate large-scale numerical simula-
tions involving anatomically realistic models of a human head, discretized with several million of tetrahedral elements
and characterized by complex geometrical details and largedensity contrasts. In order to gain confidence in the solver
adequacy to handle problems involving highly intricate structures of the middle and inner ear (which are essential for
reliable numerical simulations capable of discerning between different mechanisms of energy transfer to the cochlea),
we carried out several solver self-consistency tests (involving two different forms of integral equations) and compared
its predictions with those following from an analytical solution of field distribution in an elasto-acoustic layered sphere.

We present results of representative numerical simulations of acoustic energy transfer processes to the cochlea for
a human head model containing a detailed geometry representation of the outer, middle, and inner ear. The geometry
model used consists of: (1) the outer surface of the skin surrounding the skull and containing (2) the outer ear represented
by its exterior surface, the surface of the auditory canal, and the tympanic membrane modeled as a finite-thickness
surface; (3) the middle ear, consisting of the system of ossicles and supporting structures; (4) the skull, described
by external surfaces of the bones constituting the skull andincluding (5) a set of surfaces representing the inner ear
(boundaries of the cochlea, the vestibule, and the semi-circular canals).

In addition, as an example of the code applicability to the verification of the effectiveness of noise-protection devices,
we present results of numerical simulations for a model of a head protected by a helmet equipped with various material
layers filling the space between the helmet and the surface ofthe head.

INTRODUCTION

The main objective of our development of an acousto-elastic
integral equation solver is to provide a reliable numericalsim-
ulation tool for the analysis of acoustic and elastic wave prop-
agation in the human head. Such numerical simulations can be
useful, in particular, (i) in the analysis of relative importance
of alternative pathways of energy transfer to the human ear,in-
cluding bone and soft-tissue sound conduction, and the assess-
ment of their role in the noise-induced damage to the human
hearing system [1], (ii) in investigations of possible thermoa-
coustic (e.g., microwave-pulse-induced) auditory effects [2],
and, (iii) in the analysis of effectiveness of noise-protection
measures and noise-protective devices.

Our approach is based on an integral-equation formulation which
we find, for the considered class of problems, preferable to
finite-element methods both because of its accuracy and its
ability of treating, without approximations, the open space (air)
surrounding the object of interest.

Since an adequate discretization of geometry details of anatom-
ically realistic models leads, immediately, to problems involv-
ing millions of geometrical elements (e.g. tetrahedroms),it poses
a challenge to efficient and accurate solutions of the underlying
acousto-elastic wave equations. The challenge was particularly
severe for conventional integral-equation formulations whose
discrete numerical representations were in terms of dense stiff-
ness matrices.
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Recently, this difficulty of conventional methods has been over-
come due to the development non-lossy, error controlled ma-
trix compression techniques, the FFT-based Adaptive Integral
Method (AIM) [3] and the Fast Multipole Method (FMM) [4].
Such techniques dramatically reduce both the computational
storage and the solution time requirements: fromO(N3) for
the direct solution of the matrix equations to approximately
O(N logN), whereN is the number of unknowns. Effectively,
they allow one to solve a dense linear system of equations with
computational complexity comparable to that required to solve
a sparse one.

In the approach we describe here, we utilize the FFT-based
AIM compression technique [3] initially developed in the con-
text of elecromagnetics and adapted to acoustics [5]. This com-
pression technique, being optimal for volumetric problemsas
well as problems involving sub-wavelength discretizations (tetra-
hedron size much smaller than the wavelength), is particularly
well suited to problems involving modeling of sound wave
interaction with biological tissues. In the following Sections
we briefly describe the FFT-based AIM solution method and
its implementation in our code, including, (i) an efficient par-
allelization on distributed-memory systems and, (ii) a modi-
fied integral-equation formulation which addresses nontrivial
aspects of the solution technique associated with the largecon-
trast of densities of biological tissues and the surrounding air.

We follow that discussion with a description of our approach
to geometrical modeling of the human head and its auditory
organs, in the context of relevant simulation tasks.

Finally, we provide examples of numerical simulations involv-
ing a human head and a helmet geometry. Results of such sim-
ulations may provide an insight into physics of sound wave
propagation in nontrivial geometries of a realistically shaped
human head and a helmet, and demonstrate the present capa-
bilities of our solver.

THE NUMERICAL SIMULATION APPROACH

INTEGRAL EQUATION FORMULATION

It is a well established fact that integral-equation formulations
provide the most accurate solutions to wave problems. They
require, however, solving dense systems of linear equations.
Traditional methods of solving such systems are characterized
by computational complexity and memory requirements of the
order of N3, whereN is the number of unknowns needed to
adequately reproduce both the geometrical details of anatomi-
cal models and the variations of the fields. Hence, despite their
reliability and accuracy, the traditional integral-equation based
methods become computationally prohibitively intensive to pro-
vide solutions for realistic problems of interest.

Recently, however, a significant progress has been made in
the development of fast frequency- and time-domain integral-
equation solvers and, as the result, the ability of accurateand
fast numerical simulations of wave propagation and scatter-
ing in complex media has dramatically improved. Suitable ma-
trix compression techniques, the FFT-based Adaptive Integral
Method (AIM) [3] and the Fast Multipole Method (FMM) [4],
have been developed, which allow solving large linear sets
of equations with dense matrices utilizing storage and execu-
tion times characteristic of problems involving sparse linear
systems. The physical idea behind the compression methods
is that interactions at large distances require less resolution
than interactions at small distances. As the result, the compu-
tational complexity and memory requirements of the compres-
sion methods scale approximately linearly with the number of
unknownsN.

In what follows, we describe the main features of our numeri-
cal simulation approach.

INTEGRAL EQUATION FORMULATION

SUMMARY OF THE INTEGRAL EQUATIONS IN
ELASTICITY

We briefly the describe here the considered types of the integral
equations we use in our simulations, and then list the general
forms of the equations themselves.

(A) Volumetric integral equations. Volumetric integral
equations, on the other hand, can be used for inhomogeneous
media, with (generally) different material properties assigned
to the individual tetrahedra into which the volume has been dis-
cretized. We use here Lippmann-Schwinger equations with the
Green function associated with the infinite (unbounded) back-
ground medium – in our case, air. We consider two types of
volumetric integral equations:

(i) Equations derived from differential equations in their
first-order form. In this case the unknowns in the in-
tegral equations are the displacement and stress tensor
fields defined in the considered volume.

(ii) Equations derived from differential equations in their
second-order form. In this formulation the unknowns
are only the components of the displacement field.

subparagraph(A ) Equations in the “first-order” form. In the
following we describe the “first-order” version of volumetric
integral equations. In such a formulation, derived from theLamé
equation in its first-order form, the unknowns are the velocity
vi := −i k ui (wherek is the wave number in the background
medium), the pressurep := − 1

3 τkk, and the symmetric trace-
less partσi j of the stress tensorτi j. The equations involve the
Green functiong(r) = exp(ikr)/(4πr) of the Helmholtz equa-
tion in the background medium, as well as its derivatives,

gmn(r) :=
( 1

3 δ mn k2 +∂ m∂ n

)

g(r) . (1)

The obtained system of integral equations, Eqs. (??), is then
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with a dimensionless material parameter

ϕ =
λ0

λ + 2
3µ

. (3)

We discretize the above integral equations in terms of piece-
wise linear basis functions. Each such basis function is associ-
ated with the vertices of the tetrahedral mesh, and supported
on sets of tetrahedra adjacent to the considered vertex.
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In designing our integral-equation formulation we pay a partic-
ular attention to the problem of a possible discontinuous behav-
ior of the material properties, which is, clearly, always present
when considering a mechanically dense (biological) material
immersed in air.

Such problems are known to cause difficulties in solving inte-
gral equations in acoustics and, in that case, we have devised
an approach [6] in which the original system of equations is
reformulated in terms of a surface problem associated with the
contrast interface(s) (characterized by a large ratio of densities
of the adjacent materials) and a “residual” volumetric problem.
The analogous problem in elasticity appears to be considerably
more complex, and we have put much effort into deriving ap-
propriate forms of integral equations, in both first- and second-
order formulations ((i) and (ii) above).

Properties of the integral equations in high-contrast
problems. The volumetric integral equations (2) and (??)
have quite different (although equivalent) forms; they share,
however, common features, which become relevant in prob-
lems involving large contrast. Such cases, in our applications,
are characterized by large ratios of material density and the
Lamé parameterλ values in the considered material and in the
background medium (λ0, with moderate values of the wave
propagation speed, i.e.,

ρ
ρ0

∼
λ
λ0

≫ 1 . (4)

In this limit only some terms in the integral equations are dom-
inant and, moreover, they represent contributions of interfaces
at which there occur large jumps in the parametersρ and λ
with respect to their background medium valuesρ0 and λ0.
This structure of the equations facilitates their discretization
and solution in high-contrast problems.

(B) Surface integral equations. The surface integral equa-
tions – or boundary integral equations, BIEs – are applicable
to piecewise homogeneous materials, and provide solutionsfor
the displacement and traction fields defined on interfaces sep-
arating different material regions. Fields in the individual re-
gions are described in terms of the appropriate Green functions
for elastic materials. We use this type of equations in the fol-
lowing situations

1. Modeling of man-made objects of possibly complex ge-
ometrical shapes, but consisting of only few homoge-
neous materials.

2. Solution of the auxiliary surface problems arising in so-
lution of the volumetric integral equations for materi-
als characterized by large-contrast discontinuities in the
material properties (we return to this problem below).

3. More generally, verification and checks of the solutions
obtained with the volumetric-equations code in the case
of piecewise homogeneous materials.

We first present the general form of the surface integral equa-
tions for a set of homogeneous regionsΩm separated by inter-
faces; one of these regions,Ω0, is the unbounded background
medium. The displacement and traction fields are assumed to
be continuous across the interfaces. The resulting system of
integral equations simply consists of two equations per inter-
face (oriented surface)Smn separating the regionsΩm (on the

negative side of the interface) andΩn (on its positive side),

1
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With reference to Fig.1, Eq.(5b) represents contributions to the
displacement fieldu on the interfaceSmn due to the displace-
ment and traction fieldsu andt on the same interface (the first
integral) and on other interfaces,Sim, forming boundaries of
the regionΩm with other regionsΩi, i 6= n. These intervals in-
volve Green functionsGm andΓm (defined by Eqs. (??) and
(??) in Sec.??), describing propagation of the fields in the
regionΩm. Similarly, Eq.(5d) represents contributions to the
field u on the interfaceSmn due to the fields on the boundaries
of the other region,Ωn, adjacent to the interface. The r.h.s.s
of Eqs. (5) are the incident fields due to distant sources in the
regionΩ0 (hence the delta-functionsδm0 andδn0).

ELEMENTS OF THE MATRIX COMPRESSION

Our fast integral equation solver is based on the FFT-based
compression method, described in detail in Ref [3, 5] The main
reason for choosing the FFT-based compression method rather
than the FMM approach is that it provides superior efficiency
in the treatment of both volumetric problems and sub-wavelength
(tetrahedron size much smaller than the wavelength) discretiza-
tions. Sub-wavelength geometry regions constitute dominant
portion of the head geometry model.

The essence of the FFT-based compression is to introduce, in
addition to the original basis functions (supported, e.g.,on tetra-
hedra), an auxiliary set of far-field equivalent sources located
at nodes of a regular Cartesian grid. The two coexisting repre-
sentations of the basis functions, the original and the auxiliary
one, are "far-field equivalent" in the sense of generating the
same far-field, i.e., the field beyond the near-field-range ofsev-
eral tetrahedron sizes or several grid spacings (these two quan-
tities are chosen to be of the same order). The Cartesian repre-
sentation of the sources and fields leads to a Toeplitz form of
the far-field component of the stiffness matrix, and allows com-
putation of the corresponding term in the matrix-vector prod-
uct by means of FFTs. At the same time, the near-field of the
matrix is, by construction, sparse. Thus, the complexity ofthe
matrix-vector product is reduced fromO(N2), characteristic of
a dense matrix, toO(N logN).

ELEMENTS OF THE PARALLELIZATION

An indispensable element of the solver is its parallel imple-
mentation designed for distributed-memory systems, such as
PC clusters. It includes a parallel implementation of threedi-
mensional FFTs, based on the FFTW package [7] which, in
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spite of the massive all-to-all communication involved in one
of its stages, achieves a near-perfect scaling on parallel,dis-
tributed memory architectures (in our computations, equipped
with the InfiniBand interconnect network) up to thousands of
processors.

Other elements of the solver have also been designed to fully
scale with the number of processors, in both storage and com-
putation time. This feature is mostly due to a partitioning of the
object geometry, in our case, into “slices” defined in terms of
one of the coordinates of the Cartesian grid. In this way, each
processor handles primarily only one geometry slice and, in
some auxiliary operations, at most few of the adjacent slices.

Our solver implements a volumetric integral-equations approach
in which, depending on the choice of the basis functions and
the specific form of the equations, the unknowns are displace-
ments, components of the stress tensor, or pressures associated
with nodes or with tetrahedra of a volumetric tetrahedral mesh.

In addition to utilizing the FFT-based matrix compression and
parallelization, the solver employs a formulation different from
conventional Lippmann-Schwinger integral equations, andbet-
ter suited to large density contrast problems [6]. The improved
solution scheme consists of (i) casting integral equationsinto
a form which exhibits separation of volume and surface com-
ponents; (ii) solving the surface problem; (iii) solving the vol-
umetric problem with a new source term defined in terms of
the obtained surface solution; and (iv) constructing the final
solution as a proper combination of the surface and volume so-
lutions. The implemented procedure is rigorous and does not
suffer from ill-conditioning in the limit of large density con-
trasts. Its application is essential in problems involvingbiolog-
ical tissues in air (i.e., density ratios exceeding 1000).

THE GEOMETRICAL MODEL AND MECHANICAL
PROPERTIES OF MATERIALS

We constructed a simple, yet relatively realistic geometrical
model of a human head consisting of skin, skull and brain
tissue, with the cochlea embedded in the skull. We also con-
structed a model of a helmet and a padding material placed
between the head and the interior of the helmet surface. The
components of the model are shown in Figs.2 and3.

The above elements constitute a minimal yet relevant set of ge-
ometry components required in carrying out simulations of en-
ergy deposited within the cochlea region and, subsequently, in
the determination of auditory effects of the propagating wave.
The helmet geometry allows us to investigate the influence of
the padding material, as well as of possible air gaps between
the head and the helmet structure on the energy distribution
inside the head model.

Our present parallelized version of the solver allows us to ob-
tain solutions for such models, discretized with several million
of unknowns, within the time span of a few hours.

EXAMPLES OF REPRESENTATIVE NUMERICAL
SIMULATIONS

In this Section we present some preliminary illustrations of the
capabilities of our solver.

In Fig. 4 we show pressure distribution in a human head model
in the presence and the absence of a helmet. We assumed a steel
helmet and the space between the helmet and the head filled
with cork. Frequency of the harmonic acoustic wave, incident
laterally on the right ear of the head model was 5 kHz. Ge-
ometries were discretized with tetrahedron sizes (edge lengths)

of about 3 mm, resulting in (a)N ≃ 2,700,000 tetrahedra for
the head, and (b)N ≃ 4,700,000 for the head and helmet sys-
tem. The computations were carried out on a Linux cluster with
the InfiniBand interconnect network, on 108 processors for the
model (a) and 128 processors for the model (b). The total com-
putation times were (a) about 50 minutes and (b) about 2 hours,
the longer time for the case (b) due mostly to the larger num-
ber of iterations in the solution. One iteration required 4.6 s in
the problem (a) and 6.6 s in the problem (b). We estimate that,
in both cases, the overall computation time can be reduced by
30 to 50 % by optimizing the matrix construction stage of the
code.

The results show a nontrivial behavior of the solutions and ex-
hibit physical phenomena which may be relevant in the design
of protective devices.

In the case of the head, Fig.4(a), the pressure is maximal at
the entrance to the ear canal, and it is relatively smoothly dis-
tributed inside the head. In fact, the solution is suggestive of a
resonance-type (P-wave) behavior: the pressure changes sign
along the approximately vertical line seen in the Figure.

The solution for head and helmet system, Fig.4(b), is quite
different. It exhibits a distinct oscillatory behavior along the
surface of the helmet and in the region filled by cork. This re-
gion appears to have properties of a “waveguide’. Because of
the cork density being significantly lower than that of the sur-
rounding materials (the helmet and the head), and the resulting
impedance mismatch at the boundaries, the wave tends to be
trapped in that region. Since the refractive index of cork isnot
much different from that of air, wave oscillations are relatively
rapid. We stress, however, that the physical picture suggested
by Fig. 4(b) would change if we included dissipative (attenu-
ation) effects in the filling material, e.g., if we considered a
strongly damping porous material characterized by a complex
refractive index.

We note that, for the particular frequency considered here,the
presence of a helmet completely changes the pressure distribu-
tion in the head, but does not reduce its maximum value (we
note that the data Figs.4(a) and Fig.4(b) are plotted in differ-
ent scales).

SUMMARY

We described our approach to numerical simulation of acous-
tic and elastic wave propagation in the human head based on
integral equation formulation and, applicable to quantitative as-
sessment of the importance of various energy transfer mecha-
nisms (such as bone conduction), effects of noise and noise pro-
tection measures. Our a fast, parallelized volumetric integral-
equation solver allows efficient treatment of large scale prob-
lems discretized with millions of tetrahedral elements. Inor-
der to get confidence into able numerical simulations capable
of discerning between different mechanisms of energy transfer
to the cochlea), we carried out several solver self-consistency
tests (involving two different forms of integral equations) and
compared its predictions with those following from an ana-
lytical solution of field distribution in an elasto-acoustic lay-
ered sphere. We illustrated these developments with prelimi-
nary computation results showing effects of a helmet enclos-
ing a human head model, and exhibiting a nontrivial behavior
of the solution for realistic geometries.
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Figure 1: A schematic representation of regionsΩ and inter-
facesS appearing in integral equations5.

Figure 2: The external ear, the cochlea, and the skull models
used in the simulations.

incident
 wave

Figure 3: Model of the external head surface and the helmet.
The arrow indicates the direction of the incident wave.
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(a) (b)

Figure 4: Pressure distributions in the coronal plane for (a) the
human head model and (b) the system consisting of the human
head model and a steel helmet, with the in-between space filled
by cork. The models are subject to an acoustic wave of unit
pressure amplitude and frequency 5 kHz, incident from the left.
The maximum pressure value is about 4 in (a) and 15 in (b).

(a) (b)

Figure 5: Pressure distributions in the coronal plane for (a) the
human head model and (b) the system consisting of the hu-
man head and a steel helmet models, with the in-between space
filled by cork. The models are subject to an acoustic wave of
unit pressure amplitude and frequency 5 kHz, incident from
the left. The maximum pressure value is about 4 in (a) and 15
in (b).
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