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ABSTRACT 

The Multi-Level Fast Multipole Method (MLFMM) allows the calculation of the sound scattering from objects with a 
very high level of discretization. The required calculation time is much less when compared with conventional 
boundary element methods because the algorithm uses a level-based composition of the potentials from different 
point sources to acoustic multipoles, which highly accelerates the computation of the matrix-vector-products re-
quired. 
The basic theory and the functionality of the implementation of this algorithm in a parallelized version will be de-
scribed. 
The results for direct and iterative BEM-based solution methods with and without use of the MLFMM algorithm will 
be shown using a scattering rigid body with different levels of discretization (consisting of more than one million 
elements). 
The CPU time of the different methods will be compared and the current limits of the algorithm will be discussed. 

INTRODUCTION 

An algorithm to accelerate the matrix-vector-product genera-
tion for BEM-based calculations using the  Multi-Level Fast 
Multipole Method (MLFMM) was developed in the context 
of the research project „Numerical methods for the detection 
of objects in the frequency domain“. 

Our implementation of this algorithm that was first presented 
by Greengard and Rohklin allows at this time the calculation 
of complex uncoupled problems in conjunction with iterative 
solvers (here: GMRES). The intention was to build a high 
performance solver for large problems running parallelized 
on one multi-core system. 

The basics of the method and the current results will be 
shown and discussed. 

BASICS OF THE MULTI-LEVEL FAST MULTI-
POLE METHOD (MLFMM) 

The so called Fast Multipole Method for solving boundary 
element problems (BEM) is based on the article of Greengard 
and Rokhlin [1], which was presented in 1987. 

The method was extended during the following years and the 
adaptive version of the algorithm for three-dimensional prob-
lems [2], presentend by Cheng, Greengard und Rokhlin in 
1999, provided the basis of the code implemented. 

The method uses a summation of the potentials of adjacent 
source points xi within a cluster centered at a point zx (multi-
pole), the translation of its potential to a far point zy and the 
distribution to the destination points yj which are adjacent 
within the far cluster. 

 
(source: [4], chap. 12, „Fast Solution Methods“, p. 333ff) 

Fig. 1: The partitioning of the path between source (xi) 
and destination points (yj) 

To guarantee the far field condition, it is required that the 
distance a=|zx-zy| > |cx,max| + |cy,max| (cx,max and cy,max are the 
maximum distances between the cluster center and the source 
resp. destination point). 

The intent is to minimize the required calculation steps in  the 
evaluation of the interactions between the source points xi 
and the destination (field) points yj which would be of the 
order O(N²) using a direct solver. 
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The partitioning of all paths yj-xi into three parts with 

yj -xi = (yj-zy)+(zy-zx)+(zx-xi) 

by setting up clusters (or boxes) depending on the structure(s) 
of the problem is required to build the geometric base for the 
following calculations. 

The main idea of the Fast Multipole Method consists in ap-
proximating a kernel function  k(x-y), which depends on the 
distance r = |xi-yj|, for all far points using three auxiliary 
functions g, µ und h (the complete details and formulations 
may be found in [4] and will not be shown here due to paper 
limits): 

k(x-y) ≈ g(y-zy) µ(zy-zx) h(zx-x) 

 ≈ g(cy) µ(a) h(cx) 

The number and the positions of source and destination 
points are equal for acoustic problems using the boundary 
element method, but that may be different for others kinds of 
physical problems. 

MAIN STEPS OF THE ADAPTIVE ALGORITHM 

• Partitioning (generation of boxes) 
Calculation of the (cluster) sizes depending on the struc-
ture(s), generation of the cluster tree and of all interaction 
lists (one-time) 

• Calculation of direct coefficients 
Calculation of all near field coefficients as defined by the 
interaction lists using conventional collocation BEM, in-
cluding the allocation of required memory (one-time) 

• Source to Multipole Expansion 
(S2M, S|M, Upward Pass Step 1) 
Generation of multipoles in the center points of all child-
less boxes by calculating the far-field signatures of the 
associated source points. 

• Multipole to Multipole Translation 
(M2M, S|S, Upward Pass Step 2) 
Generation of multipoles in the center points of all parent 
boxes by translating the far-field signatures from their 
children (recursive with descending level) 

• Multipole to Local Translation 
(M2L, S|R, Downward Pass Step 1) 
Generation of the near-field signatures of all boxes with 
respect to their interaction list L2 (recursive with ascend-
ing level) 

• Local to Local Translation 
(L2L, R|R, Downward Pass Step 2) 
Distribution of the near-field signature of all parent boxes 
to their children (recursive with ascending level in the 
center points) 

• Final Summation 
Formation of the results at the destination points by add-
ing the portions from the local neighbour source points, 
the box-specific near-field signature and the boxes which 
are within the interaction list L3. 

PARTITIONING (GENERATION OF THE MULTI-
LEVEL BOX-TREE) 

The intention of the so-called partitioning (or boxing) is the 
assignment of source points to a (cluster) box, the definition 
of the parent-child relationships and the assembly of the 
neighbour relations by building the interaction lists L1 to L4 
for each box. 

Definition of the interaction lists of a box B: 

L1: contains all immediate neighbours of B 

L2: contains all children of B’s parent’s neighbours, which 
are not immedate neighbours of B (all boxes in L2 have 
the same size as B) 

L3: contains all children of B’s neighbours, which are not 
immediate neighbours of B, but whose parent is a 
neighbour of B 

L4: contains all boxes, which have B in their own L3 list 
(they are always childless and bigger than B) 

F: far field (not in interaction list) 

 
(source: [2], Cheng, H.,, Greengard, L., and Rokhlin, V.,: 

A Fast Adaptive Multipole Algorithm in Three Dimensions”, 
p. 483, fig. 4) 

Fig. 2: Interaction lists of one box, 
 using a two-dimensional partitioning 

The setup for a three-dimensional problem is much more 
complex due to the use of cubic boxes. One box may have a 
maximum of 27 immediate neighbours (“colleagues”) and 
can contain a maximum of 189 entries in the interaction lists. 

A binary-based transformation for all points is used to accel-
erate the setup time of the 3D octtree and to figure out the 
neighbourship relations. The preprocessor can visualize the 
resulting interaction field of each box for control reasons (as 
shown in fig. 3). 
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Fig. 3: Screenshot: interaction field of a 3D box 

ACTIVITY OF THE CALCULATOR MODULE 

The calculator module is a standalone application running on 
multi-core hardware. It implements different kinds of direct, 
iterative and approximative solving methods resp. solvers. 

Here the module is responsible for the current calculation 
steps during the matrix-vector-product generation which are 
parallelized whenever possible. 

Using a console mode, one can follow the sequence of steps, 
their runtime and the current iteration. The screenshot (fig. 4) 
shows an example for a sphere made up from about 100,000 
elements. 

 
Fig.4: Screenshot: MLFMM step specific values during the 

generation of the first matrix vector product 

For further information one should take a look at the master 
thesis of Wang, Y. [3], which contains very descriptive sam-
ples to visualize three different variations of the Fast Multi-
pole Method (non-adaptive and adaptive) and may be run in 
every browser with Java support. 

RESULTS FOR A RIGID SPHERE 

The following tables shows the required solving times for a 
rigid sphere in water using different discretizations using a 
direct solver (Intel Math Kernel Library, if possible) and a 
non-preconditioned GMRES-solver without and with the use 
of the MLFMM method. 

Parameters 
Radius r 0.5 m 
Density (water) ρ 1500 kg/m³ 
Sound speed (water) c 1000 m/s 
Frequency f 1 kHz 
Residual eres 1 × 10-10 
Max. source points per box: Nbox 20 
Order of multipole expansion Omp 6 
Order of unit sphere integration Ous 7 

Table 1: Results of Vs. 1.020 (10/2009) 
Ele-

ments 
Required 

RAM 
(matrix) 

Direct 
solver 

(IMKL) 

Iterativ 
(GMRES) 

Iter. Iterative 
with 

MLFMM 

Iter. 

 [GB] [s] [s]  [s]  

1 k 0.01 0.36 0.33 11 0.86 12 

2.5 k 0.09 1.58 0.99 10 1.11 11 

5 k 0.6 8.58 3.95 10 3.31 11 

10 k 1,5 50.2 15.06 10 3.86 11 

20 k 6,1 341.30 72.69 10 10.39 12 

50 k 38 4,689.41 459.80 10 20.64 11 

100 k 153 n.v. *13,346.31 10 43.91 11 

200 k 612 n.v. n.v.   79.30 11 

500 k 3,858 n.v. n.v.   195.90 11 

1 M 15,438 n.v. n.v.   512.08 11 

2 M 61,157 n.v. n.v.   1.003.67 11 
System: Dual Intel XEON E5430, 2.66 GHz, 8 cores, 

64 GB DDR-2 (used memory: ≈ 13.5 GB for 2 M elements) 
*: complete recalculation of the matrix for each iteration 

After some optimizations (parallelization of additional steps, 
memory allocation) and using new hardware we achieved 
some better results and raised the maximum element number. 

Table 2: Results of Vs. 1.030 (05/2010) 
Ele-

ments 
Required 

RAM 
(matrix) 

Direct 
solver 

(IMKL) 

Iterativ 
(GMRES) 

Iter. Iterative 
with 

MLFMM 

Iter. 

 [GB] [s] [s]  [s]  

1 k 0.01 0.20 0.16 11 0.63 12 

2.5 k 0.09 1.23 0.73 10 0.62 11 

5 k 0.6 7.44 3.03 10 2.06 12 

10 k 1,5 43,99 11.92 10 2.59 11 

20 k 6,1 310.75 52.56 10 7.63 12 

50 k 38 4,352.43 329.36 10 15.13 11 

100 k 153 n.v. *11,719,95 10 31.87 11 

200 k 612 n.v. *46,635.42 10 57.16 11 

500 k 3,858 n.v. n.v.   138.26 11 

1 M 15,438 n.v. n.v.   373.61 11 

2 M 61,157 n.v. n.v.   561.82 11 

5 M 382,771 n.v. n.v.   1,922.26 12 
System: Dual Intel XEON E5550, 2.66 GHz, 8 cores,  

96 GB DDR-3 (used memory: ≈ 32.7 GB for 5 M elements) 
*: complete recalculation of the matrix for each iteration 

It seems that the solving time using the MLFMM will raise 
approx. linear with respect to the number of source points 
(elements), but this is limited to this special case with a very 
low number of iterations. 
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ADDITIONAL OPTIMIZATIONS 

The results shown above are encouraging but additional tests 
(frequency sweeps) have shown that the number of iterations 
is raising significantly when the frequency increases or the 
convergence of the iterative solver decreases. 

This is a well known problem when using iterative solvers 
because the quality and the convergence of the solution de-
pend on the condition of the matrix. 

The quality of the solution using the MLFMM also gets 
worse if a frequency near a resonance frequency of the 
equivalent inner space problem is chosen. 

An option for generating and using CHIEF points [5] was 
added, tested and compared with analytical solutions. The 
improved quality of the results using this option is shown in 
fig. 5, including the MLFMM. 

Sphere (10000 elements) at f = 1500Hz
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Fig.5: results for a rigid sphere in water at f = 1500 Hz 

(inner space resonance frequency) 

CONCLUSION 

A fast parallelized method for building the matrix-vector-
product of uncoupled calculations bases on the MLFMM was 
implemented and tested for calculating the acoustic field 
scattered from a rigid sphere. 

It was demonstrated that the performance and the quality of 
the results achieved for a high discretization is very good if 
the iterative solver used converges well. 

The choice of higher frequencies or more complex structures 
(i.e. with sharp borders) leads to high numbers of iterations, 
so that additional techniques should be used. 

OUTLOOK / FUTURE WORK 

• Integration of adequate preconditioning methods into the 
implemented iterative solvers 

• Extension of the MLFMM algorithm to variable bound-
ary conditions 

• Extension of the MLFMM algorithm to coupled problems 
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