
Proceedings of 20th International Congress on Acoustics, ICA 2010

23–27 August 2010, Sydney, Australia

Marginal conditions of thermoacoustic Taconis
oscillations revisited

Dai Shimizu (1) and Nobumasa Sugimoto (2)
(1) Creative Design Studio on Technology, Graduate School of Engineering, University of Osaka,

Suita, Osaka 565-0871, Japan
(2) Department of Mechanical Science, Graduate School of Engineering Science, University of Osaka,

Toyonaka, Osaka 560-8531, Japan

PACS: 43.35.Ud, 47.35.Rs, 47.15.Cb

ABSTRACT

This paper revisits derivation of marginal conditions for the onset of thermoacoustic Taconis oscillations in a helium-filled,
quarter-wavelength tube. For step temperature distributions, the linear stability analysis is made by Rott (1969, 1973)
and the marginal conditions derived are experimentally checked by Yazaki, Tominaga, and Narahara (1980). Although
the boundary-layer theory was then regarded as being incapable of deriving the conditions, it has recently been revealed
that the theory is valid in any situation for a short-time behavior after a disturbance is given. Therefore it is expected to
be applicable for derivation of the marginal conditions. Using this theory, marginal conditions for smooth temperature
distribution are sought and they are checked against the results by Rott.

INTRODUCTION
The Taconis oscillations are known as a prototype of thermoa-
coustic oscillations resulting from instability of gas in contact
with a wall subjected to temperature gradient. They occur in a
helium-filled, quarter-wavelength tube with its open end cooled
down to the cryogenic temperature and closed end kept at room
temperature. Given a geometry of the tube and a temperature
distribution along it, marginal conditions of instability are spec-
ified for the temperature ratio at the closed end to that of the
open one against the tube radius relative to the thickness of
diffusion layer.

The marginal conditions are derived by Rott (1969); Rott (1973)
for step temperature distribution. Later the curves are checked
experimentally by Yazaki, Tominaga, and Narahara (1980) and
good agreements are observed. In developing the theory, Rott
regarded the boundary-layer theory, first-order theory in thick-
ness of the layer, as being incapable of deriving the conditions.
But it has recently been shown that it is applicable to simulation
of the Taconis oscillations(Sugimoto and Shimizu 2008). Ex-
tending the theory to a weakly nonlinear case, in fact, they have
succeeded in simulating initial instability of a disturbance and
ensuing emergence of self-excited oscillations, and in unveiling
the mechanisms of them (Shimizu and Sugimoto 2009; Shimizu
and Sugimoto 2010).

But there has been left a problem to confirm whether or not
the marginal curves are available by the boundary-layer theory.
Thus the purpose of this paper is to obtain marginal conditions
by using the boundary-layer theory and to check them with the
theoretical results by Rott. To this end, the linearized equations
have only to be solved. But since the numerical code to solve
the nonlinear equations is now available, initial-value problems
to them are solved.

FUNDAMENTAL EQUATIONS

Frequency equation by Rott

First of all, Rott’s theory is reproduced briefly. All basic equa-
tions are linearized by assuming that a tube radius is narrow

enough in comparison with a tube length and a typical axial
length involved in the temperature gradient. This approxima-
tion has a great merit, which allows us to regard the pressure as
being uniform over a cross-section of the tube. But it is obvious
that this assumption breaks down near the step.

For a harmonic disturbance having an angular frequency ω , the
following equation for the complex amplitude P of an excess
pressure is derived by using the assumption that the pressure is
uniform over a cross-section of the tube:

[1+(γ−1) f ∗]P+
d
dx

[
a2

ω2 (1− f )
dP
dx

]
− a2

ω2
f ∗− f
1−Pr

1
T

dT
dx

dP
dx

= 0, (1)

with

f (η) =
2J1(iη)

iηJ0(iη)
, f ∗ = f (η

√
Pr), η = R

(
iω
ν

)1/2
, (2)

where x, t and T denote, respectively, the axial coordinate along
the tube, the time and the wall temperature; J0 and J1 denote,
respectively, Bessel functions of the zeroth and first order; γ ,
Pr and R denote, respectively, ratio of specific heats, Prandtl
number and a tube radius; a and ν denote, respectively, a local
adiabatic sound speed and a kinematic viscosity. Temperature
dependence of the shear viscosity is taken into account in the
form of a power law of the temperature T as T β , β being a
constant 0.647.

For the step distribution, T−1dT/dx diverges locally. Rott man-
aged to remove this singularity by transforming Eq. (1) into
two equivalent equations so that the third term may disappear.
Then the problem is reduced to the determination of matching
conditions between two solutions in cold and hot parts. Then
the frequency equation is given as follows:

Gc
cot(λchc)

ξ λchc
= Gh

tan(λhhh)

λhhh
, (3)
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with

G = [1+(γ−1) f ∗]exp
{
−
∫ f ∗− f

(1−Pr)(1− f )
θdx
}
, (4)

and

λc =
ωl
ac

,λh =
ω(L− l)

ah
,ξ =

L− l
l

,h=
(

1+(γ−1) f ∗

1− f

)1/2
,

(5)
where the subscript c and h denote, respectively, values in the
cold and hot parts; L and l denote, respectively, a tube length and
a distance from the open end (x = 0) to the step. The marginal
conditions are obtained as shown in Fig. 3 and Fig. 4 in Rott
(1973) by expansions of Eq. (3) up to the order of ε2 where
ε = 2/η .

Formulation of the boundary-layer theory

The boundary-layer theory developed by Sugimoto and Shimizu
(2008) is briefly outlined. It is based on the assumption that
thermoviscous diffusion layer is confined to a narrow region on
the tube wall. Dividing a field in the tube into a boundary-layer
and an acoustic main-flow region outside of it, the boundary
layer is assumed to be described by the linear and first-order
theory in its thickness. Fluid-dynamical equations are averaged
over the cross-section of the tube, from which one-dimensional
equations over the main-flow region are derived by using the
boundary-layer solutions.

The system of equations thus obtained is given as follows:

1
γ(p0 + p′)

(
∂ p′

∂ t
+u′

∂ p′

∂x

)
+

∂u′

∂x
=

2
R

vb, (6)
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(
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(
dSe
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)
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ρ ′

ρe
=

(
p0 + p′

p0

)1/γ

exp
(
− S′

cp

)
−1, (9)

where p′, u′, ρ ′ and S′ denote, respectively, disturbance in the
pressure, axial velocity, density and entropy from the respective
equilibrium values given by p0, 0, ρe(x) and Se(x), the subscript
e implying the equilibrium.

Here vb on the right-hand side of Eq. (6) represents the velocity
at the edge of the boundary layer directed normal to the tube
wall and into the main-flow region, which is given by

vb =
√

νe

(
− C

ρea2
e

∂
1
2 p′

∂ t
1
2

+
CT
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dTe

dx
∂
− 1

2 u′
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1
2

)
, (10)

with the definitions of the plus and minus half-order derivatives
(Gel’fand and Shilov 1964):

∂
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2 p′

∂ t±
1
2

=
1√
π

∫ t
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1√
t− τ

∂
1
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1
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1
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2

dτ, (11)

the sign ± vertically ordered, where C = 1+(γ−1)/
√

Pr and
CT = (1+β )/2+1/(

√
Pr+Pr) (Sugimoto 2010), ae being an

adiabatic sound speed. Here the power-law for the viscosity
is also assumed, though it has been neglected in the previous
papers for simplicity. On the right-hand side of Eq. (7), F(x, t)
denotes an impulsive force per unit volume to cope with an
initial condition. It decreases rapidly as the time elapses.

Effects of the boundary layer appear through the memory in-
tegrals expressed in terms of both half-order derivatives. For a
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Figure 1: Axial distributions of temperature Te(x) relative to TL
at x= L and gradient of the logarithmic temperature T−1

e dTe/dx
for xo/4L(= 0.211,0.182 and 0.145) and for the tube lengths
L = 1, 1.26 and 1.07 m, respectively, where the temperature
ratio is fixed at n = 30. The broken lines in (a) indicate the axial
positions of the maximum gradient of Te at x = xo, which are
different from the ones for the maximum of T−1

e dTe/dx in (b).

smooth temperature distribution increasing monotonically to-
ward the closed end, the one-dimensional equations (6)-(11) are
solved numerically by imposing initial and boundary conditions
as follows:

p′ = 0 and u′ = εaL cos
(

πx
2L

)
, (12)

at t = 0+ in the interval 0 < x < L, with p′ = u′ = 0 for t < 0
where ε measures an acoustic Mach number referenced to the
sound speed aL at the closed end, and

p′ = 0 at x = 0, (13)

u′ = (C−1)
√

νe

ρea2
e

∂
1
2 p′

∂ t
1
2

at x = L, (14)

for t > 0, where radiation from the open end is neglected so
that required is the excess pressure to vanish at the open end,
while the boundary layer at the closed end is taken into account
for the axial velocity.

NUMERICAL SIMULATIONS

Smooth step temperature distributions

Marginal conditions are derived by the analysis of linear sta-
bility assuming infinitesimally small disturbance, which is sup-
posed to be imposed as t→−∞. In numerical simulations by
solving the nonlinear equations (6)-(9), however, a disturbance
of finite magnitude, no matter how small it may be, must be im-
posed at a finite time. In this sense, strictly speaking, conditions
obtained theoretically are not equivalent to those numerically.
But taking a very small disturbance, i.e. the value of ε , this
difference is expected to be diminished.
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Figure 2: Temporal variations of the excess pressure p′ relative
to p0 at the closed end for ξ = 1.0 with R = 10 mm, where (a)
shows the marginal case for n = 28.6 and (b) shows the cases
for n = 28.5, n = 28.6 and n = 28.7 with trend lines shown in
broken lines for the maxima in each cycle of oscillations.

Because a step temperature distribution is not realistic, a smooth
temperature distribution is assumed for Te, which is taken to be
the combination of hyperbolic functions as:

Te(x)
TL

=
G(x)−G(0)

1−G(0)
+

1
n

[
1−G(x)
1−G(0)

]
, (15)

with

G(x) =
D(x)+D(2L− x)−1

2D(L)−1
, (16)

and

D(x) = 1
2 tanh[α(x− xo)]− 1

2 tanh[α(x+ xo)]+1, (17)

where G(L) = 1 and n (≥ 1) denotes the ratio of the temperature
at the closed end to the one at the open end, α and xo (0 < xo <
L) being positive constants.

The marginal conditions for the step are specified in terms of a
position of the step through a parameter ξ (= (L− l)/l), where
l denotes a distance of the step from the open end. For the
smooth temperature distribution, however, this is not defined.
For comparison, two choices are conceivable for l. One is to take
a position for dTe/dx to take a maximum, i.e. x = xo, whereas
the other to take a position for the gradient of the logarithmic
temperature T−1

e dTe/dx (= dlogTe/dx) to take a maximum, as
suggested by the form of vb. As the limit to the step is taken,
both maxima tend to coincide with each other.

In Fig. 1 (a) and (b), axial distributions of the temperature Te
and the gradient of the logarithmic temperature T−1

e dTe/dx are
shown for three values of xo(= 0.211,0.182 and 0.145) and for
the tube lengths L = 1, 1.26 and 1.07 m, respectively, where the
temperature ratio is fixed at n = 30. The tube lengths are taken

 

Figure 3: Marginal temperature ratio n versus Yc = R(ω/νc)
1/2

for ξ = 0.3,0.5 and 1.0 and for seven tubes of radius R =
14,10,7,5,3.5,2.5 and 1.7 mm. The black solid and black bro-
ken lines are the marginal curves shown in Fig. 3 of Rott (1973).

to be the same as used by Yazaki, Tominaga, and Narahara
(1980). As a result of trials of numerical calculations, it has
been found that l is taken to be the distance to the position for
the maximum of T−1

e dTe/dx rather than xo in view of better
agreements with the marginal conditions for the step. By this
choice, the values of xo above are determined for ξ so as to take
the value 0.3,0.5 and 1.0, respectively.

Results and discussions

Numerical calculations are carried out by solving Eqs. (6)-(9)
for ξ = 0.3,0.5 and 1.0, and for seven tubes of radius R =
14, 10, 7, 5, 3.5, 2.5 and 1.7 mm. The acoustic Mach number
is chosen to be 10−5 so that the linear oscillations may be
assumed. To seek a marginal temperature ratio, a maximum
of p′ in each cycle of oscillations is checked over ten to thirty
periods from the initial state. In Fig. 2 (a), temporal variations of
the excess pressure p′ relative to p0 at the closed end are shown
for n = 28.6 and ξ = 1.0 with R = 10 mm, where ∆ = 4L/aL.
This case appears to be marginal but the amplitude fluctuates
about the mean value slightly. As a criterion to identify the
marginal temperature ratio, no change in the mean value is
required. In the present calculations, this ratio is determined by
sight up to the first three digits as shown in Figure 2 (b).

Figure 3 shows the marginal conditions obtained numerically
are plotted on the marginal curves obtained by Rott for three
values of ξ , where the black solid and broken lines are copied
from the marginal curves shown in Fig. 3 in Rott (1973). It is
seen that the marginal conditions sought numerically are close
to the curves by Rott, especially when ξ = 0.3.

Thus the right branches of the marginal curves for the step are
confirmed by the boundary-layer theory but no left branches
have been available. The marginal conditions obtained for ξ =
0.3 lie just on the curve but those for ξ = 0.5 and ξ = 1 lie
below the curves. As ξ decreases, i.e. the cold part increases
relatively in the tube, the marginal conditions obtained show
good agreements with the results of Rott. A reason of this is
explained as follows.

Figure 4 (a) shows spatial profiles of the velocity at the edge of
the boundary layer vb relative to aL in the case with ξ = 1 and
n = 28.6 for the tube R = 10 mm, i.e. for the same conditions
of Fig. 2 (a). Here the profiles are taken at every 1/16th period
of the oscillations from t/∆ = 51.52 to 56.20. For a reference,
the excess pressure p′ relative to p0 for the same period of the
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Figure 4: Spatial profiles of the velocity at the edge of the
boundary layer vb relative to aL and the excess pressure p′

relative to p0 at every 1/16th period of the oscillations from
t/∆= 51.52 to 56.20 for n= 28.6 and ξ = 1.0 with R= 10 mm

oscillations are also shown in (b). It is found from Fig. 4 (a) that
the variation of vb in the cold part is very small in comparison
with that in the hot part. It varies significantly near the center
of the tube where the gradient of the logarithmic temperature
takes maximum. Thus as the cold part becomes wider, there
will increase a region for the boundary-layer approximation to
be valid. This may be the reason of the good agreement in the
case of the small value of ξ .

As ξ increases to approach unity, the marginal temperature
numerically obtained lie below the marginal curves by Rott.

Since the curves for the step are expected to be lower than
the ones for the smooth distribution, this discrepancy will be
attributed to use of the first-order theory in the boundary-layer
thickness.

CONCLUSIONS

The marginal conditions for the onset of the Taconis oscilla-
tions obtained analytically by Rott have been examined by a
new approach based on the boundary-layer theory. It has been
revealed that the right branch of the marginal curves is avail-
able for plausible values of the temperature ratio but no left
branches are available yet. In particular, good agreements are
observed quantitatively when a position of the step is chosen,
for the smooth distribution, to be the one for the gradient of the
logarithmic temperature to take a maximum. As far as the right
branch of the marginal curves is concerned, the validity of the
assumption of the step is endorsed by the present results for
the smooth temperature distribution, while usefullness of the
boundary-layer theory is also confirmed.
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