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ABSTRACT 

The derivation of Curle’s equation for the sound radiated by a flow near a rigid surface is reconsidered. It is shown that this equation 
and the non-uniform Kirchhoff equation previously derived by the author are equivalent if the sum of two integrals containing 
Lighthill’s stress tensor over the rigid surface is zero. These two integrals are equivalent to the acoustic field radiated by sources 
determined by Lighthill’s stress tensor and its spatial derivatives on the boundary. This leads to an immediate result that the two 
equations are equivalent if Lighthill’s stress tensor vanishes altogether, for instance, for linear acoustical waves in an ideal fluid. The 
obtained criterion is formulated for a flow near an infinite rigid plane in a fluid. Two cases are considered: a weakly non-linear flow 
(with low Mach number) in an ideal fluid and a linear flow in a viscous fluid. It is shown that, in a weakly non-linear flow, the equa-
tions are equivalent if the plane is stationary. If the plane is vibrating as well as for a viscous fluid, the sum of the two integrals is, in 
general, non-zero, but a more detailed investigation is required for a definite conclusion. Some directions of future investigations of 
the equivalence of the two equations are suggested. 

 

INTRODUCTION 

The development and widespread use of jet aircraft in the 
1950s caused significant interest in the prediction of sound 
generated by a fluid flow. The first significant contribution to 
this topic was made by Sir James Lighthill (1952). He 
showed that the sound radiated by a turbulent flow without 
boundaries was controlled by the wave equation with the 
source term determined by the Lighthill’s stress tensor, which 
represents all non-acoustic stresses in the fluid. Lighthill also 
showed that the source term corresponds to quadrupole 
sound.  

Curle (1955) extended Lighthill’s theory to a flow with solid 
boundaries. Curle stated that, for an immoveable boundary, 
the radiated sound consisted of Lighthill’s quadrupole sound 
as well as the dipole sound originating at the rigid boundary. 
The amplitude of the dipole sound was determined by the 
total force acting upon the fluid from the boundary including 
the viscous tangential force. 

Ffowcs Williams and Hawkings (1969) extended Curle’s 
theory to a flow with moving boundaries. They showed that 
the motion of the boundaries led to the appearance of a third 
term in the equation for the radiated sound amplitude. This 
term describes the monopole sound and is determined by the 
normal velocity of the boundary with respect to a stationary 
observer. For a stationary boundary, Ffowcs Williams and 
Hawkings (FW-H) equation is reduced to Curle’s equation.  

Since its derivation, the Ffowcs Williams and Hawkings 
equation has become the foundation for one of the most fre-
quently used methods of prediction of sound radiated by fluid 

flow near rigid surfaces. A brief list of applications where the 
FW-H equation is utilised includes rotating helicopter blades, 
rotating fans, and flow near an airfoil. This equation is also 
used in the prediction of noise radiated by moving ships and 
ship propellers. (See Zinoviev (2007) for a list of references). 

There were many attempts to verify Curle – Ffowcs Williams 
and Hawkings theory. However, from the point of view of the 
author, the results of these experiments are inconclusive, as 
many of them showed a discrepancy of a few decibels be-
tween theoretical predictions and experimental results. For 
example, early results by Clark and Ribner (1969) and by 
Heller and Widnall (1969) showed discrepancy of up to 5 dB. 
Bies (1992) investigated the noise produced by a circular saw 
and reported that the measured noise was 2.5 dB lower than 
predicted. More recent experiments (Eschricht et al 2007, 
Greschner et al 2007) still continue to show a discrepancy of 
a few decibels between the predictions of FW-H theory and 
experimental data. 

In 2001, the author presented a result of his theoretical recon-
sideration of Curle’s derivation (Zinoviev, 2001), where he 
pointed out that the divergence theorem in the derivation 
should have been used differently. Later Zinoviev and Bies 
(2004) have conducted a more detailed critical analysis of 
Curle’s derivation. The authors have shown that, if the diver-
gence theorem is used correctly, Curle’s derivation leads not 
to Curle’s equation, but to a different equation. This equation 
is called the non-uniform Kirchhoff equation in this paper, as 
it includes Lighthill’s quadrupole sources from his non-
uniform wave equation as well as surface distributions of 
dipole and monopole sources as described by Kirchhoff inte-
grals (Stratton 1941). This equation differs from the FW-H 
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equation by the appearance of the terms describing the 
sources at rigid boundaries.  

The claim by Zinoviev and Bies that the FW-H equation is 
derived with an error and the non-uniform Kirchhoff equation 
should be used instead caused objections from some mem-
bers of the aeroacoustical community (Farassat 2005, Faras-
sat & Myers 2006), to which the authors responded (Zinoviev 
& Bies 2005, Zinoviev & Bies 2006). The discussion demon-
strated that the FW-H equation produced results identical to 
those by the non-uniform Kirchhoff equation at least in some 
situations, for example, in acoustic scattering by solid ob-
jects. 

The two equations describe the same physical process of 
sound generation by a fluid flow near a solid boundary. This 
fact, together with the identical predictions for acoustic scat-
tering problems, raises a question of whether the two equa-
tions are identical and, in fact, are different forms of the same 
equation. The other possibility is that the equations are dif-
ferent and, therefore, at least one of them is not correct. If the 
former statement is true, it would reconcile the present au-
thor’s conclusion about the derivation of Curle’s equation 
with the raised objections. If the latter is true, that, in view of 
the present author, would still leave the question of correct-
ness of both equations open. 

This paper is devoted to the question of whether Curle’s and 
the non-uniform Kirchhoff equations are indistinguishable. In 
the first section, both equations are shown and the condition 
of them being equivalent is formulated theoretically. In the 
second section, this condition is evaluated for acoustical 
problems and for the problem of vibrations of an infinite 
plane in a fluid with different flow conditions. The third sec-
tion of the paper is devoted to examples, which, in view of 
the present author, may demonstrate the equivalence or oth-
erwise of the two equations. 

CRITERION OF THE EQUIVALENCE OF 
CURLE’S EQUATION AND THE NON-UNIFORM 
KIRCHHOFF EQUATION 

Curle’s equation 

Using the fundamental laws of mass and momentum conser-
vation for the motion of a fluid, Lighthill (1952) showed that 
sound generation and propagation in a turbulent fluid flow 
without boundaries was determined by the following wave 
equation with respect to the fluid density, ρ : 
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In Eq. (1), c0 is the sound speed and Tij is Lighthill’s stress 
tensor given by: 

2
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where v is the fluid velocity vector, 
ijδ  is Kronecker’s delta, 

and 
ijp  is the compressive stress tensor determined as fol-

lows: 
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where p is the pressure and µ  is the viscosity of the fluid.  

Curle (1955) starts his derivation with a formulation of a 
general solution of Eq. (1) near solid boundaries. As Eq. (1) 
is a non-uniform wave equation, its solution can be formu-
lated as a sum of a term describing the sound due to the vol-
ume distribution of sound sources and a term containing 
Kirchhoff integrals over the boundaries. This solution can be 
written as follows: 
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In Eq. (4), 
0ρ ρ ρ′ = − , 0ρ is the value at equilibrium,  V  is 

the total fluid volume, S is the surface of solid boundaries,  
r = −x y , ( )321 ,, xxx=x  is the radius-vector of the obser-

vation point, ( )321 ,, yyy=y  is the radius-vector of the 
source point, n = (l1, l2, l3,) is the outward normal from the 
fluid, and square brackets denote dependence on retarded 
time, 0/t r c− . 

After using the divergence theorem twice, Curle obtained the 
following equation determining the interchange of derivatives 
in the volume integral of Lighthill’s stress tensor: 
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Note that the surface integrals are taken over the surface 
which is in immediate contact with the fluid. 

The momentum conservation equation for the fluid takes the 
form of 
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j

l v v p l v
y t
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 (6) 

By substituting Eqs. (5)  and (6) into Eq. (4), Curle obtained 
the following equations for the density fluctuations due to a 
flow near solid boundaries: 
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Denoting the total force per unit area acting upon the fluid 
from the boundary, 

i i j ijP v v pρ= + , one can rewrite Eq. (7) 

as follows: 
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By assuming that the boundary has zero normal velocity, Eq. 
(8) can be reduced to the original Curle’s equation (Curle 
1955): 
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The first term in the right-hand part of Eq. (9) determines 
Lighthill’s quadrupole sound generated in the fluid volume, 
whereas the second term determines the dipole sound gener-
ated at the rigid surface due to force acting between the sur-
face and the fluid. 

In the analysis below, as Eq. (8) has also been obtained by 
Curle just before substituting zero boundary velocity, Eq. (8) 
is referred to as Curle’s equation. 

The non-uniform Kirchhoff equation 

Zinoviev and Bies (2004) conducted a critical analysis of 
Curle’s derivation. In the view of these authors, the diver-
gence theorem in the derivation should be used in a way dif-
ferent from that utilised by Curle. The authors showed that, 
as a result, the interchange of derivatives in the integrals 
should be described not by Eq. (5), but by the following 
equation: 
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Substitution of Eq. (10) into the general solution of 
Lighthill’s equation (Eq. (4)) leads to the following equation 
for the acoustic wave amplitude radiated by the flow near 
solid boundaries: 
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After regrouping its terms and using  
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Eq. (11) can be re-written as follows: 
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As Eq. (13) is a general solution of the non-uniform wave 
equation (1) and it contains Kirchhoff integrals, this equation 
is referred to in this analysis as the non-uniform Kirchhoff 
equation. 

Difference between non-uniform Kirchhoff and 
Curle’s equations. 

It can be clearly seen that, in Eqs. (8) and (13), the first term 
in the right-hand parts is identical. This term determines 
Lighthill’s quadrupole sound generated in the fluid volume. 
The second and third terms in both equations determine 
sound radiated by layers of dipoles and monopoles on the 
rigid boundary respectively. These terms in the two equations 
are different not only in their appearance, but also in their 
physical meaning as the strength of the monopole and dipole 
acoustic sources is determined differently in both equations. 

In Eq. (8), the strength of the dipole sources depends on the 
total force per unit area acting on the boundary, and the 
strength of the monopole sources is described by the total 
normal velocity of the boundary. On the contrary, the dipole 
term in Eq. (13) is determined by density fluctuations on the 
boundary, which are proportional to acoustic pressure fluc-
tuations. The monopole term in Eq. (13) is determined by the 
normal derivative of the density fluctuations, which is pro-
portional to the acoustic (potential) velocity. Therefore, 
whereas the source terms in Eq. (8) contain the full force and 
the full fluid velocity on the boundary, the terms in Eq. (13) 
contain only potential components of the force and velocity. 

The criterion of equivalence of both equations 

The only difference between the derivations by Curle (1955) 
and Zinoviev & Bies (2004) is in the appearance of the for-
mula for the interchange of derivatives in the volume inte-
grals. Whereas Curle used this formula in the form of Eq. (5), 
the latter authors utilised Eq. (10) for this purpose.  While the 
differences in the derivation of Eqs. (5) and (10) are outside 
the scope of this paper, it is clear that the equations are 
equivalent if the sum of the second and third terms in the 
right-hand part of Eq. (5) is zero, i.e. if the following condi-
tion is satisfied: 

( ) ( ) 0.ij
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It can be seen from Eq. (14) that its two terms represent the 
dipole and monopole sound generated on the rigid boundary 
due to the force determined by Lighthill’s stress tensor and its 
spatial derivatives. 

If the condition described by Eq. (14) is true, then the deriva-
tions by Curle and Zinoviev & Bies lead to the same equa-
tion, which can be represented in the form of either Eq. (8) or 
Eq. (13). This statement represents the main contribution of 
this work. 

CRITERION OF EQUIVALENCE FOR LINEAR 
ACOUSTIC WAVES IN AN INVISCID FLUID 

It is clearly seen that the condition determined by Eq. (14) is 
true if Lighthill’s stress tensor, Tij, vanishes altogether. For 
example, this condition is satisfied for generation, propaga-
tion and scattering of acoustic waves of small amplitude if 
the fluid viscosity can be ignored. Indeed, in this case the 
non-linear term 

i ju uρ  in Lighthill’s stress tensor (Eq. (2)) as 

well as the viscous term in the compressive stress tensor (Eq. 
(3)) can be neglected. Also, for linear acoustic waves, 

2
0p cρ= , and, as a result, Tij = 0. This leads to the conclu-

sion that Eqs. (8) and (13) are equivalent for linear acoustic 
waves in an inviscid fluid. 

CRITERION OF EQUIVALENCE FOR A FLOW 
NEAR AN INFINITE RIGID PLANE 

Formulation of the criterion 

Consider a general fluid flow near an infinite rigid plane 
parallel to the plane ( )2 3,y y . The y1-axis is normal to the 

plane. In this case, the terms of Eq. (14) can be written as 
follows: 
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A slightly non-linear inviscid flow near a stationary 
plane 

Lighthill (1952) showed that, if viscous stresses can be ig-
nored and Mach number is low, the equation for the tensor Tij 
can be reduced to the following equation: 

0 .ij i jT v vρ≈  (17) 

If the plane is assumed to be stationary, then 
1 10, 0iv T= = , 
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It can be easily proven that the derivatives of Lighthill’s 
stress tensor vanish: 
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It follows from Eqs. (19) – (21) that the second integral in 
Eq. (14) is also zero: 
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As a result, it can be concluded that both the non-uniform 
Kirchhoff equation and Curle’s equation are equivalent for a 
slightly non-linear inviscid flow near a stationary rigid infi-
nite plane. 

A slightly non-linear inviscid flow near a vibrating 
plane 

Assume now that the rigid plane vibrates while remaining 
parallel to the ( )2 3,x x  plane. In this case, the components of 

Lighthill’s stress tensor (Eq. (17)) are, in general, non-zero. 
As the vertical fluid velocity 

1v  on the rigid plane is equal to 
the velocity of the plane, its derivatives over horizontal coor-
dinates y2 and y3 vanish. As a result, the spatial derivatives 
take the following form: 
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The spatial derivatives determined by Eqs. (23) - (25) are 
also, in general, non-zero. However, this cannot be the basis 
for the conclusion that the criterion of the equivalence (Eq. 
(14) is not satisfied in the case under consideration, as the 
two terms may still vanish after integration or cancel each 
other. A more detailed investigation of this issue is outside 
the scope of this work and, therefore, can be a subject of 
future research. A consideration of particular situations where 
an exact solution for the fluid flow is known can be of special 
value. For example, vibrations of the plane with no external 
flow can be one such situation. 

A linear viscous flow near a rigid plane 

Assume now that the flow near the plane is linear (i.e. the 
term  

0 i jv vρ  can be neglected). Assume also that the fluid 

viscosity is non-zero. In this case Lighthill’s stress tensor 
takes the following form: 
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Taking into account that the fluid velocity vector on the plane 
equals that of the plane, the components of Tij  and its spatial 
derivatives on the plane can be written as follows: 
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The two integrals in Eq. (14) take the following form in this 
case: 
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Opposite to the non-linear inviscid flow considered above, 
the stationary plane for the linear viscous flow presents no 
special case, as the integrals are determined by the first and 
second derivatives of the fluid velocity rather than the veloc-
ity as such. At the same time, this case is similar to the previ-
ous one in the impossibility to make a conclusion about the 
correctness of the criterion of the equivalence of the two 
equations described by Eq. (14) without detailed considera-
tion of the velocity and pressure fields. 

FUTURE RESEARCH – PROVING THE 
CRITERION OF EQUIVALENCE 

If Curle’s equation and the non-uniform Kirchhoff equation 
are identical, it will mean that the criterion of their equiva-
lence (Eq. (14)) should always be satisfied, i.e. the sum of the 
two integrals should always vanish. The task of proving this 
for a very general fluid flow (in fact, for all possible fluid 
flows) is not straightforward. 

However, if the two equations are not equivalent, it should be 
possible to show that the criterion is not correct at least for 
some particular flow situations. Examples of situations which 
could be considered in this respect are presented below. 

First of all, the case of a fluid flow near an infinite rigid plane 
considered above in this paper presents a good opportunity to 
verify the criterion. With some additional simplifying as-
sumptions it is possible to obtain an exact solution of the 
equations of fluid dynamics for the fluid velocity and pres-
sure and evaluate the integrals in Eq. (14) based on this exact 
solution. Such a simplified fluid flow situation could be, for 
instance,  fluid motion only due to vibrations of the plane, i.e. 
without any external flow. 

Another case of a fluid flow, where the exact solution can be 
obtained and, therefore, the criterion of equivalence can be 
verified, is the sound radiation due to the motion of a rigid 
sphere or a cylinder along a closed circular path. If the fluid 
is stationary, this motion will generate sound as a rotating 
acoustic dipole (Morfey & Tanna 1971). However, if a rigid 
body is embedded into a rotating fluid, it is obvious from 
common sense that no sound will be radiated, as the body can 
be considered to be simply a fluid particle. Since the mono-
pole term in Curle’s equation takes into account the total 
velocity of the boundary with respect to a stationary ob-
server, it would be very interesting, in the view of the present 
author, to evaluate both equations, as well as the criterion of 
their equivalence, in this case. 

The author previously considered the case of a stationary 
sphere in a variable velocity field, which can be realised if 
the sphere is immersed into a vortex street (Zinoviev 2007). 
It has been concluded that this situation is equivalent to the 
problem of sound radiation by a vibrating sphere in a station-
ary fluid and, therefore, the radiated sound amplitude in this 
case should be equal to that radiated by the vibrating sphere. 
Whereas obtaining the exact solution for the fluid flow would 
be more difficult than in the previous example, a considera-
tion of possible equivalence of the two equations in this situa-
tion would also be worthwhile. 

CONCLUSIONS 

In this paper, the original derivation of Curle’s equation is 
reconsidered and compared with the derivation suggested 
previously by the present author. It is shown that the equa-

tions resulting from the two procedures are equivalent if the 
sum of two integrals over rigid boundaries is zero. The terms 
of the sum correspond to the sound generated on the bound-
ary due to Lighthill’s stress tensor and its spatial derivatives. 

The obtained criterion of equivalence is applied to different 
flow situations. It is shown that the criterion is satisfied for 
linear acoustic waves in an inviscid fluid, as Lighthill’s stress 
tensor vanishes altogether in this case. Also, a flow near an 
infinite rigid plane is considered for two kinds of fluid flows: 
a slightly non-linear inviscid flow and a linear  viscous flow. 
It is shown that, in the former case, the criterion of equiva-
lence is satisfied if the plane is stationary. The criterion is 
formulated for the vibrating plane and it is shown that a more 
detailed investigation of the flow is required to make a con-
clusion about the criterion in this case. 

Some flow situations where the criterion of the equivalence 
of the two equations can be evaluated are suggested. 
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