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ABSTRACT

This paper describes a computer model,HANKEL, that was written by the author to explore the physics of acoustic
propagation in a horizontally–stratified ocean–acoustic environment, a useful first approximation for shallow–water
regions. Like other wavenumber–integral models,HANKEL computes the complex pressure field and transmission loss
due to a point source at one or more field points. In addition, though,HANKEL has a ‘debug’ mode that enables the user
to create a PDF document that illustrates the integrands involved in the calculation of the field at a given receiver point.
This ‘auto–documentation’ feature makesHANKEL useful for the student and experienced acoustician alike, providing
visual representations of the underlying mathematics. We illustrate this pedagogical use ofHANKEL through examples.
In particular we draw out the analogy between the classical rays of geometrical acoustics and the so–calledgeneralized
rays that are explicitly evaluated byHANKEL. No shortcuts are taken byHANKEL in computing the exact solution to the
underlying wave equation, apart from the practical necessity of truncating infinite series of generalized–ray definite
integrals and of obtaining approximate values for each of those integrals via numerical integration.

INTRODUCTION

The discipline of computational ocean–acoustics is concerned
with the numerical modelling of the propagation of sound en-
ergy in oceans. This modelling is important, for example, in
predicting the effectiveness of naval sonar systems while at sea.
A naval vessel may need to take evasive measures, for instance,
if propagation modelling shows there to be a nearby region of
the ocean that is a ‘blind zone’ to the vessel’s sonar systems,
since it might be considered a possible location for an enemy
submarine. (We may assume the submarine to also have access
to a predictive sonar model in this game of cat–and–mouse.)

The ocean is a complicated acoustic medium with a restless
surface, with significant variations in the density and speed
of sound in water over a wide range of spatial and temporal
scales, and with a great variety in the composition of bottom
sediments and rocks [1]. No predictive sonar model exists that
can accommodate the full complexity of the ocean, though,
and all available models of necessity make simplifying assump-
tions [2,3]. (This restriction is largely due to the fact that there
is usually insufficient knowledge of the acoustically–relevant
material properties of the environment. The paucity of bound-
ary value data and initial value data means that one can only
compute an approximate solution to the full wave equation.)

Many predictive sonar models have been developed in recent
decades based on a variety of techniques [2–7]. Geometrical
ray tracing is the oldest and simplest method for solving the
wave equation, and the one with the greatest appeal to physical
intuition [5]. Despite these advantages, however, this ‘classical’
ray theory is known to be inaccurate for many problems of sig-
nificance, and more ‘advanced’ forms of ray theory have been
developed [8–11]. The Hankel transformmethod can be con-
sidered to be a kind of advanced ray theory, since the solution
involveswavenumber integralswhich are related to the classi-
cal rays of geometrical acoustics [6,7,9–11]. Traditionally this

correspondence is developed by making asymptotic approxi-
mations of the wavenumber integrals, based on the method
of steepest descent(also known as the method ofstationary
phase, or thesaddle–pointmethod), where an approximation
is made of an integral of the form

∫

C f (z)eλg(z)dz, withC a con-
tour in the complex plane, and whereλ ≫ 1 is a constant. The
computer modelHANKEL was designed by the author to draw
out this correspondence in another way, through providing the
means to visualize the wavenumber integrands directly [5].

Like other models,HANKEL computes a complex pressure field
solution based on an idealization of the ocean. In particular, the
simplifying assumptions used byHANKEL are that all acous-
tic media are homogeneous and that boundaries between me-
dia are horizontal planes. This is the plane–parallel waveguide
model, a useful first approximation for regions with shallow
seas, such as can be found on continental shelves.

HANKEL createsMATLAB and LATEX scripts that, when run, cre-
ate a PDF (Portable Document Format) report. TheMATLAB
script generates labelled Encapsulated Postscript (EPS) and
JPEG figures from data files generated byHANKEL. The EPS
figures are then incorporated into the PDF document by run-
ning the LATEX script, which adds captions to each figure based
on the runtime parameters supplied toHANKEL. By studying
the illustrations in the PDF report the user ofHANKEL may re-
fine their intuition about the mathematically sophisticated tech-
nique of wavenumber integration, based on their physical intu-
itions of classical ray tracing.

Following a brief summary of the underlying theory we illus-
trate this educational use ofHANKEL. In particular, using a se-
lection of figures from reports generated by running the script
files created byHANKEL, we illustrate the parallels that exist be-
tween the theory of classical ray tracing and that of wavenum-
ber integration.
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THEORY

The computer modelHANKEL derives its name from the use of
the Hankel transformmethod for solving the inhomogeneous
time–independent wave equation of linear acoustics [6,7,9–11].
A uniform ocean, with speed of soundc0 m.s−1 , occupies the
region{(x,y,z) : 0< z< h}, whereh is the ocean depth. The
ocean surface{(x,y,z) : z= 0} is assumed to be a perfect re-
flector, with surface reflection coefficientRS=−1. The bottom
{(x,y,z) : z> h} is assumed to be horizontally–stratified (with
material properties varying only with depthz), characterised
solely by its complex bottom reflection coefficientRB [5]. In
cylindrical (r,z) coordinates we have a point sourceSat (0,zs)
and one or more point receiversR at (r,zr ), where 0< zs < h
and 0≤ zr ≤ h. The source emits a continuous unit–amplitude
spherical wave of angular frequencyω rad.s−1 , time depen-
dencee−iωt and wavenumberk0 = ω/c0.

An outline of the derivation of the formulae encoded inHANKEL
was provided recently by the author, and we summarise those
results below [5]. For a sourceS at coordinates(0,zs) emit-
ting a continuous unit–amplitude tone of angular frequencyω
rad.s−1 and time dependencee−iωt , the complex acoustic pres-
surep at a receiverRat coordinates(r,zr ) is given by

p=
∞

∑
n=0

4

∑
k=1

(Akn+ iBkn) , (1)

where

A1n =

∫ π/2

0
f1cs(n,θ ) dθ +

∫ π/2

0
f1sc(n,θ ) dθ

+
∫ π

0
g1r(n,ϕ) dϕ, (2)

A2n =

∫ π/2

0
f2cs(n,θ ) dθ +

∫ π/2

0
f2sc(n,θ ) dθ

+
∫ π

0
g2r(n,ϕ) dϕ, (3)

A3n =
∫ π/2

0
f3cs(n,θ ) dθ +

∫ π/2

0
f3sc(n,θ ) dθ

+
∫ π

0
g3r(n,ϕ) dϕ, (4)

A4n =
∫ π/2

0
f4cs(n,θ ) dθ +

∫ π/2

0
f4sc(n,θ ) dθ

+
∫ π

0
g4r(n,ϕ) dϕ, (5)

B1n =
∫ π/2

0
f1cc(n,θ ) dθ +

∫ π/2

0
f1ss(n,θ ) dθ

+

∫ π

0
g1i(n,ϕ) dϕ, (6)

B2n =
∫ π/2

0
f2cc(n,θ ) dθ +

∫ π/2

0
f2ss(n,θ ) dθ

+

∫ π

0
g2i(n,ϕ) dϕ, (7)

B3n =

∫ π/2

0
f3cc(n,θ ) dθ +

∫ π/2

0
f3ss(n,θ ) dθ

+
∫ π

0
g3i(n,ϕ) dϕ, and (8)

B4n =

∫ π/2

0
f4cc(n,θ ) dθ +

∫ π/2

0
f4ss(n,θ ) dθ

+
∫ π

0
g4i(n,ϕ) dϕ, (9)

and where the integrands in (2)–(9) are

f1cc(n,θ ) = k0 (−1)n |RB (θ )|n

×cos((2nh+ |zr −zs|)k0cosθ )
×cos(nΦB (θ ))J0 (k0r sinθ )sinθ , (10)

f1cs(n,θ ) = k0 (−1)n+1 |RB(θ )|n

×cos((2nh+ |zr −zs|)k0cosθ )
×sin(nΦB (θ ))J0 (k0r sinθ )sinθ , (11)

f1sc(n,θ ) = k0 (−1)n+1 |RB(θ )|n

×sin((2nh+ |zr −zs|)k0 cosθ )
×cos(nΦB (θ ))J0 (k0r sinθ )sinθ , (12)

f1ss(n,θ ) = k0 (−1)n+1 |RB(θ )|n

×sin((2nh+ |zr −zs|)k0 cosθ )
×sin(nΦB (θ ))J0 (k0r sinθ )sinθ , (13)

g1i(n,ϕ) =
2sinϕ

(1−cosϕ)2
k0(−1)n

×
∣

∣

∣
RB

(π
2
− i cot2

(ϕ
2

))
∣

∣

∣

n

×cos
(

nΦB

(π
2
− i cot2

(ϕ
2

)))

×exp
(

−(2nh+ |zr −zs|)k0sinh
(

cot2
(ϕ

2

)))

×J0

(

k0r cosh
(

cot2
(ϕ

2

)))

cosh
(

cot2
(ϕ

2

))

, (14)

g1r(n,ϕ) =
2sinϕ

(1−cosϕ)2
k0(−1)n+1

×
∣

∣

∣
RB

(π
2
− i cot2

(ϕ
2

))
∣

∣

∣

n

×sin
(

nΦB

(π
2
− i cot2

(ϕ
2

)))

×exp
(

−(2nh+ |zr −zs|)k0sinh
(

cot2
(ϕ

2

)))

×J0

(

k0r cosh
(

cot2
(ϕ

2

)))

cosh
(

cot2
(ϕ

2

))

, (15)

f2cc(n,θ ) = k0 (−1)n |RB(θ )|n+1

×cos((2(n+1)h− (zr +zs))k0 cosθ )
×cos((n+1)ΦB (θ ))J0 (k0r sinθ )sinθ , (16)

f2cs(n,θ ) = k0 (−1)n+1 |RB(θ )|n+1

×cos((2(n+1)h− (zr +zs))k0 cosθ )
×sin((n+1)ΦB (θ ))J0 (k0r sinθ )sinθ , (17)

f2sc(n,θ ) = k0 (−1)n+1 |RB(θ )|n+1

×sin((2(n+1)h− (zr +zs))k0 cosθ )
×cos((n+1)ΦB (θ ))J0 (k0r sinθ )sinθ , (18)

f2ss(n,θ ) = k0 (−1)n+1 |RB(θ )|n+1

×sin((2(n+1)h− (zr +zs))k0 cosθ )
×sin((n+1)ΦB (θ ))J0 (k0r sinθ )sinθ , (19)

g2i(n,ϕ) =
2sinϕ

(1−cosϕ)2
k0(−1)n

×
∣

∣

∣
RB

(π
2
− i cot2

(ϕ
2

))
∣

∣

∣

n+1

×cos
(

(n+1)ΦB

(π
2
− i cot2

(ϕ
2

)))

×exp
(

−(2(n+1)h− (zr +zs))k0 sinh
(

cot2
(ϕ

2

)))

×J0

(

k0r cosh
(

cot2
(ϕ

2

)))

cosh
(

cot2
(ϕ

2

))

, (20)

g2r(n,ϕ) =
2sinϕ

(1−cosϕ)2
k0(−1)n+1

×
∣

∣

∣
RB

(π
2
− i cot2

(ϕ
2

))
∣

∣

∣

n+1

×sin
(

(n+1)ΦB

(π
2
− i cot2

(ϕ
2

)))
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×exp
(

−(2(n+1)h− (zr +zs))k0sinh
(

cot2
(ϕ

2

)))

×J0

(

k0r cosh
(

cot2
(ϕ

2

)))

cosh
(

cot2
(ϕ

2

))

, (21)

f3cc(n,θ ) = k0 (−1)n+1 |RB(θ )|n

×cos((2nh+zr +zs)k0cosθ )
×cos(nΦB (θ ))J0 (k0r sinθ )sinθ , (22)

f3cs(n,θ ) = k0 (−1)n |RB (θ )|n

×cos((2nh+zr +zs)k0cosθ )
×sin(nΦB (θ ))J0 (k0r sinθ )sinθ , (23)

f3sc(n,θ ) = k0 (−1)n |RB (θ )|n

×sin((2nh+zr +zs)k0 cosθ )
×cos(nΦB (θ ))J0 (k0r sinθ )sinθ , (24)

f3ss(n,θ ) = k0 (−1)n |RB (θ )|n

×sin((2nh+zr +zs)k0 cosθ )
×sin(nΦB (θ ))J0 (k0r sinθ )sinθ , (25)

g3i(n,ϕ) =
2sinϕ

(1−cosϕ)2
k0 (−1)n+1

×
∣

∣

∣
RB

(π
2
− i cot2

(ϕ
2

))
∣

∣

∣

n

×cos
(

nΦB

(π
2
− i cot2

(ϕ
2

)))

×exp
(

−(2nh+zr +zs)k0 sinh
(

cot2
(ϕ

2

)))

×J0

(

k0r cosh
(

cot2
(ϕ

2

)))

cosh
(

cot2
(ϕ

2

))

, (26)

g3r(n,ϕ) =
2sinϕ

(1−cosϕ)2
k0 (−1)n

×
∣

∣

∣
RB

(π
2
− i cot2

(ϕ
2

))
∣

∣

∣

n

×sin
(

nΦB

(π
2
− i cot2

(ϕ
2

)))

×exp
(

−(2nh+zr +zs)k0 sinh
(

cot2
(ϕ

2

)))

×J0

(

k0r cosh
(

cot2
(ϕ

2

)))

cosh
(

cot2
(ϕ

2

))

, (27)

f4cc(n,θ ) = k0 (−1)n+1

×|RB(θ )|n+1 cos((2(n+1)h−|zr −zs|)k0 cosθ )
×cos((n+1)ΦB (θ ))J0 (k0r sinθ )sinθ , (28)

f4cs(n,θ ) = k0 (−1)n

×|RB(θ )|n+1 cos((2(n+1)h−|zr −zs|)k0 cosθ )
×sin((n+1)ΦB (θ ))J0 (k0r sinθ )sinθ , (29)

f4sc(n,θ ) = k0 (−1)n

×|RB(θ )|n+1 sin((2(n+1)h−|zr −zs|)k0cosθ )
×cos((n+1)ΦB (θ ))J0 (k0r sinθ )sinθ , (30)

f4ss(n,θ ) = k0 (−1)n

×|RB(θ )|n+1 sin((2(n+1)h−|zr −zs|)k0cosθ )
×sin((n+1)ΦB (θ ))J0 (k0r sinθ )sinθ , (31)

g4i(n,ϕ) =
2sinϕ

(1−cosϕ)2
k0 (−1)n+1

×
∣

∣

∣
RB

(π
2
− i cot2

(ϕ
2

))
∣

∣

∣

n+1

×cos
(

(n+1)ΦB

(π
2
− i cot2

(ϕ
2

)))

×exp
(

−(2(n+1)h−|zr −zs|)k0 sinh
(

cot2
(ϕ

2

)))

×J0

(

k0r cosh
(

cot2
(ϕ

2

)))

cosh
(

cot2
(ϕ

2

))

, (32)

and

g4r(n,ϕ) =
2sinϕ

(1−cosϕ)2 k0(−1)n

×
∣

∣

∣
RB

(π
2
− i cot2

(ϕ
2

))
∣

∣

∣

n+1

×sin
(

(n+1)ΦB

(π
2
− i cot2

(ϕ
2

)))

×exp
(

−(2(n+1)h−|zr −zs|)k0sinh
(

cot2
(ϕ

2

)))

×J0

(

k0r cosh
(

cot2
(ϕ

2

)))

cosh
(

cot2
(ϕ

2

))

, (33)

where

RB (ζ ) = |RB (ζ )|eiΦB(ζ ) (34)

is the bottom reflection coefficient at (complex)propagation
angleζ , with magnitude|RB(ζ )| and phaseΦB (ζ ) [5]. J0 is
the Bessel function of the first kind of order 0.

The integrands in (10)–(33) are of two types, those of ‘f–type’
(f1cc, ..., f4ss) and those of ‘g–type’ (g1i, ..., g4r). These
two types correspond to the two parts,C1 andC2, respectively,
of the complex contour of integrationC=C1∪C2 that appears
in the development of the formulae (1)–(33) [5].

The first contour,C1, is defined by

C1 =
{

ζ ∈ C : 0≤R(ζ )≤
π
2
,I(ζ ) = 0

}

, (35)

whereR(ζ ) andI(ζ ) are the real and imaginary parts ofζ , re-
spectively.C1 is associated with ‘homogeneous’ waves, which
are waves that vary sinusoidally in both ranger and depthz
(that is, they have thesamebehaviour in both of these orthogo-
nal directions) [12]. Note that the dummy integration parame-
terθ in thef–type integrandsf1cc, ...,f4ss is merely the real
part ofζ alongC1, that is,θ =R(ζ ) = ζ . A plane wave that is
propagating vertically corresponds toθ = 0, whereas a plane
wave that is propagating horizontally corresponds toθ = π/2.
ContourC1 thus accords with our intuitions concerning the be-
haviour of the classical rays of ‘geometrical’ acoustics, where
a ray is understood to be a vector that is normal to awavefront
(a wavefront being a surface of constant phase on a wave) [6].

The second contour,C2, is defined by

C2 =
{

ζ ∈ C : R(ζ ) =
π
2
,I(ζ )≤ 0

}

, (36)

which we parameterize as

C2 =
{

ζ ∈ C : ζ =
π
2
− i cot2

(ϕ
2

)

, 0< ϕ ≤ π
}

. (37)

C2 corresponds to ‘inhomogeneous’ waves, which are waves
that are sinusoidally varying in ranger but exponentially de-
caying in depthz (that is, they havedifferent behaviour inr
andz directions) [12]. We includeC2 to account for diffracted
energy [6,7]. The classical ray tracing of geometrical acoustics
does not model diffraction, and thus calculations based on geo-
metrical acoustics are likely to break down when diffracteden-
ergy makes a significant contribution to the net complex pres-
sure field. Note that the dummy integration parameterϕ in the
g–type integrandsg1i, ...,g4r is the parameter used in (37) to
transform integrals over(0,∞) to ones over(0,π). This trans-
formation accounts for the scaling factors

2sinϕ
(1−cosϕ)2

(38)

appearing ing1i, ...,g4r.
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The termsAkn+ iBkn have an interpretation in terms of clas-
sical rays in that, for high source frequency and at long range
from the source, we have the followingspherical waveapprox-
imations ( [7, (6.36)–(6.41)], ignoring the ‘diffraction terms’
of [7, (6.40)] or the ‘branch line integrals’ of [7, (6.41)]):

A1n+ iB1n ≈ (−1)n [RB(θ1n)]
n exp(ik0R1n)

R1n
, (39)

A2n+ iB2n ≈ (−1)n [RB(θ2n)]
n+1 exp(ik0R2n)

R2n
, (40)

A3n+ iB3n ≈ (−1)n+1 [RB(θ3n)]
n exp(ik0R3n)

R3n
, (41)

and

A4n+ iB4n ≈ (−1)n+1 [RB(θ4n)]
n+1 exp(ik0R4n)

R4n
, (42)

where

R1n =

√

r2+(zr −zs−2nh)2, (43)

R2n =

√

r2+(zr +zs−2(n+1)h)2, (44)

R3n =

√

r2+(zr +zs+2nh)2, (45)

R4n =

√

r2+(zr −zs+2(n+1)h)2, (46)

sinθ1n =
r

R1n
, (47)

cosθ1n =
zs−zr +2nh

R1n
, (48)

tanθ1n =
r

zs−zr +2nh
, (49)

sinθ2n =
r

R2n
, (50)

cosθ2n =
2(n+1)h− (zr +zs)

R2n
, (51)

tanθ2n =
r

2(n+1)h− (zr +zs)
, (52)

sinθ3n =
r

R3n
, (53)

cosθ3n =
zr +zs+2nh

R3n
, (54)

tanθ3n =
r

zr +zs+2nh
, (55)

sinθ4n =
r

R4n
, (56)

cosθ4n =
zr −zs+2(n+1)h

R4n
, (57)

and

tanθ4n =
r

zr −zs+2(n+1)h
. (58)

θkn is the (real–valued) propagation angle of a ray (the com-
plement of itsgrazing angle), which corresponds to a specific
value of the integration parameterθ in the f–type integrals
in (2)–(9). A10+ iB10 is a generalisation of the direct ray of
classical geometrical acoustics;A20+ iB20 of the ray with a
single bottom bounce;A30+ iB30 of the ray with a single top
bounce; andA40+ iB40 of the ray with a single bottom bounce
followed by a single top bounce [7, Fig. 6.2]. For each higher
value ofn we add one more cycle of bottom and top reflections
to the ray paths of the previousn. ThusA11+ iB11 is a general-
isation of the ray with a single top bounce followed by a single
bottom bounce;A21+ iB21 of the ray with a bottom bounce,

then a top bounce, then a second bottom bounce;A31+ iB31
of the ray with a top bounce, then a bottom bounce, then a
second top bounce; and so on.

Note that an alternative formulation to (1)–(33) is ( [7, (6.19)])

p=
∫ ∞

0
g(kr)J0 (kr r)kr dkr , (59)

whereg(kr) is the Green’s function, given by ( [7, (6.18)])

kz

(

1+RB (ζ )e2ikzh
)

g(kr)

= i
[

eikz|zr−zs|−eikz(zr+zs)
]

+ iRB (ζ )e2ikzh
[

e−ikz(zr+zs)−e−ikz|zr−zs|
]

, (60)

with horizontal and vertical wavenumber componentskr and
kz defined through

kr = k0 sinζ , (61)

kz = k0 cosζ , and (62)

k2
r +k2

z = k2
0. (63)

Note that on contourC1 we haveζ real, with 0≤ ζ ≤ π/2,
whereas onC2 we haveζ = π/2− i cot2 (ϕ/2), with 0< ϕ ≤ π
(cf. (35)–(37)). For arbitraryx,y∈ R we have the identities

cos(x+ iy) = cos(x)cosh(y)− i sin(x)sinh(y) , and (64)

sin(x+ iy) = sin(x)cosh(y)+ i cos(x)sinh(y) , (65)

so, withx= π/2 andy= cot2(ϕ/2), we have

cos
(π

2
− i cot2

(ϕ
2

))

= i sinh
(

cot2
(ϕ

2

))

, and (66)

sin
(π

2
− i cot2

(ϕ
2

))

= cosh
(

cot2
(ϕ

2

))

. (67)

Thus, from (60) and (62), on contourC1 we have Green’s func-
tion g(θ ), say, given by

k0cos(θ )
(

1+RB (θ )e2ik0 cos(θ)h
)

g(θ )

= i
[

eik0 cos(θ)|zr−zs|−eik0 cos(θ)(zr+zs)
]

+ iRB (θ )e2ik0 cos(θ)h

×
[

e−ik0 cos(θ)(zr+zs)−e−ik0 cos(θ)|zr−zs|
]

; (68)

and, from (60), (62) and (66), on contourC2 we have Green’s
functiong(ϕ), say, given by

ik0 sinh
(

cot2
(ϕ

2

))

×
(

1+RB

(π
2
− i cot2

(ϕ
2

))

e−2k0 sinh(cot2( ϕ
2 ))h

)

g(ϕ)

= i
[

e−k0 sinh(cot2( ϕ
2 ))|zr−zs|−e−k0 sinh(cot2( ϕ

2 ))(zr+zs)
]

+ iRB

(π
2
− i cot2

(ϕ
2

))

e−2k0 sinh(cot2( ϕ
2 ))h

×
[

ek0 sinh(cot2( ϕ
2 ))(zr+zs)−ek0 sinh(cot2( ϕ

2 ))|zr−zs|
]

. (69)

From (38), (59), (61), (68) and (69), we have an alternative
formulation for the complex pressurep alongC=C1∪C2, viz.

p= k2
0

∫ π/2

0
R(g(θ ))J0 (k0r sinθ )sinθ cosθ dθ

+ ik2
0

∫ π/2

0
I(g(θ ))J0 (k0r sinθ )sinθ cosθ dθ
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+2k2
0

∫ π

0
R(g(ϕ))J0

(

k0r cosh
(

cot2
(ϕ

2

)))

×cosh
(

cot2
(ϕ

2

))

sinh
(

cot2
(ϕ

2

))

×
sinϕ

(1−cosϕ)2 dϕ

+2ik2
0

∫ π

0
I(g(ϕ))J0

(

k0r cosh
(

cot2
(ϕ

2

)))

×cosh
(

cot2
(ϕ

2

))

sinh
(

cot2
(ϕ

2

))

×
sinϕ

(1−cosϕ)2 dϕ. (70)

HANKEL does not explicitly compute the pressure from (70),
using the infinite series (1) instead, which draws out the corre-
spondence between the exact theory and the method of classi-
cal ray tracing, that is, geometrical acoustics. (A future version
of HANKEL may use (70) when the user does not require infor-
mation about the individual field components in (2)–(9).)

EXAMPLES

HANKEL was used to compute some results that we illustrate be-
low, both in its routine (non–debug) mode and in debug mode.
Fig.1 shows curves of transmission loss versus range for a sam-
ple problem consisting of a uniform ocean of depthh = 100
m, speed of soundc0 = 1500 m·s−1 and densityρ0 = 1000
kg·m−3 overlying a ‘limestone’ halfspace, of densityρ1 = 2400
kg·m−3, P–wave speedc1p = 3000 m·s−1, SV–wave speed
c1s = 1500 m·s−1, P–wave attenuationα1p = 0.3 dB/λ1p and
SV–wave attenuationα1s = 0.5 dB/λ1s, whereλ1p = ω/c1p
andλ1s = ω/c1s are the wavelengths of the compressional (P–
type) and vertically–polarized shear (SV–type) waves in the
bottom, respectively, for a source of angular frequencyω =
2π f rad·s−1. A sourceSwas at depthzs= 95 m, transmitting a
continuous tone of frequencyf = 25 Hz. The complex pressure
p was synthesized at a line of receivers at depthzr = h= 100 m
and at rangesr out to 2 km from the source. The transmission
loss, in decibels, was computed fromTL=−10log10 |p|

2.
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Figure 1: Transmission loss versus range:f = 25 Hz.

There are four curves plotted in Fig.1: ‘HANKEL_geom’ (black)
is the ray solution (cf. (39)–(58)); ‘HANKEL_phys_C1’ (blue)
is from (1)–(33), using only the 16f–type integrandsf1cc, ...,
f4ss; ‘HANKEL_phys_C2’ (green) is from (1)–(33), using only
the 8g–type integrandsg1i, ...,g4r; and ‘HANKEL_phys’ (red)
is from (1)–(33), using all 24 integrandsf1cc, ...,g4r.

We note from Fig.1 that the exact solution (red), computed
along the full contourC=C1∪C2, is quite different from both

the geometrical acoustics solution (black) and the solution in-
volving only the homogeneous waves (blue). The major contri-
bution to the transmission loss for this problem is due to thein-
homogeneous waves (the green curve). The large discrepancy
between the classical ray result (black) and the exact solution
(red) is due to the fact that the exact solution properly accounts
for theScholtewave, an interface wave that propagates along
the boundary atz= h, and that radiates energy back into the
water [13]. The direction of propagation of energy along this
interface is not perpendicular to the spherical wavefront on
the interface, and thus we have diffraction, which geometrical
acoustics does not model.
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Figure 2: Magnitude of Green’s function for source frequency
f = 25 Hz. The two red lines mark the boundaries of three
kinds of waves. To the left of both lines is the continuous spec-
trum; between the lines is the discrete spectrum; and to the
right of both lines is the evanescent spectrum [13].

Fig.2 is a plot of the magnitude|g(kr )| of the Green’s function
g(kr) for the problem discussed above (cf. (60)). Drawn on the
figure are two red lines, atk1p = ω/c1p ≈ 0.052 m−1 andk0 =

ω/c0 ≈ 0.105 m−1, marking the boundaries of three different
wave types. There is acontinuous spectrumof waves, with hor-
izontal wavenumberskr in (0,k1p), which is handled in the the-
ory of normal modes by a ‘branch line integral’; waves withkr
in (k1p,k0) form adiscrete spectrum, wherein lie the discrete
modes of normal mode theory; and waves withkr > k0 form the
evanescent spectrum. It is clear from Fig.2 that the dominant
mode of propagation for this problem is an evanescent mode
(an interface wave of the Scholte type) atkr ≈ 0.127 m−1,
corresponding to a phase speed of about 1240 m·s−1, which
is slower than any of the body waves (c0 = c1s = 1500 m·s−1

andc1p = 3000 m·s−1) [13].

Figs.3 and4 show the transmission loss and Green’s function
computed for the same problem as before, but with a source
frequency off = 100 Hz. It is immediately apparent that the
inhomogeneous waves now play a lesser role in the solution,
and that the geometrical acoustics solution (black), the solu-
tion due solely to the homogeneous waves (blue), and the ex-
act solution (red) are similar, at least beyondr =0.5 km. The
Green’s function shows that at 100 Hz the Scholte wave, while
still present, is no longer the dominant mode of propagation.
Note that the wavenumber–integral method includes contribu-
tions from plane waves atall wavenumbers 0≤ kr < ∞. A nor-
mal mode method such asKRAKEN, conversely, only includes
those plane waves that correspond to the peaks (local maxima)
of |g(kr )| [4]. HANKEL is likely to be correct on all problems it
was designed for (in the absence of coding errors or numerical
problems), since it is based on an exact solution, (1)–(33).
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Figure 3: Transmission loss versus range:f = 100 Hz.
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Figure 4: Magnitude of Green’s function for source frequency
f = 100 Hz. The two red lines mark the boundaries of three
kinds of waves. To the left of both lines is the continuous spec-
trum; between the lines is the discrete spectrum; and to the
right of both lines is the evanescent spectrum [13].

HANKEL has a ‘debug’ mode that allows the user to obtain de-
tailed information about the calculation of the pressurep at
a given field pointR(r,zr) and for a given source frequency
f . With the problem described in the previous section,HANKEL

was run in debug mode for a fixed source frequencyf = 100 Hz
and ranger = 1 km (cf. Figs.3 and4). In debug modeHANKEL
created a set of data files that tabulated values of the integrands
f1cc, ..., g4r. These data files were read by aMATLAB script
file that HANKEL produced, and a set of labelled figures were
produced and output to disk as EPS and JPEG files. The EPS
image files were subsequently used as inputs to a LATEX script
file, also produced byHANKEL, which was processed to pro-
duce a PDF report. This section displays some of the images
that were created by this process. The LATEX captions of those
reports were not used here, as we need to refer to labelled
equations within this paper. We have also slightly modified the
MATLAB scripts from those produced by theHANKEL runs, to
better suit the axis labelling requirements of this paper.

Figs. 5 and 6 are plots of sums of integrandsf3r = f3cs+
f3sc andf3i = f3cc+ f3ss appearing in (4) and (8). The
integrals off3r andf3i are contributions to the net complex
pressurep that arise from homogeneous waves. Recall that, as
noted above, the termA31+ iB31 corresponds to the ray with
a top bounce, then a bottom bounce, then a second top bounce.
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Figure 5: Sum of the first two integrands appearing inA3n of
(4), with n= 1, f = 100 Hz andr = 1 km. The vertical red line
marks the propagation angle of the geometrical ray associated
with A3n+ iB3n, which isθ3n ≈ 68◦ (cf. (41), (45), (53)–(55)).
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Figure 6: Sum of the first two integrands appearing inB3n of
(8), with n= 1, f = 100 Hz andr = 1 km. The vertical red line
marks the propagation angle of the geometrical ray associated
with A3n+ iB3n, which isθ3n ≈ 68◦ (cf. (41), (45), (53)–(55)).

We note from Figs.5 and6 that the oscillatory integrandsf3r
andf3i appear to make a significant contribution to their re-
spective integrals (cf. (4) and (8)) at propagation anglesθ close
to the angle of the classical ray, marked in the figures with red
vertical lines,viz. θ3n ≈ 68◦. The method of stationary phase,
which is usually employed in approximating integrals of highly
oscillatory functions of the kind shown here, is a method that is
based on a Taylor series expansion about this ‘classical’ value
of θ . HANKEL does not employ this approximation, but allows
the user to develop intuitions concerning these approximate
methods from visualisations such as those of Figs.5 and6.

Fig.7 is a closer view of the integrandf3cc of Fig.6, showing
three multiplicative components off3cc. From (22) we have

f3cc(n,θ ) = k0 (−1)n+1 |RB(θ )|n cos(nΦB (θ )) (71)

×cos((2nh+zr +zs)k0 cosθ ) (72)

×J0 (k0r sinθ )sinθ , (73)

with ‘term 1’ given in (71), ‘term 2’ in (72) and ‘term 3’ in
(73). HANKEL uses multiplicative decompositions such as these
to provide more accurate evaluation of the integrals occurring
in (2)–(9). The zeros of terms such as (72) and (73) are rela-
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Figure 7: The first integrand,f3cc, appearing inB3n of (8),
with n= 1, f = 100 Hz andr = 1 km. This shows the decom-
position off3cc into three terms, labelled 1, 2 and 3 above (cf.
(71)–(73)). The vertical red line marks the propagation angle
of the geometrical ray associated withA3n + iB3n, which is
θ3n ≈ 68◦ (cf. (41), (45), (53)–(55)).

tively easy to locate overC1 and quadrature (numerical inte-
gration) is performed between pairs of adjacent zeros. As can
be seen from the graph ofterm 1 in Fig. 7 there is one zero
of f3cc that is not accounted for, this occurring atθ ≈ 72◦.
HANKEL does not search for these zeros, since their accurate
location may be time–consuming, as the phase of the bottom
reflection coefficient, the functionΦB (θ ), is, in general, an-
alytically complicated. Rather,HANKEL uses adaptive quadra-
ture (which automatically adjusts the number of sub–panels)
between the pooled zeroes of terms like (72) and (73).

To complete the calculation ofp at R(r,zr ) we must include
the contribution of the inhomogeneous waves, those associ-
ated with complex contourC2 (cf. (37)). Figs. 8 and 9 are
plots of the functionsg3r andg3i, respectively, for the sample
problem discussed above (cf. (26), (27)). These integrands are
exponentially–damped oscillatory functions, given by

g3i(1,ϕ) =
4π sinϕ

15(1−cosϕ)2

×
∣

∣

∣
RB

(π
2
− i cot2

(ϕ
2

))
∣

∣

∣

×cos
(

ΦB

(π
2
− i cot2

(ϕ
2

)))

×exp

(

−
158π

3
sinh

(

cot2
(ϕ

2

))

)

×J0

(

400π
3

cosh
(

cot2
(ϕ

2

))

)

cosh
(

cot2
(ϕ

2

))

, (74)

and

g3r(1,ϕ) =−
4π sinϕ

15(1−cosϕ)2

×
∣

∣

∣
RB

(π
2
− i cot2

(ϕ
2

))
∣

∣

∣

×sin
(

ΦB

(π
2
− i cot2

(ϕ
2

)))

×exp

(

−
158π

3
sinh

(

cot2
(ϕ

2

))

)

×J0

(

400π
3

cosh
(

cot2
(ϕ

2

))

)

cosh
(

cot2
(ϕ

2

))

. (75)
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Figure 8: The third integrand appearing inA3n of (4), with
n= 1, f = 100 Hz andr = 1 km.
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Figure 9: The third integrand appearing inB3n of (8), with
n= 1, f = 100 Hz andr = 1 km.

Fig. 10 is a plot of the functiong1i(0,ϕ), showing the oscil-
latory nature of theseg–type integrands, which cannot be ob-
served from Figs.8 and9 due to the rapid exponential damping
of g3i andg3r (cf. (74) and (75)). From (14) we have

g1i(0,ϕ) =
4π sinϕ

15(1−cosϕ)2

×exp

(

−
2π
3

sinh
(

cot2
(ϕ

2

))

)

×J0

(

400π
3

cosh
(

cot2
(ϕ

2

))

)

cosh
(

cot2
(ϕ

2

))

, (76)

which has a far slower rate of exponential damping with de-
creasingϕ, since (cf. (74)–(76))

exp

(

−
158π

3
sinh

(

cot2
(ϕ

2

))

)

=

[

exp

(

−
2π
3

sinh
(

cot2
(ϕ

2

))

)]79

. (77)

HANKEL computes the integrals ofg–type integrands such as
(74)–(76) by adaptive quadrature between pairs of adjacent ze-
ros of the Bessel functionJ0

(

k0r cosh
(

cot2(ϕ/2)
))

. These ze-
ros are obtained from a table of precomputed zeros ofJ0(x).
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Figure 10: The third integrand appearing inB1n of (6), with
n= 0, f = 100 Hz andr = 1 km.

DISCUSSION

Classical ray tracing, the method of geometrical acoustics, is
the most intuitive method for solving the wave equation of
linear (small–amplitude) acoustics [5]. For the plane–parallel
waveguide, however, standard ray tracing only gives an approx-
imate solution, as is well known, invoking the ‘high–frequency’
asymptotic limitkr r ≫ 1.HANKEL allows the user to investigate
the nature of this approximation by providing visualizations
that compare the ray solution with an exact solution derived
from ‘generalized’ rays (the wavenumber integrals).

The traditional approach to developing the geometrical acous-
tics approximation typically begins with an exact formulation
of the solution for the complex pressurep, in the form of, say,

p= ik0

∞

∑
n=0

(−1)n
∫ π

2−i∞

0
v1nJ0(k0r sinθ )sinθ dθ

+ ik0

∞

∑
n=0

(−1)n
∫ π

2−i∞

0
v2nJ0 (k0r sinθ )sinθ dθ

+ ik0

∞

∑
n=0

(−1)n+1
∫ π

2−i∞

0
v3nJ0 (k0r sinθ )sinθ dθ

+ ik0

∞

∑
n=0

(−1)n+1
∫ π

2−i∞

0
v4nJ0 (k0r sinθ )sinθ dθ ,

(78)

where

v1n = |RB(θ )|nei(2nh+|zr−zs|)k0 cosθ einΦB(θ), (79)

v2n = |RB(θ )|n+1ei[2(n+1)h−(zr+zs)]k0 cosθ ei(n+1)ΦB(θ), (80)

v3n = |RB(θ )|nei(2nh+zr+zs)k0 cosθ einΦB(θ), and (81)

v4n = |RB(θ )|n+1ei[2(n+1)h−|zr−zs|]k0 cosθ ei(n+1)ΦB(θ), (82)

Note that (78)–(82) is an alternative formulation of (1)–(33)
(see [5, (19)–(23)], based on [7, (6.31)], for the details). Each
of the integrals in (78) is of the form

∫ π
2−i∞

0
f (θ )eiλg(θ)dθ , (83)

whereλ is a real constant (cf. [9, (2-29),(2-46)]). This form
allows the method of steepest descent to be used, replacing
integrals of the form (83) with approximations that are based
on finding solutions ofg′ (θ ) = 0.

While a powerful analytical technique, the method of steep-
est descent may also be daunting to master for the novice, or
for those who prefer a more visual approach to understanding.
Through its debug mode,HANKEL provides images that may as-
sist a user to gain insight into the nature of the pressure field
in a plane–parallel waveguide. Rather than replace the mathe-
matical treatments, however,HANKEL may be used to augment
them. This allows both the novice and expert underwater acous-
tician to study the formal mathematical reasoning in conjunc-
tion with images of functions that appear in the mathematics.

We might summarise theraison d’êtreof HANKEL in the follow-
ing quote that appears in the preface of a text by mathematician
Richard Hamming: "The purpose of computing is insight, not
numbers" [14]. The images in Figs.5 and6 show that the in-
tegrals of the functions they display are concentrated around
the angle of the associated ‘classical’ ray. It seems reasonable,
then, that a ray calculation will be approximately valid forthis
problem, based on an understanding of the steepest descent
approximation—and Fig.3 shows this indeed to be the case.
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