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ABSTRACT

This paper describes a computer mod®NKEL, that was written by the author to explore the physics of stiou
propagation in a horizontally—stratified ocean—acoustrenment, a useful first approximation for shallow—water
regions. Like other wavenumber—integral mod&yKEL computes the complex pressure field and transmission loss
due to a point source at one or more field points. In additioowgh HANKEL has a ‘debug’ mode that enables the user
to create a PDF document that illustrates the integranddvied in the calculation of the field at a given receiver point
This ‘auto—documentation’ feature mak@sNKEL useful for the student and experienced acoustician alila@jiging
visual representations of the underlying mathematics. [Wstiate this pedagogical use KANKEL through examples.
In particular we draw out the analogy between the classigal of geometrical acoustics and the so—cajiederalized
raysthat are explicitly evaluated BJANKEL. No shortcuts are taken BANKEL in computing the exact solution to the
underlying wave equation, apart from the practical netgsditruncating infinite series of generalized—ray definite
integrals and of obtaining approximate values for each @$elintegrals via numerical integration.

INTRODUCTION

The discipline of computational ocean—acoustics is corazkr

with the numerical modelling of the propagation of sound en-
ergy in oceans. This modelling is important, for example, in
predicting the effectiveness of naval sonar systems whiea

A naval vessel may need to take evasive measures, for igstanc

if propagation modelling shows there to be a nearby region of
the ocean that is a ‘blind zone’ to the vessel’'s sonar systems
since it might be considered a possible location for an enemy
submarine. (We may assume the submarine to also have access
to a predictive sonar model in this game of cat—-and—mouse.)

The ocean is a complicated acoustic medium with a restless
surface, with significant variations in the density and spee
of sound in water over a wide range of spatial and temporal
scales, and with a great variety in the composition of bottom
sediments and rock4]. No predictive sonar model exists that
can accommodate the full complexity of the ocean, though,
and all available models of necessity make simplifying agsu
tions [2,3]. (This restriction is largely due to the fact that there
is usually insufficient knowledge of the acoustically—velet
material properties of the environment. The paucity of lsbun
ary value data and initial value data means that one can only
compute an approximate solution to the full wave equation.)

Many predictive sonar models have been developed in recent
decades based on a variety of techniqueg]. Geometrical

ray tracing is the oldest and simplest method for solving the
wave equation, and the one with the greatest appeal to @ysic
intuition [5]. Despite these advantages, however, this ‘classical’
ray theory is known to be inaccurate for many problems of sig-
nificance, and more ‘advanced’ forms of ray theory have been
developed 8-11]. The Hankel transformmethod can be con-
sidered to be a kind of advanced ray theory, since the salutio
involveswavenumber integralehich are related to the classi-
cal rays of geometrical acoustid 7,9-11]. Traditionally this
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correspondence is developed by making asymptotic approxi-
mations of the wavenumber integrals, based on the method
of steepest descelfalso known as the method efationary
phase or thesaddle—pointmethod), where an approximation

is made of an integral of the fortf. f (2)e*9(?dz with C a con-

tour in the complex plane, and whetes- 1 is a constant. The
computer modeHANKEL was designed by the author to draw
out this correspondence in another way, through providieg t
means to visualize the wavenumber integrands direBtly [

Like other modelsHANKEL computes a complex pressure field
solution based on an idealization of the ocean. In partictiia
simplifying assumptions used HANKEL are that all acous-

tic media are homogeneous and that boundaries between me-
dia are horizontal planes. This is the plane—parallel waizsg
model, a useful first approximation for regions with shallow
seas, such as can be found on continental shelves.

HANKEL createATLAB and BTEX scripts that, when run, cre-
ate a PDF (Portable Document Format) report. TAELAB
script generates labelled Encapsulated Postscript (ER®) a
JPEG figures from data files generatedHaWKEL. The EPS
figures are then incorporated into the PDF document by run-
ning the RTEX script, which adds captions to each figure based
on the runtime parameters suppliedHANKEL. By studying
the illustrations in the PDF report the userHdNKEL may re-
fine their intuition about the mathematically sophisticktiech-
nigue of wavenumber integration, based on their physidat in
itions of classical ray tracing.

Following a brief summary of the underlying theory we illus-
trate this educational use HANKEL. In particular, using a se-
lection of figures from reports generated by running thepscri
files created byIANKEL, we illustrate the parallels that exist be-
tween the theory of classical ray tracing and that of wavenum
ber integration.
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THEORY

The computer modeé{ANKEL derives its name from the use of
the Hankel transformmethod for solving the inhomogeneous
time—independent wave equation of linear acous@¢s9-11].

A uniform ocean, with speed of soug m.s~1 , occupies the
region{(x,y,z) : 0 < z< h}, whereh is the ocean depth. The
ocean surfacé(x,y,z) : z= 0} is assumed to be a perfect re-
flector, with surface reflection coefficieRg = —1. The bottom
{(x,y,2) :z> h} is assumed to be horizontally—stratified (with
material properties varying only with dep#), characterised
solely by its complex bottom reflection coefficieRg [5]. In
cylindrical (r,z) coordinates we have a point souat (0, zs)
and one or more point receivelRsat (r,z ), where 0< zs < h
and 0< z < h. The source emits a continuous unit-amplitude
spherical wave of angular frequency rads 1, time depen-
dencee'® and wavenumbeky = w/cp.

An outline of the derivation of the formulae encode@MNKEL

was provided recently by the author, and we summarise those
results below §]. For a sourceS at coordinateg0, zs) emit-

ting a continuous unit-amplitude tone of angular frequesacy
rads 1 and time dependenas'®, the complex acoustic pres-
surep at a receiveR at coordinatesr, z ) is given by

o 4
le (@hn+1Bkn) 1)
where
/2 /2
i = /0 fes(n, ) d6 + /O fisc(n, 0) d6
m
+ | atr(n.9) do. @
/2 /2
o = /0 f2cs(n, 68) d6 + /0 f2sc(n, 0) d6
m
+ | g2r(n.9) do., 3)
/2 /2
%n:/() f3cs(n,6)d6+/0 f3sc(n, 0) d6
m
+ | g3r(n.9) do, @)
/2 /2
mm:/o f4cs(n,6)d6+/0 tasc(n, 0) d6
m
+ | g4r(n.9) do., (5)
/2 /2
”@1“:/0 flcc(n,e)d6+/0 f1ss(n, 6) d6
m
+ [ "otitn.) dg, (6)
/2 /2
992,1:/0 f2cc(n,6)d6+/0 f2ss(n, 6) d6

+f "q2i(n. ¢) do, @)

&g\

/2 /2
3n = / f3cc(n, ) d6+/ f3ss(n, ) dO
Jo Jo

+/0 g3i(n,¢) d¢, and (8)

&g\

/2 /2
an = / fdcc(n, 0) d6+/ f4ss(n, ) dO
Jo Jo

m
+ [ g4i(n.0) do, (©)
and where the integrands iR)¢(9) are

flcc(n, 0) = ko (—1)"|Rg (6)|"
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x cos((2nh+ |z — zs|) kocosB)

x cos(nPg (0)) Jp (Kor sinB)sind,
fles(n 8) = ko (—1)"Rs (6)|"

x €os((2nh+ |z — zs|) kocosB)

x sin(n®g (0)) Jo (kor sinB) sind,
flse(n. 8) = ko (—1)"*|Rs (6)|"

x sin((2nh+ |z — zs|) ko cosH)

x cos(nPg (0)) Jp (Kor sinB)sind,
flss(n,8) =ko(~1)"*Re (6)|"

x sin((2nh+ |z — zs|) ko cosH)

x sin(n®g (0)) Jo (kor sinB) sind,

. _ 2sing o
9lin9) = =g oY

. ‘RB (g—icot2<%>> ’
x cos(ndJB (gficot2 (%)))

% exp(— (2nh+|z —z|) kosmh(cot2 (%)))

< rems(of (2))eos(f ().

glr(n, @) = (zs'”"b) ko (—~1)"+

Jro(F it ()

X sm(anB (E* icot’ (% ))
X exp<f (2nh+|z —z|) kosmh(cotz (%)))

x Jo (kor cosh(cot2 (2 )) cosh(cot2 (%)) ;
f2cc(n, 8) = ko (—1)"|Re (6)|"*

x cos((2(n+1)h—(z +zs)) kocosB)

x cos((n+1) Pg(6)) Jo (Kor sinB)sind,
f2cs(n, 8) = ko (—1)™ 1 |Rg (6)|"1

x c0s((2(n+1)h— (7 +25)) kocosh)

x sin((n+1)®g(0))Jp (kor sinB)sinéd,
f2sc(n, 8) = ko (—1)"* |Re (8)|"*

x sin((2(n+ > (2 +2)) ko COS6)

x cos((n+1) ®g(6)) Jo (Kor sinB)sind,

f2ss(n, 8) = ko (— )”+1\RB( )|
x sin((2(n+1)h— (7 +25)) kycosH)
x sin((n+1) ®g(0)) Jp (kor sinB) sind,

. _ 2sing N
92(n4) = = koD

X ‘R3<gficot2<%>>
X cos((n 1) dp (* —icof (%)))
X exp<f( (n+1)h—(z +2))ko

n+1

st

<o (korcosh(cof (£)) ) cosn{co? (£)).

2sing
(1-cosp)?

<R (3 1o (3))

xsin((n+1) @ (5 ~icof (%)))

g2r(n,¢) = ko(—1)™*

n+1

NS

(10)

(11)

(12)

(13)

(14)

(15)

(16)

17

(18)

(19)

)

(20)
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xexp(— (2(n+1)h— (z +2)) kosinh(cof (%)))

x Jo (kor cosh(cot2 (%))) cosh(cot2 (%)) . (21
face(n, 8) = ko (1) |Re ()"

x cos((2nh+z + z5) kocosP)

x cos(n®g (0)) Jo (kor sinB)sind, (22)
f3cs(n, 6) = ko (~1)" R (6)|"

x €0s((2nh+z + zs) kgcos)

x sin(n®g (8)) Jp (kor sinB) sind, (23)
f3sc(n, 6) = ko(~1)"|Re (6)|"

x sin((2nh+z + zs) kocosB)

x cos(n®g (0)) Jo (kor sinB)sind, (24)
f3ss(n, 8) = ko (—1)"|Rg (6)|"

x sin((2nh+ 2z +zs) kocosB)

x sin(n®g (6)) Jo (kor sinB) sinBd, (25)
. _ 2sing _ntl
g3l(n,¢)77(l_cos¢)2 (=1)

()
x cos(nCDB (g—icot2 (%)))
X exp(— (2nh+z +Zs)k05inh(C°t2 (g()))

x Jo (kor cosh(cot2 (%))) cosh( i %)) . (26)

_ 2sing
g3r(n.¢) = (1- cosd))2

X‘&(?Jco?(%)) "
conlmn (318 (£)
xexp( (2nh+ 2z +z5) k05|nh<00t2< )))

xJo(korcosh<cot2(¢)>>cosh< t22<%>> 27)

facc(n, @) = ko (—1)™1

x|Rg (6)|™*cos((2(n+ 1) h— |z — 2 ko coso)
x cos((n+1) ®g(6))Jo (Kor sinB)sind, (28)
facs(n,0) = ko (—1)"

x |Rg (8)™* cos((2(n+1)h— |z — zs|) ko cosO)

ko(~1)"

x sin((n+1) ®g(0)) Jp (kor sinB) sind, (29)
fasc(n, 8) = ko (—1)"
x|Rg (6)""*sin((2(n+ 1) h— |z — zs|) kocosh)
x cos((n+ 1) ®g (6)) Jo (kor sinB)sind, (30)

n

f4ss(n,0) = ko (—1

)
x |Rg ()" sin((2(n+1)h— |z — z|) kocos)
x sin((n+1) ®g(0)) Jp (kor sinB) sind, (31)

. _ 2sing
g4i(n.¢) = (1-cosg)?

“[Rs (5 -ie0? (3))
x cos((n+1) M (g—icot2 (%)))

X exp(f (2(n+1)h—|z fzs|)kosinh(cot2

x Jo (kor cosh(cot2 (%))) cosh(cot2 (%)) . (32

(_1)n+1

n+1
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and
2sing
(1—cosp)

X ‘RB (gficot2 (%))
<sin(in+ s (§ -1cof ($)))
X exp(— 2(n+1)h—|z —z) kosinh(cot2 (%)))

x Jo (kor cosh(cot2 (%))) cosh(cot2 (%)) . (33

where

94r(n,¢) = ————ko(-1)"

n+1

Re({) =|Rs({)|€%) (34)

is the bottom reflection coefficient at (complgxjppagation
angle ¢, with magnitude|Rg ({)| and phasepbg ({) [5]. Jo is
the Bessel function of the first kind of order 0.

The integrands in1(0)—(33) are of two types, those of-type’

(flcc, ..., f4ss) and those ofg—type’ (gli, ..., g4r). These
two types correspond to the two par®,andCy, respectively,
of the complex contour of integratidh= C; UC, that appears
in the development of the formula&){(33) [5].

The first contourCy, is defined by

a={¢eCc:0sn@Q) <530 =0}, (@)
wheref ({) andJ () are the real and imaginary parts@fre-
spectivelyC; is associated with ‘homogeneous’ waves, which
are waves that vary sinusoidally in both rangand depthz
(that is, they have theamebehaviour in both of these orthogo-
nal directions) 12]. Note that the dummy integration parame-
ter 6 in the f—type integrand$1cc, ...,f4ss is merely the real
part of{ alongCy, thatis,0 =9 ({) = {. A plane wave that is
propagating vertically corresponds @lo= 0, whereas a plane
wave that is propagating horizontally correspond§ te /2.
ContourC, thus accords with our intuitions concerning the be-
haviour of the classical rays of ‘geometrical’ acousticheve
aray is understood to be a vector that is normal teavefront

(a wavefront being a surface of constant phase on a wéje) [

The second contou€y, is defined by

m

C={{eC:iNn@) =330 <0},  (30)

which we parameterize as
_ =T ico(?
Cz_{ZE(C.Z_Z |cot2<2), 0<¢§rr}. (37)

C, corresponds to ‘inhomogeneous’ waves, which are waves
that are sinusoidally varying in rangebut exponentially de-
caying in depthz (that is, they havaifferent behaviour inr
andz directions) [L2]. We includeC; to account for diffracted
energy B, 7]. The classical ray tracing of geometrical acoustics
does not model diffraction, and thus calculations basedeon g
metrical acoustics are likely to break down when diffracted
ergy makes a significant contribution to the net complex-pres
sure field. Note that the dummy integration parametar the
g-type integrandgli, ...,g4r is the parameter used iB7) to
transform integrals ovef0, «) to ones ovel0, ). This trans-
formation accounts for the scaling factors

2sing
(1—cosp)?
appearing irgli, ..., g4r.

(38)



23-27 August 2010, Sydney, Australia Proceedings of 20th International Congress on AcousiA,2010

The termsan, + 1%kn have an interpretation in terms of clas- then a top bounce, then a second bottom bounég:+ i %31
sical rays in that, for high source frequency and at long €ang of the ray with a top bounce, then a bottom bounce, then a
from the source, we have the followisgherical wavepprox- second top bounce; and so on.
imations ( [7, (6.36)—(6.41)], ignoring the ‘diffraction terms’ _ _ _
of [7, (6.40)] or the ‘branch line integrals’ of[ (6.41)]): Note that an alternative formulation tb)¢(33) is ( [7, (6.19)])
ikoR *
i+ Bin ~ (71)”[RB(91,1)}”%101”), (39) p=/0 g (k) Jo (ker) ke dk, (59)
n
i n n+1 €xP(ikoRen) whereg(k;) is the Green’s function, given b 6.18
on+1%on ~ (~1)" [Re (62n))" =2 =, (40) g (k) .9 y T1(6.18)])
2N
. exp(ikgR ikzh
st +i70 = (~1)" R (03" ZPRO) (a1 o (1+Re () ") g k)
i |:eikz|2r*25| _ eikz(zf+zs)}
and
y +iRg (7)€ [e—ikz<z,+zs> . e—ikz\zr—zsq . (60)
. exp(i
i+ 1% (~1)" R (G| ZLER) 0 - _
Ran with horizontal and vertical wavenumber componektsand
o k; defined through
where
ke = kosing, (61)
Rin = \/r2+ (2 — 25— 2nh)?, (43) k, =kocos{, and (62)
2 1212
_ K = I3 (63)
Ron= /1?4 (zr + 75— 2(n+ )N, (44) K+
) 2 Note that on contou€; we have( real, with 0< { < 11/2,
Ran = \/r (& + 25+ 20h)7, (45) whereas oit; we havel = 11/2—icof (¢ /2), withO< ¢ <11
Ran = \/r2+ (z —2s+2(n+1) h)z (46) (cf. (35)—(37)). For arbitraryx,y € R we have the identities
n — - ;
sinB, = —— 47) cos(x+iy) = cos(x) cosh(y) —isin(x)sinh(y), and (64)
Rin onh sin(x-+iy) = sin(x) cosh(y) +icos(x) sinh(y) (65)
cosy, — B &t (48) _
Rin s0, withx = 711/2 andy = cof? (¢ /2), we have
r
tanfyp=-—— (49)
ZSr_Zf +2nh cos(g—'cot2 (%)) = isinh(cot2 (%)) , and (66)
sinbon = ——, (50)
Ran sin(g—icot2 (%)) :cosh(cot2 (%)) (67)
cosbyn = 2(n+1)hf(zr+zs)7 (51)
Ron Thus, from 60) and 62), on contouiC; we have Green’s func-
a6y, — T hr Crzat (52) tiong(@), say, given by
- S
sinBs, = RL’ (53) kocos(8) <1+ R (g)eZikocos(e>h> 9(6)
3n
— i |dkocos0)|z 2| _ koCos(0)(z+2)
COSan — Mn (54) [ ' :|
Rrs,n +iRg () 2kocogO)h
tan6s, = m: (55) « [e—ikocos(e)(z,Jrzs) _ efiKOCOS(G)\fozsq : (68)
SinBay = — (56)
Ran and, from 60), (62) and ©6), on contourC, we have Green’s
cosB — Z 725+Ri(n+ 1) h7 (57) functiong(¢), say, given by
n
ikosinh(cot2 (%))
and
r X (1+RB(E—icot2 (9))e*ZkOS‘”h(CO'Z(%))h)g((p)
_ 2 2
tan6y, = . (58)
z—z+2(n+1)h —i [efkosinh(cotz(%))\z,fzs\ _ efkosinh(cotz(%))(zﬁzs;)}
6«n is the (real-valued) propagation angle of a ray (the com- ) T ) ks 2(2))h
pI?men; o;‘] itsgrazing anglg, which€corrisponds toa speclific +iRp (5 —icof? (5)) g 2osinh(cof($))
value of the integration parametérin the f-type integrals inh(co( £ - 2(8)) |z —
in (2)—(9). 40 +i%10is a generalisation of the direct ray of x [ekosm (cof(%))(@+2) _ gosinh(cof ()12 zs‘] . (69)
classical geometrical acousticsbg+ %2 of the ray with a )
single bottom bouncessg -+ i 43 of the ray with a single top From @8), (59), (61), (68) and €9), we have an alternative
bounce; andv4o+i%40 of the ray with a single bottom bounce formulation for the complex pressupealongC = C; UGy, viz.
followed by a single top bouncé& [Fig. 6.2]. For each higher )
value ofn we add one more cycle of bottom and top reflections p= kg/"/ 2(9(8)) Jo (Kor SinB) sinB cosH do
to the ray paths of the previousThus«11+i%11 is a general- 0

isation of the ray with a single top bounce followed by a séngl Lo [TU2 _ _
bottom bounces, + %51 of the ray with a bottom bounce, +ikg /0 3(9(0)) Jo (kor sinf) sin6 cosb d6
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+2K3 '/Oniﬁ(g(da))Jo (kor cosh(cot2 (%)))

X cosh(cot2 (g)) sinh(cot2 (%))

d

sing
(17cos¢)2

+2”((2)/0773(g((p))‘]o (kor (:05h<c012 (%)))

«cosh(cot (%)) sinn(cot2 (%))

sing dg.

(1—cosp) (70)

HANKEL does not explicitly compute the pressure frofd)(

using the infinite seriedl] instead, which draws out the corre-
spondence between the exact theory and the method of classi-
cal ray tracing, that is, geometrical acoustics. (A futugesion

of HANKEL may use T0) when the user does not require infor-
mation about the individual field components 2)4(9).)

EXAMPLES

HANKEL was used to compute some results that we illustrate be-
low, both in its routine (non—debug) mode and in debug mode.
Fig. 1 shows curves of transmission loss versus range for a sam-
ple problem consisting of a uniform ocean of deptk 100

m, speed of soundy = 1500 ms~1 and densitypg = 1000
kg-m~—2 overlying a ‘limestone’ halfspace, of densjty = 2400
kg-m~3, P-wave speed;p = 3000 ms~1, SV-wave speed

C1s = 1500 ms 1, P—wave attenuation;p, = 0.3 dB/A1p and
SV-wave attenuationr;s = 0.5 dB/A1s, WhereArp = w/cyp
andA;s = w/cys are the wavelengths of the compressional (P—
type) and vertically—polarized shear (SV-type) waves m th
bottom, respectively, for a source of angular frequenry-

2mf rads~ L. A sourceSwas at deptlzs = 95 m, transmitting a
continuous tone of frequendy= 25 Hz. The complex pressure
pwas synthesized at a line of receivers at degpth h=100m

and at ranges out to 2 km from the source. The transmission
loss, in decibels, was computed franh. = flologlo\p|2.

Transmission loss versus range: f = 25 Hz
20

—— HANKEL_geom
—HANKEL_phys_C1
—— HANKEL_phys_C2
— HANKEL_phys

30

80 | | i
0 1000 1500 2000

Range (m)

500
Figure 1: Transmission loss versus ranfe: 25 Hz.

There are four curves plotted in Fily.' HANKEL _geom’ (black)
is the ray solution ¢f. (39)—(58)); ‘HANKEL_phys_C1’ (blue)
is from (1)—(33), using only the 1&-type integrand€1cc, ...,
f4ss; '"HANKEL _phys_C2’ (green) is from ()—(33), using only
the 8g-type integrandgli, ...,g4r; and HANKEL_phys’ (red)
is from (1)—(33), using all 24 integrand$lcc, ...,g4r.

We note from Fig.1 that the exact solution (red), computed
along the full contou€ = C; UCy, is quite different from both
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the geometrical acoustics solution (black) and the saiuitie
volving only the homogeneous waves (blue). The major contri
bution to the transmission loss for this problem is due tarthe
homogeneous waves (the green curve). The large discrepancy
between the classical ray result (black) and the exactiealut
(red) is due to the fact that the exact solution properly ant®

for the Scholtewave, an interface wave that propagates along
the boundary az = h, and that radiates energy back into the
water [L3]. The direction of propagation of energy along this
interface is not perpendicular to the spherical waveframt o
the interface, and thus we have diffraction, which georoatri
acoustics does not model.

Magnitude of Green’s function: f = 25 Hz
300 T T T T T T T

200~ : : )

100+ ol

50 ol

\/ i i

o ; \ y
o o002 004 006 008 0l 012 014 016 018 02
Horizontal Wavenumber k,[m 1]

Figure 2: Magnitude of Green’s function for source frequenc

f = 25Hz. The two red lines mark the boundaries of three
kinds of waves. To the left of both lines is the continuouscspe
trum; between the lines is the discrete spectrum; and to the
right of both lines is the evanescent spectrdi@

Fig. 2is a plot of the magnitudgg (k)| of the Green’s function
g(kr) for the problem discussed abow. (60)). Drawn on the
figure are two red lines, &t = w/cyp ~ 0.052 m 1 andkg =
w/cp ~ 0.105 i, marking the boundaries of three different
wave types. There is@ntinuous spectrumof waves, with hor-
izontal wavenumberk; in (0,kyp), which is handled in the the-
ory of normal modes by a ‘branch line integral’; waves wkth

in (kip, ko) form adiscrete spectrupwherein lie the discrete
modes of normal mode theory; and waves wjtb ko form the
evanescent spectrurtt is clear from Fig.2 that the dominant
mode of propagation for this problem is an evanescent mode
(an interface wave of the Scholte type) kat~ 0.127 m 1,
corresponding to a phase speed of about 1240 which

is slower than any of the body waves) & ¢35 = 1500 ms 1
andcyp = 3000 ms~1) [13].

Figs.3 and4 show the transmission loss and Green'’s function
computed for the same problem as before, but with a source
frequency off = 100 Hz. It is immediately apparent that the
inhomogeneous waves now play a lesser role in the solution,
and that the geometrical acoustics solution (black), the-so
tion due solely to the homogeneous waves (blue), and the ex-
act solution (red) are similar, at least beyang-0.5 km. The
Green’s function shows that at 100 Hz the Scholte wave, while
still present, is no longer the dominant mode of propagation
Note that the wavenumber—integral method includes camntrib
tions from plane waves ail wavenumbers & k; < c. A nor-

mal mode method such &RAKEN, conversely, only includes
those plane waves that correspond to the peaks (local maxima
of |g(kr)| [4]. HANKEL is likely to be correct on all problems it
was designed for (in the absence of coding errors or nunerica
problems), since it is based on an exact soluti@);(33).
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Transmission loss versus range: f = 100 Hz
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Figure 4: Magnitude of Green'’s function for source frequenc
f = 100 Hz. The two red lines mark the boundaries of three
kinds of waves. To the left of both lines is the continuouscspe
trum; between the lines is the discrete spectrum; and to the
right of both lines is the evanescent spectrdi|

HANKEL has a ‘debug’ mode that allows the user to obtain de-
tailed information about the calculation of the pressprat

a given field pointR(r,z) and for a given source frequency

f. With the problem described in the previous sectifANKEL

was run in debug mode for a fixed source frequehey100 Hz

and range = 1 km (cf. Figs.3 and4). In debug mod@ANKEL
created a set of data files that tabulated values of the artelgr
flcc, ..., g4r. These data files were read byATLAB script

file that HANKEL produced, and a set of labelled figures were
produced and output to disk as EPS and JPEG files. The EPS
image files were subsequently used as inputs #gXLscript

file, also produced byiIANKEL, which was processed to pro-
duce a PDF report. This section displays some of the images
that were created by this process. TREEK captions of those
reports were not used here, as we need to refer to labelled
equations within this paper. We have also slightly modiftes t
MATLAB scripts from those produced by tHANKEL runs, to
better suit the axis labelling requirements of this paper.

Figs.5 and 6 are plots of sums of integrandSr = f3cs +
f3sc and £3i = f3cc + f3ss appearing in4) and @). The
integrals off3r and £3i are contributions to the net complex
pressurep that arise from homogeneous waves. Recall that, as
noted above, the teravs; +i%31 corresponds to the ray with

a top bounce, then a bottom bounce, then a second top bounce.
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3r(1, ) = f3cs(1, 0) + £3sc(1, 0)
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Figure 5: Sum of the first two integrands appearingsy, of
(4), withn=1, f =100 Hz and = 1 km. The vertical red line
marks the propagation angle of the geometrical ray assatiat
with @73, +1%3n, Which isB3, =~ 68° (cf. (41), (45), (53)—(55)).

£3i(1, 0) = f3cc(1, 6) + £3ss(1, 0)
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Figure 6: Sum of the first two integrands appearing4sy, of
(8), withn=1, f =100 Hz and = 1 km. The vertical red line
marks the propagation angle of the geometrical ray assatiat
with of3n+1%3n, which is63, ~ 68° (cf. (41), (45), (53)—(55)).

We note from Figs5 and6 that the oscillatory integrandSr
and £3i appear to make a significant contribution to their re-
spective integralf. (4) and @)) at propagation angle&close

to the angle of the classical ray, marked in the figures with re
vertical lines,viz. 63, ~ 68°. The method of stationary phase,
which is usually employed in approximating integrals ofttlig
oscillatory functions of the kind shown here, is a method itha
based on a Taylor series expansion about this ‘classickieva
of 6. HANKEL does not employ this approximation, but allows
the user to develop intuitions concerning these approximat
methods from visualisations such as those of Fsgmd6.

Fig. 7is a closer view of the integranBcc of Fig. 6, showing
three multiplicative components é8cc. From 22) we have

f3cc(n, 6) = ko (—1)™ 1 |Rg (0)|"cos(n®g (8))  (71)
x cos((2nh+z + zs) ko cosh) (72)
x Jp (Kor sin@) siné, (73)

with ‘term 1’ givenin (71), ‘term 2'in(72) and ‘term 3’in
(73). HANKEL uses multiplicative decompositions such as these
to provide more accurate evaluation of the integrals oaogirr

in (2—(9). The zeros of terms such a&g2j and (73) are rela-
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3cc(1,0) :

terms 1-3 and product
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Figure 7: The first integrand{3cc, appearing in#s, of (8),
withn=1, f =100 Hz and = 1 km. This shows the decom-
position off3cc into three terms, labelled 1, 2 and 3 abowk (
(71)—(73)). The vertical red line marks the propagation angle
of the geometrical ray associated withh, + 1%3n, which is
63, ~ 68 (cf. (41), (45), (53)—(55)).

tively easy to locate ove€; and quadrature (numerical inte-
gration) is performed between pairs of adjacent zeros. As ca
be seen from the graph akrm 1 in Fig. 7 there is one zero

of £3cc that is not accounted for, this occurring @t~ 72°.
HANKEL does not search for these zeros, since their accurate
location may be time—consuming, as the phase of the bottom
reflection coefficient, the functio®g (8), is, in general, an-
alytically complicated. RatheHANKEL uses adaptive quadra-
ture (which automatically adjusts the number of sub—panels
between the pooled zeroes of terms lik&)(and (73).

To complete the calculation gf at R(r,z ) we must include
the contribution of the inhomogeneous waves, those associ-
ated with complex contou€, (cf. (37)). Figs.8 and 9 are
plots of the functiong3r andg3i, respectively, for the sample
problem discussed abovef((26), (27)). These integrands are
exponentially-damped oscillatory functions, given by
g@i(L.p)= T

15(1— cos¢)

<o (7 1007 (3))
«cos(s (2 -ico? (£)))
<oxp( -1 sinn(cof (4
<o (45 cosh(cof (%)) ) cosh(cof () ).

(74)
and
93r(17¢):—15(i7157:;¢;¢)2
(o)
><S|n<d>3<ff|cot2( )))
xexp(——smh(co@(%»)
Jo( 4007 cosh(cotz( )))cosh(co?(%)). (75)
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Figure 8: The third integrand appearing .ivg, of (4), with
=1,f =100 Hz and =1 km.
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Figure 9: The third integrand appearing g, of (8), with
n=1,f=100Hz and =1 km.

Fig. 10is a plot of the functiorg1i(0,¢), showing the oscil-
latory nature of thesg—type integrands, which cannot be ob-
served from Figs8 and9 due to the rapid exponential damping
of g3i andg3r (cf. (74) and (75)). From (L4) we have

4msing
15(1— cosp)?

xexp(—%"sinh(cot2 (%)))

<o (45 cosh(cof (§)) ) cosh(eof (§)). (76)

which has a far slower rate of exponential damping with de-
creasingp, since ¢f. (74)—(76))

E_)
_ {exp(?sinh(coﬁ(%»)rg

HANKEL computes the integrals @f-type integrands such as
(74)—(76) by adaptive quadrature between pairs of adjacent ze-
ros of the Bessel functiody (kor cosh(cot? (¢/2))). These ze-

ros are obtained from a table of precomputed zeral ©).

9li(0,¢) =

(77)
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Figure 10: The third integrand appearing 4y, of (6), with
n=0,f =100 Hz and = 1 km.

DISCUSSION

Classical ray tracing, the method of geometrical acousiscs
the most intuitive method for solving the wave equation of
linear (small-amplitude) acousticS]] For the plane—parallel
waveguide, however, standard ray tracing only gives ancppr
imate solution, as is well known, invoking the ‘high—freqog’
asymptotic limitk;r > 1. HANKEL allows the user to investigate
the nature of this approximation by providing visualizaso
that compare the ray solution with an exact solution derived
from ‘generalized’ rays (the wavenumber integrals).

The traditional approach to developing the geometricaliaco
tics approximation typically begins with an exact formidat
of the solution for the complex pressupgin the form of, say,

p= ikoni)(—l)"/ogioo

00

oo
+iko 20(71)”/02 Vando (Kor sin6) sin@ de
2 .

vinJdo (Kor sinf) sin6do

00

T_ioo
t+iko 5 (71)'”1/2 Vando (Kor SinB) sin6 dé
n=0 0

0 joo
+iko ZO(—l)”H /2 Vando (Kor Sin@) sin6 de,
& Jo

(78)

where
Vip = ‘RB(9)\”ei(2nh+\zr—zs\)koc059ein¢s(9)7 (79)
Von = \RB (9)‘n+1ei[2(n+1)h7(z,+zs)]ko coseei(n+1)cpg(e)7 (80)
Van = |Rg (6)|"e 27T allocoden®s(0) - and  (81)
Vi = ‘RB(9)‘n+lei[2(n+1)h—|Zf—Zs|]|<ocoseei(n+l)¢>3(6)’ (82)

Note that 78)—(82) is an alternative formulation oflj—(33)
(see b, (19)—(23)], based orv[ (6.31)], for the details). Each
of the integrals in78) is of the form
T _joo .

/2 f ()90 dg, (83)

Jo
whereA is a real constantcf. [9, (2-29),(2-46)]). This form
allows the method of steepest descent to be used, replacing

integrals of the form &3) with approximations that are based
on finding solutions off (6) = 0.
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While a powerful analytical technique, the method of steep-
est descent may also be daunting to master for the novice, or
for those who prefer a more visual approach to understanding
Through its debug mod#ANKEL provides images that may as-
sist a user to gain insight into the nature of the pressuré fiel
in a plane—parallel waveguide. Rather than replace theanath
matical treatments, howeveiANKEL may be used to augment
them. This allows both the novice and expert underwaterscou
tician to study the formal mathematical reasoning in coojun
tion with images of functions that appear in the mathematics

We might summarise thaison d’étreof HANKEL in the follow-

ing quote that appears in the preface of a text by matheraatici
Richard Hamming: "The purpose of computing is insight, not
numbers" 14]. The images in Figs5 and6 show that the in-
tegrals of the functions they display are concentratedratou
the angle of the associated ‘classical’ ray. It seems redsen
then, that a ray calculation will be approximately valid fiois
problem, based on an understanding of the steepest descent
approximation—and Fid3 shows this indeed to be the case.

REFERENCES

[1] R. J. Urick, Principles of Underwater SoundPeninsula
Publishing, Los Altos, California, 1983.

[2] P. C. EtterUnderwater Acoustic Modelling and Simula-
tion, Spon Press, London, 2003.

[8] F. B. Jensen, W. A. Kuperman, M. B. Porter, and
H. Schmidt,Computational Ocean AcousticSpringer—
Verlag, New York, 2000.

[4] Ocean Acoustics Librarynttp://oalib.hlsresearch.com/.

[5] D. W. Bartel,On Some Rigorous Computational Ocean—
Acoustic Modelling Toolsto appear in proceedings of
OCEANS 2010 Conference, 23—27 May 2010, Sydney,
Australia, 2010.

[6] L. M. Brekhovskikh, Waves in Layered Medi&nd ed.,
Academic Press, New York, 1980.

[7] G. V. Frisk,Ocean and Seabed Acousti€TR Prentice
Hall, New Jersey, 1994.

[8] T. L. Foreman,A Frequency Dependent Ray Theory
Technical Report ARL-TR-88-17, Applied Research Lab-
oratories, The University of Texas at Austin, 1988.

[9] E.K.WestwoodAcoustic Propagation Modeling in Shal-
low Water using Ray ThearnPh.D. thesis, Graduate
School, The University of Texas at Austin, 1988.

[10] E.K.WestwoodComplex ray methods for acoustic inter-
action at a fluid—fluid interfaceJ. Acoust. Soc. Am85

(1989), no. 5, 1872-1884.

[11] E. K. Westwood,Ray methods for flat and sloping
shallow—water waveguides]. Acoust. Soc. Am.85

(1989), no. 5, 1885-1894.

[12] G. V. Frisk,Inhomogeneous waves and the plane—wave
reflection coefficientd. Acoust. Soc. Am66 (1979),

no. 1, 219-234.

[13] H. Schmidt and F. B. JenseAn Efficient Numerical So-
lution Technique for Wave Propagation in Horizontally
Stratified Ocean Environment®emorandum SM-173,
North Atlantic Treaty Organization, SACLANTCEN, La

Spezia, Italy, 1984.

[14] R. W. Hamming,Numerical Methods for Scientists and

EngineersMcGraw—Hill, 1962.

ICA 2010



	Introduction
	Theory
	Examples
	Discussion

