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ABSTRACT

In this talk the three-dimensional numerical modal analysis of a fluid inside and around a recorder is presented. The fluid
inside and close to the recorder is meshed by Lagrangian tetrahedral finite elements. Complex conjugated Astley-Leis
infinite elements are used to obtain results in the far field of the recorder. The numerical method for solving problems
in unbounded domains and the characteristics of the formulation of the eigenvalue problem are explained before the
results of those computations are discussed.

As three-dimensional model, a soprano recorder with German fingering, which is tuned to 442 Hz, is used. A modal
analysis of all playable notes, except the ones with half open tone holes, is accomplished. The results of the numerical
modal analysis are compared to the values of the MIDI-table. Graphical results of the eigenvectors as well as the
convergence behaviour of different tones are presented.

INTRODUCTION

For the model of a fluid inside and around a recorder, a modal
analysis is performed for all playable notes, except the ones
with half-open tone holes. The results are validated by com-
parison to the MIDI-table.

For the following computations, a three-dimensional model of
a soprano recorder with german fingering and tuning to 442 Hz
is used.

ACOUSTIC RADIATION PROBLEM

Assuming that the pressure is harmonic in time

p(xxx, t) = Re
{

p(xxx)e−iωt
}

(1)

the boundary value problem can be described by the Helmholtz
equation

−∆p(xxx)− k2 p(xxx) = 0 with xxx ∈Ω , (2)

the Neumann boundary condition on the recorder boundary

∂ p(xxx)
∂nnn

= 0 with xxx ∈ Γ , (3)

and the Sommerfeld radiation condition [3]

R
{

∂ p
∂R
− ikp

}
→ 0 for R→ ∞ . (4)

The fluid inside and close to the recorder is described by finite
elements (FE), while infinite elements (IE) are used to describe
the far field. The Sommerfeld radiation condition ensures that
only outward propagating components exist at large distance
from the radiating body. As finite elements second order La-
grange tetrahedral elements are used and as infinite elements
complex conjugated Astley-Leis elements are chosen [1, 2].

The matrix formulation of the entire problem, consisting of fi-
nite and infinite elements, is

(KKK− ikDDD− k2MMM)ppp = bbb , (5)

with KKK, DDD and MMM as stiffness, damping and mass matrix. These
matrices are real, unsymmetric and independent of the wave
number k. The damping matrix contains only values from the
infinite elements. For the eigenvalue problem considered in
this paper, the right-hand-side vector b is equal to zero.

MODAL ANALYSIS

To compute eigenvectors and eigenfrequencies, equation (5) is
transformed in the state space equation [4]

([
III 000
000 −−−KKK

]
−λ

[
000 III
MMM DDD

])[
ΦΦΦ

ΨΨΨ

]
=
[

000
000

]
, (6)

with ΦΦΦ = λΨΨΨ and λ = −ik. To solve this linear eigenvalue
problem it has to be transformed in the standard formulation

1
λ

[
ΦΦΦ

ΨΨΨ

]
=
[

III 000
000 −−−KKK

]−1 [ 000 III
MMM DDD

][
ΦΦΦ

ΨΨΨ

]
. (7)

The three-dimensional finite element model of the recorder
fluid is build in Ansys 11.0 and read into a noncommercial
code that was developed at our institute. In this Fortran 90 code
the infinite elements are added before starting with the compu-
tations.

The modal analysis is accomplished for all playable notes, ex-
cept the ones with half-open tone holes. In this paper, the re-
sults of notes c′′, b′′ and d′′′ are presented. In Figures 1, 2 and
3 the first eigenfrequency and the first harmonic of c′′, b′′ and
d′′′ can be seen.
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Figure 1: c′′: First eigenfrequency (above) and first harmonic
(below).

Figure 2: b′′: First eigenfrequency (above) and first harmonic
(below).

Figure 3: d′′′: First eigenfrequency (above) and first harmonic
(below).

To gain information about the convergence behaviour of the
computed frequencies, comparisons are made between the nu-
merically computed values and the ones from the MIDI-table.
The values from the MIDI-table have to be converted for a tun-
ing of 442 Hz.

The numeric modal analysis of those notes is accomplished
for eight different meshes, with different degrees of freedom,
in each case. The exact frequencies from the MIDI-table are

c′′ = 525.630Hz
b′′ = 936.565Hz

d′′′ = 1179.998Hz . (8)

Figures 4–6 present the convergence of each first eigenfre-
quency over the degree of freedom.

At first sight, all three notes show a similar covergence be-
haviour, but when taking a closer look it can be seen that for
note c′′ there is only 1 Hz between coarsest and finest mesh,
while for the other two notes the coarse meshes give signifi-
cantly worse results than the fine meshes.

Figure 4: Convergence of c′′.

Figure 5: Convergence of b′′.

Figure 6: Convergence of d′′′.

CONCLUSION

The examinations of the convergence behaviour for different
notes showed that the eigenfrequencies approach the expected
values from above. For some notes, the difference between nu-
merically computed and exact values can be several Herz, even
for fine meshes. This deviation is too high for a music instru-
ment. We suspect that we obtain such a deviation due to ne-
glecting the volume flow inside the recorder.
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When playing a recorder, the air column inside the instrument
starts to oscillate due to the inserted air flow. The musician is
able to influence the frequency of a note by varying the blow-
ing pressure and therewith a fine-tuning of the sound is possi-
ble. Due to that, the characteristic flow profile inside a recorder
will be taken into consideration in future studies.
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