
Proceedings of 20th International Symposium on Music Acoustics
(Associated Meeting of the International Congress on Acoustics)

25-31 August 2010, Sydney and Katoomba, Australia

Unsupervised Incremental Learning and Prediction of
Audio Signals

Ricard Marxer and Hendrik Purwins
Music Technology Group, Universitat Pompeu Fabra, Barcelona, Spain

PACS: 43.75.St 43.75.Xz 43.75.Zz 43.75.Cd

ABSTRACT

The artful play with the listener’s expectations is one of the supreme skills of a gifted musician. We present a system that
analyzes an audio signal in an unsupervised manner in order to generate a musical representation of it on-the-fly. The
system performs the task of next note prediction using the emerged representation. The main difference between our
system and other existing music prediction systems is the fact that it dynamically creates the necessary representations as
needed. Therefore it can adapt itself to any type of sounds, with as many timbre classes as there may be. The system
consists of a conceptual clustering algorithm coupled with a modified hierarchical N-gram. The main flow of the system
can be summarized in the following processing steps: 1) segmentation by transient detection, 2) timbre representation of
each segment by Mel-cepstrum coefficients, 3) discretization by conceptual clustering, yielding a number of different
sound classes (e.g. instruments) that can incrementally grow or shrink depending on the context resulting in a discrete
sequence of sound events, 4) extraction of statistical regularities using hierarchical N-grams (Pfleger 2002), 5) prediction
of continuation, and 6) sonification. The system is tested on voice recordings. We assess the robustness of the performance
with respect to complexity and noise of the signal. Given that the number of estimated timbre classes is not necessarily
the same as in the ground truth, we propose a performance measure (F-recall) based on pairwise matching. Finally, we
sonify the predicted sequence in order to evaluate the system from a qualitative point of view. We evaluate separately the
different steps in the process and finally the system as a whole as well as the interacting components of the complete
system. Onset detection performs with an F-measure of 98.6% for a data set of a singing voice. Clustering in isolation
yields an F-recall of 88.5%. Onset detection jointly with Clustering achieve an F-recall of 91.4%. The prediction of the
entire system yields F-recall of 51.3%.

INTRODUCTION

The human music listener distinguishes himself in a number
of crucial aspects from a traditional computer system to ana-
lyze musical content. The differences manifest themselves in
particular through the learning paradigm, the flexibility, and
the role of expectation underlying the music analysis process.
We enjoy music even if we did not have the privilege to be
trained by a merciless solfège teacher. Implicitly, we under-
stand the musical structure without being able to name a sound
phenomenon as a 5/4 meter, a dominant seventh chord or a
Flügelhorn. On the other hand, a common music information
retrieval (MIR) system needs to be taught by a large quantity of
labeled training examples, to learn explicitly what a 5/4 meter,
a dominant seventh chord, or a Flügelhorn is. We all can follow
the brass section in a big band. And if we listen more carefully
we will be able to distinguish between a trombone, a trumpet,
and a Flügelhorn solo. On the other hand, a traditional music
information retrieval system that is trained to only recognize a
trumpet and a trombone will be challenged when confronted
with a Flügelhorn. It does not have the flexibility to recognize
the Flügelhorn as a novel musical instrument sound. Listening
to Mozart, a dominant seventh chord invokes the expectation in
us to hear a tonic chord and a half-finished Flügelhorn melody
will make us believe that the melody will be continued by the
Flügelhorn. On the contrary, traditional context-free music in-
formation retrieval systems classify an event as a dominant
seventh chord or a Flügelhorn without considering previous
sounds. In this paper, we will introduce a system prototype that
learns in an unsupervised adaptive manner and that generates
predictions from an audio sequences. From the first note on

it will generate reasonable predictions without using previous
knowledge.

We will review relevant previous work.Many approaches to
predict musical sequences are based on symbolic representa-
tion (Assayag and Dubnov 2004, Lartillot et al. 2001, Mozer
1994, Pachet 2003, Pearce and Wiggins 2004). Paiement et al.
(2009) present a model that is capable of predicting and gen-
erating melodies using a combination of Bayesian networks,
clustering, rhythmic self-similarity and a special representation
of melody. The method exploits the self-similarity of a piece
and the dyadic organization of its rhythmic structure. Then the
occurring distances between rhythmical patterns are clustered.
The continuation of a melody is predicted conditioned on the
chord root, chord type, and Narmour group of recent melodic
notes. Hazan et al. (2009) build a system for generation of musi-
cal expectation that operates on music in audio data format. The
auditory front-end segments the musical stream and extracts
both timbre and time description. In an initial bootstrap phase,
an unsupervised clustering process builds up and maintains a set
of different sound classes. The resulting sequence of symbols
is then processed by a multi-scale technique based on n-grams.
Model selection is performed during a bootstrap phase via the
Akaike information criterion. Marchini and Purwins (2010)
present a non-adaptive system that learns rhythmic patterns
from drum audio recordings and synthesizes music variations
from the learned sequence. The procedure uses a fuzzy multi-
level representation. Moreover, a tempo estimation procedure
is used to guarantee that the metrical structure is preserved in
the generated sequence.

ISMA 2010 1

25-31 August 2010, Sydney and Katoomba, Australia Proceedings of ISMA 2010

We will give an overview of the system, introduce its compo-
nents, namely segmentation, timbre representation, discretiza-
tion, and prediction. Then we will introduce the F-recall to
evaluate the clustering. We will test the performance of the
n-gram under noisy conditions. Given a simple singing voice
data set, we will test each system module separately and in
conjunction. Finally, will give some examples to demonstrate
the potential of the system.

SYSTEM OVERVIEW

The system that we present in this paper consists of three main
blocks: the preprocessing module, the clustering process and
the prediction generator. In the following sections we explain
in depth each of these modules.

Segmentation

This section and the following section are dedicated to the prob-
lems of audio event temporal localization and representation.
This is the entry point to the autonomous listening system we
propose and can be considered as the perceptual stage. Event
representation is a stage dedicated to isolate and transform the
audio events into a feature space. In this space events that are
perceptually similar should be numerically similar and events
that are perceptually distant should be distant. The preprocess-
ing module is implemented by using an onset detector followed
by a feature extractor.

We have used the complex domain based onset detector (Duxbury
et al. 2003) since it can be considered as a generalization of
onset detection algorithms based on energy, spectral difference,
or phase. This onset detection function captures “energetic” per-
cussive onsets as well as soft, “tonal” onsets such as in voice.

In order to determine the onsets, we first process the audio
signal frame-by-frame. For each frame, the short-term Fourier
transform yields a complex spectrum

Xk(l) = Rk(l)e
jφk(l), (1)

where Rk and φk are the magnitude and phase for the k-th bin
of frame l with frame length K (0 ≤ k ≤ K− 1). Following
Duxbury et al. (2003), we build the onset detection function as
the accumulated Euclidean distance between the actual complex
spectrum Xk(l) at bin k and the estimated complex spectrum

X̂k(l) = R̂k(l)e
jφ̂k(l), (2)

where the estimated amplitude R̂k(l) is set equal to the magni-
tude of the previous frame |Xk(l−1)|, and the estimated phase
φ̂k(l) is calculated as the sum of the previous phase and the
phase difference between the two preceding frames:

φ̂k(l) = princarg [ϕ̃k(l−1)+(ϕ̃k(l−1)− ϕ̃k(l−2))] , (3)

where the ϕ̃ operator denotes phase unwrapping and the prin-
carg operator maps the unwrapped value back to the (−π,π]
range.

Then we calculate the bin-wise Euclidean distance between the
actual and the estimated complex spectrum, quantifying the
stationarity for the k-th bin as:

Γk(l) =
∣∣Xk(l)− X̂k(l)

∣∣ (4)

=

√(
ℜ(X̂k(l))−ℜ(Xk(l))

)2
+
(
ℑ(X̂k(l))−ℑ(Xk(l))

)2
. (5)

Summing across all bins and across M+1 consecutive frames
we yield the onset detection function for frame l:

η(l) =
dM

2 e

∑
j=d −M

2 e

K−1

∑
k=0

Γk(l + j). (6)

The onsets are selected by performing valley picking on the
onset detection function. In this study we introduce a custom
thresholding algorithm in order to avoid bursts or false positives,
which are critical to further processing such as classification or
sequence pattern matching. A corner picking algorithm has been
designed in order to capture the attack as part of the audio event.
Similarly to Bello and Sandler (2003) , the threshold function
introduced here is a dynamic adaptive threshold. However in our
case, since the main goal is the detection of a corner or a valley,
the median of a window in the future is used as threshold. It is
comparable to the short-term prediction on the onset detection
function:

η̂(l) =C(l) ·mediann∈[l,l+Ht](η(n)) (7)

where C(l) is a predefined weighting parameter that controls
the sensitivity of the onset detector. The gain C(l) acts inversely
that in other onset picking methods, the higher it is the more
sensitive to an onset it becomes.

Once we have the short-term prediction of the onset detection
function we can perform the difference of both and then the
problem becomes finding bumps in a prediction error function:

µ(l) = η(l)− η̂(l) (8)

The prediction error function is then smoothed by a moving av-
erage window whose length P determines the temporal masking
of onsets.

µs(l) =
l+P/2

∑
n=l−P/2

µ(n) (9)

The bump picking algorithm acts by finding positive regions in
the prediction error function µs(l) and picking as possible onset
candidates one point per region. This method avoids bursts
since regions with lots of consecutive changes will lead to
long bumps resulting in one single onset candidate. Finally a
silence threshold is set and only onset candidates whose onset
detection function values are higher than the given threshold
are considered as onsets.

Timbre Representation

The feature extractor works by analyzing a short window after
the onset. The feature extractor targets to model the timbre of
the musical event attacks. The timbre model is performed by an-
alyzing the short audio window through a triangular windowed
Mel-scale filterbank followed by a DCT in both the frequency
and temporal dimensions. (Mermelstein 1976) The goal of the
DCT is to create a sparse representation of the frequency and
temporal envelopes and concentrate most of the energy in the
first coefficients. This allows us to have a low dimensionality
feature vector.

2 ISMA 2010, associated meeting of ICA 2010

Proceedings of ISMA 2010 25-31 August 2010, Sydney and Katoomba, Australia

Generation of Discrete Event Sequence by Cobweb

The clustering unit receives multivariate feature vectors from
the preprocessing unit and converts them into symbols. Fur-
thermore, the relations between these symbols are expressed
in a taxonomy. It is important to state that in our system the
events are clustered in an online manner and in order of arrival,
since this symbolic representation is used immediately to create
predictions on future events.

For this purpose, in Marxer et al. (2007) the Cobweb Fisher
(1987) has been used. Cobweb is an incremental clustering
model which continuously builds a knowledge tree (hierarchi-
cal partitioning of the object space) and assigns to each instance
a partition created at each level until the object reaches the
leaves of the tree. Each node of the tree represents a concept. A
concept is modeled by a univariate Gaussian for each feature
dimension. The edges of the structure represent taxonomic rela-
tions. Further works McKusick and Thompson (1990), Yoo and
Yoo (1995) have proposed techniques to create, in an unsuper-
vised manner, the concept tree based on the sequence of data
presented, by the use of a heuristic function to be maximized.
The heuristic function used in this paper is the numerical ver-
sion of the standard category utility function used by Fisher
and introduced by Gluck and Corter (1985). Such a version of
the Cobweb was presented in McKusick and Thompson (1990)
as Cobweb/3 and later extended by Yoo and Yoo (1995) as
Cobweb/95. The version presented is Cobweb/3 allows to use
real-valued attributes as input and to control the specificity of
the partitioning. The heuristic function for a node given its
children Ck is defined as:

CUnumeric =
∑k P(Ck)∑i

1
max(σik ,a)

−∑i
1

σiP

4K
√

π
, (10)

where K is the number of children nodes, σik is the standard de-
viation for attribute i in node k, and σiP is the standard deviation
for attribute i in the node, i.e., the no-class membership case for
the given level. P(Ck) is the probability for an instance to be
classified in children node Ck. This value is calculated as nk/n
where nk is the instance count in child k and n is the instance
count in the node. This formulation adds a new parameter a,
the threshold at which to bound the standard deviation of the
attributes per class σik in order to avoid divisions by zero. This
parameter is referred to as the acuity and it controls the reso-
lution of discrimination, i.e., the minimum standard deviation
taken into account.

The incorporation of an object is a process of classifying the ob-
ject by descending the tree along an appropriate path, updating
counts along the way, and possibly performing one of several
operations at each level. These operators are:

• creating a new node,
• removing all children from a node (pruning),
• combining two classes into a single node, and
• splitting a node into several nodes.

While these operations are applied to a single object set partition
(i.e., set of siblings in the tree), compositions of these primitive
operations transform a single classification tree. As a search
strategy we use hill-climbing through a space of classification
trees.

Thereby, input is converted into a sequence of not only symbols,
but also of meta symbols (partitions) according to their parent
nodes and grand parent nodes in the cobweb tree. The symbols
and meta symbols provide the alphabet on which expectations
will be generated by the hierarchical N-gram.

We modify the set of possible Cobweb operations (see above)
in order to achieve persistent partitioning. This reduced set of
operations can perform any of Cobweb’s original operations.
We reformulate the second Cobweb operation (see above) in
order to control the clustering only by new incoming events.
Other partitions and past events should not be considered. This
reduces the operations to:

• creating a new partition inside a container partition,
given a set of contained partitions which may be empty

• removing a partition, reparenting it’s children if it has
any

Prediction of Continuation by Hierarchical N-Grams

This section is dedicated to the model of expectation that is
based on n-gram encoding of sequence data. We aim at predict-
ing symbol ct at time t based on previous symbols ct−n+1, . . . ,ct−1.
The output of the symbol grounding process in the previous
section yields a stream of symbols linked to nodes on a tax-
onomy tree. Hierarchical n-grams (Pfleger 2002) are combina-
tions of sparse n-gram models in a hierarchical structure that
allows compositional learning. Compositional learning consists
in learning long patterns from already learned sub-patterns. In
sparse n-grams counts of the most frequent patterns and a sep-
arate total count for the non-frequent patterns are kept. This
technique separates the estimates of patterns whose statics are
reliable from the estimates of infrequent patterns whose statis-
tics are biased. On the other hand, the multi-width exhaustive
approach consists in keeping the count of all possible patterns
of at most length N. These models are able to represent any
distribution of patterns up to width N. The correctness of the
statistics estimates is proportional to the count of repetitions of
the pattern. Larger patterns take longer to reduce their variance
error, since due to their length they occur more rarely.

Be C1 = {c1, . . . ,c|C1|} the set of cluster indices, renumbered
so that they reflect the order of their first appearance in the
symbol sequence c = (c1, . . . ,ct), achieved from the discretiza-
tion process in the previous section. C1 forms the alphabet of
the n-gram. Then, CN is the set of all possible N-grams of
length N composed from alphabet C1. For exploiting sparsity,
we only consider the patterns that have actually occurred as
a subsequence of c so far until time t. This set we denote by
Cn = {c1, . . .c|Cn|}, in which again the length n sub-patterns
are ordered according to their first appearance. o(c) is defined
as the position of c in Cn. We consider hierarchical n-grams of
maximal length N. Be Cn,i(n≤ N) the frequency count of the
i-th pattern of length n and be Tn,i the total count of patterns of
length n since pattern i has occurred for the first time. In Algo-
rithm 1, we use the counts Tn, j and Cn, j in order to iteratively
calculate the joint probabilities P(ci) of all patterns ci of all
length 0≤ n≤ N occurred so far.

The hierarchical n-gram method borrows ideas from the sparse
and multi-width exhaustive methods. In the hierarchical n-gram
method the probability distribution of a pattern of length n
(Equation 14) uses statistics estimates of the sub-patterns of
lengths n−1 (Equation 13) or smaller weighted by their con-
fidence. The confidence values are based on the number of
occurrences of these sub-patterns. Therefore when a pattern of
length n has appeared rarely in the data stream, its probability
of occurrence is estimated from a small number of counts and
it is not reliable. In this case the probability of appearance is
better estimated from the n− 1 length sub-patterns. In other
words, the information of patterns of large lengths is integrated
with the information of models of small lengths to reduce the
bias error and the variance error respectively. Pfleger shows that
the probability of a given pattern can be calculated in a linear
sweep by updating all the probabilities in order of pattern’s first

ISMA 2010, associated meeting of ICA 2010 3

25-31 August 2010, Sydney and Katoomba, Australia Proceedings of ISMA 2010

occurrence and length.

In order to adapt Pfleger (2002)’s hierarchical n-gram to our
architecture, we have to link the operations of the clustering
model to the operations on the n-gram (Figure 1). When two
or more clusters are merged in the clustering model, we have to
remove the superfluous clusters from the set of cluster indices
(Equation 11) and to sum up the counts for the merged clusters
(Equation 12). For example, if the n-gram tracks patterns bbc
and bbd and suddenly the clustering model merges symbols c
and d into a new symbol e, the n-gram must sum up the counts
of bbc and bbd and substitute them by the counts of bbe.

Cobweb

H n-gram

a

b e

a

b c d

a

c d

b e

--------- N-Gram 1 ----------
b: C=8, T=12
d: C=2, T=10
c: C=2, T=7

--------- N-Gram 2 ----------
b-b: C=4, T=11
b-d: C=2, T=10
d-b: C=2, T=9
b-c: C=2, T=7
c-b: C=1, T=6

--------- N-Gram 3 ----------
b-b-d: C=2, T=10
b-d-b: C=2, T=9
d-b-b: C=2, T=8
b-b-c: C=2, T=7
b-c-b: C=1, T=6
c-b-b: C=1, T=5

--------- N-Gram 1 ----------
b: C=9, T=13
e: C=4, T=11

--------- N-Gram 2 ----------
b-b: C=4, T=12
b-e: C=4, T=11
e-b: C=4, T=10

--------- N-Gram 3 ----------
b-b-e: C=4, T=11
b-e-b: C=4, T=10
e-b-b: C=3, T=9

Sequence b b d b b c b b d b b c b b e b b e b b e

MERGE c d IN e

Figure 1: The Effect of a concept merge in the hierarchical
n-gram. Nodes c and d are merged into the new symbol e. The
n-gram inherits the counts for patterns including c and d to
patterns including e.

PERFORMANCE ANALYSIS OF THE SYSTEM

Evaluation Measures

Measures for Clustering Evaluation

For a feature space X , let I = {1, . . .n} be a set of annotated
labels and a : X → I ,x→ a(x) = i an annotation function,
J = {1, . . .m} a set of cluster indices, c : X →I ,x→ c(x) =
i a clustering assignment function. In order to discuss measures
to evaluate clustering we define the set A ′i of feature vectors
x that are annotated with label i as A ′i = {x ∈X : a(x) = i}.
Analogously, we define the set C ′j of feature vectors x that are
assigned to a cluster with cluster index j by C ′j = {x ∈X :
c(x) = j}. Besides entropy and purity (Zhao et al. 2005), F-
Measure has been suggested by Larsen and Aone (1999) to
evaluation clustering algorithms:

F =
1
|X |

n

∑
i=1
|A ′i | · max

1≤ j≤m

2A ′i C ′j
A ′i +C ′j

. (15)

Pairwise F-Measure

The classic F-Measure which is used in many onset detection
(Downie et al. 2005, Leveau and Daudet 2004) and supervised
clustering (Paulus and Virtanen 2005) evaluations, is not suited
for the transcription and prediction tasks under the assumption
of an undetermined number of clusters. This is due to the fact
that for these tasks we might end up with a different number
of clusters than classes and no specific mapping about which

cluster represents which class. Therefore, we have reformulated
the problem in order to analyze the clustering decisions in a
pairwise manner. This means that instead of evaluating the
correct clustering of the individual symbols, we evaluate the
clustering decisions of the symbols two by two. Under the above
reasoning we propose a brute force method which checks all
possible pair combinations of the symbols in the input sequence.
The check consists in counting the number of pairs that were
estimated equal and were annotated equal as well as counting
the number of pairs that were annotated different and estimated
different. For feature space X , we apply the common notions
of recall to pairwise data P = {(x,x′) ∈X ×X : x 6= x′}.
Let A = {(x,x′) ∈ P : a(x) = a(x′)} be the set of feature
vector pairs (x,x′) that are annotated with the same label. Let
C = {(x,x′) ∈P : c(x) = c(x′)} be the set of feature vector
pairs (x,x′) that are assigned to the same cluster. Then define
the pairwise recall RA ,C as

RA ,C =
|A ∩C |
|A |

. (16)

We apply recall also to the complementary sets ¯A = P\A
and C̄ = P\C . Then we define the pairwise F-Recall as

F =
2 ·RA ,C ·R ¯A ,C̄

RA ,C +R ¯A ,C̄

. (17)

These measures can be better understood by looking at limit
situations. When all the input symbols get clustered in one
single cluster, the probability of having pairs of symbols of
different classes in separate clusters is null, therefore R ¯A ,C̄ = 0
would be 0. However the probability of finding pairs of symbols
of same classes in the same cluster is maximal, this means that
RA ,C = 1. On the other hand when each of the input symbols
gets estimated in a separate cluster the probability of finding
a pair of symbols of equal classes in the same cluster is null,
therefore RA ,C = 0.. But the probability of finding pairs of
symbols of different classes in separate clusters is maximal,
which would imply a precision of R ¯A ,C̄ = 1 .

Data Sets

Two main sets of tests have been carried out in this study. The
first set of tests consists on evaluating the theoretical and practi-
cal limits of the algorithms, by creating synthetic data sets with
high control over the generative parameters and evaluations.

The second set of tests is based on real life data by using the
following data set:

Voice Informal low quality recordings that serve as proof of
concept, to the unsupervised nature and adaptability of
the system.

Tests with Synthetic Data

In this section we present a series of tests based on synthetic
(generated) data to evaluate the performance of the different
clustering and expectation techniques presented in this study.
These tests help determine the actual limits of the algorithms in
use.

Expectation

This test consists in feeding the sequence learning algorithm
with a sequence of symbols and querying for the expected next
symbol. The sequence of symbols is generated by selecting a
pattern and repeating it multiple times. Different types of noise
are added to the sequence in order to tests the limits of the
sequence learning techniques:

4 ISMA 2010, associated meeting of ICA 2010

Proceedings of ISMA 2010 25-31 August 2010, Sydney and Katoomba, Australia

Algorithm 1 The Hierarchical N-Gram for Merged Clusters

Initialization C = {}
for incoming event ct do

for 1≤ n≤ N do
if (ct−n+1, . . . ,ct) /∈ Cn then

Add new pattern: Cn = Cn∪ (ct−n+1, . . . ,ct), Tn,|Cn| = 1,Cn,|Cn| = 1
else if c1, . . . ,ck ∈ Cn are merged by Cobweb then

o′ = min(o(c1), . . . ,o(ck)),Cn = Cn\{c1, . . . ,co′−1,co′+1, . . . ,ck} (11)

Cn,o′ =
k

∑
i=1

Cn,o(ck) (12)

else
Update Counts: Tn,o(ct−n+1,...,ct) = Tn,o(ct−n+1,...,ct)+1
Cn,o(ct−n+1,...,ct) =Cn,o(ct−n+1,...,ct)+1

end if
end for
Calculate joint probabilities:
P({}) = 1

|Cn|
for 1≤ n≤ N do

for c ∈ Cn do

Q(c) = Q(c1, . . . ,cn) = (1−
o(c)

∑
k=1

P(ck)) (13)

P(c) =
1

T1,1

[
Cn,o(c)+

o(c)−1

∑
j=0

(Tn, j−Tn, j+1) ·Q(c) · P(c2, . . . ,cn)

Q(c2, . . . ,cn)

]
(14)

end for
end for

end for

Switching noise In the original sequence with a given prob-
ability, a symbol is exchanged for a random other one
with a given probability.

Skipping noise In the original sequence with a given probabil-
ity, a symbol gets skipped with a given probability.

Running computer simulations we investigated learning rate
and convergence of the algorithm with respect to the following
parameters:

Pattern length The length of the basic pattern is varied, main-
taining the number of repetitions fixed.

Pattern repetitions The number of repetitions is varied, whereas
the length of the basic pattern remains constant.

For the evaluation we applied F-Recall measure to the entire
sequence.

The inherent ambiguity of a sequence is crucial for the diffi-
culty of learning this particular sequence. E.g. in the sequence

’abcdabcd’ each symbol follows the other deterministically: af-
ter an ’a’ there is always a ’b’ and after a ’b’ there is always
a ’c’. On the contrary, in sequence ’abacabac’ after an ’a’ a

’b’ can follow as well as a ’c’. The continuation of a sequence
is therefore more ambiguous, considering only the previous
symbol. To evaluate the algorithm on all possible length n se-
quences c ∈ Cn composed of the alphabet C would be compu-
tational excessive. Therefore, for c = (c1, . . . ,cn) we consider
all possible partitions P of the index set {1, . . . ,n}, where a
partition is defined as a set P i = {P i

1, . . . ,P
i
J} of subsets

P i
j ⊂ {1, . . . ,n} so that ∪ jP

i
j = {1, . . . ,n} and P i

j,P
i
j′ dis-

joint for j 6= j′. To give an example: The index set {1,2} would
have the following two partitions: {{1},{2}} and {{1,2}}. For
a given partition P i we define XP i(l) = P i

j ⇐⇒ l ∈P i
j.

Thus, XP i(l) is the part of the partition to which index l be-
longs to. We define the set of patterns belonging to partition
P i as {c : ck = cl ⇐⇒ XP i(k) = XP i(l), ∀k 6= l}. Thus, the
set of patterns with equal symbols at indices in the same part

and different symbols at indices that belong to different parts.
For example the partition {{1,3},{2},{4}} of a sequence of
length n = 4 would contain patterns such as ’abac’ or ’bcba’,
where only indices 1 and 3 have the same symbol.

Every pattern belonging to the same partition will give the
same result. Therefore all sequences of the same partition can
be considered equivalent with respect to our n-gram. So for
a length n sequence, we only need to test the system for one
pattern per partition.

2 3 4 5 6 7 8 9 10

Repetitions

0.0

0.2

0.4

0.6

0.8

1.0

F-
re

ca
ll

Prediction

Pattern Length = 2

Pattern Length = 3

Pattern Length = 4

Pattern Length = 5

Pattern Length = 6

Figure 2: F-recall (Equation 17) of the sequence learning pro-
cess on patterns of different lengths given the number of pattern
repetitions.

Figure 2 shows the results of the test of running the expec-
tation system on multiple repetitions of patterns of different
lengths. We measure the F-recall of the last 5 repetitions of
the pattern at different points in the sequence. For this test the

ISMA 2010, associated meeting of ICA 2010 5

25-31 August 2010, Sydney and Katoomba, Australia Proceedings of ISMA 2010

0.2 0.4 0.6 0.8 1.0

Skipping Probability

0.4

0.5

0.6

0.7

0.8

0.9

F-
re

ca
ll

Prediction

Pattern Length = 2

Pattern Length = 3

Pattern Length = 4

Pattern Length = 5

Figure 3: F-recall (Equation 17) values of the sequence learning
process on 20 repetitions of patterns of different lengths given
the skipping probability.

0.0 0.2 0.4 0.6 0.8 1.0

Switching Probability

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F-
re

ca
ll

Prediction

Pattern Length = 2

Pattern Length = 3

Pattern Length = 4

Pattern Length = 5

Figure 4: F-recall (Equation 17) of the sequence learning pro-
cess on 20 repetitions of patterns of different lengths given the
switching probability.

n-gram model is set to a maximum n-gram length of 5. We
see how the sequence learning process is capable of reaching
perfect prediction for lengths up to 5, after 7 repetitions of the
pattern. Since we are evaluating a window that contains the last
5 repetitions of the pattern, we are actually reaching perfect
prediction after 2 repetitions of the pattern, for lengths under
the maximum pattern length tracked by n-gram. For patterns
larger than the ones tracked by the n-gram perfect prediction
cannot be achieved, due to the inherent ambiguities of some of
the possible patterns that must be coded somehow in the n-gram
model. In these cases the model should track longer patterns to
disambiguate between the possible transitions. Several solutions
for this problem are proposed in Pfleger (2002).

In Figure 3 we can see the effects of skipping errors in the input
signal. In our case skipping occurs when the onset detection
misses an event. We measure how the F-recall measure is in-
fluenced by the skipping probability. In this test the evaluation
is performed on the whole sequence for 20 repetitions of the
pattern. Apart from patterns of length 2, all other lengths react
similarly to skipping. They mostly degrade linearly until a skip-
ping probability of 0.5 is reached. As we see in the next section
the onset detection process is quite reliable in terms of skipping
on the specific data set that we used.

Finally Figure 4 we evaluate the effect of clustering errors on
the sequence learning process. We test the sequence learning
F-recall performance measure against different probabilities of
switching a symbol by a different one. Similarly to the case of
skipping, the F-recall value degrades up to a switching proba-
bility of 0.4.

Tests with Audio Recordings

We will test each process stage separately.

Onset detection

For the evaluation of the onset detection we employ a widely
used procedure Downie et al. (2005), Leveau and Daudet (2004).
As a reference serve the onset times, manually annotated by
(a) subject(s). The onsets estimated by the onset detection algo-
rithm are then compared to the manually annotated onsets. An
annotated and estimated onsets are considered a match when
their difference in time is smaller than a given threshold. In our
evaluation we use an onset match threshold of 50 ms. Since
the data is assumed monophonic, the evaluation only permits a
one-to-one mapping between estimated and annotated onsets.

Table 1: Onset detection: F-measure, (precision and recall) for
different thresholds C(l) from 7 (rows) and smoothing length
M from 6 (columns) on the Voice data set.

21 25 29
0.85 97.8 (95.9, 100.0) 98.6 (97.4, 100.0) 98.6 (97.4, 100.0)
0.9 97.0 (94.6, 100.0) 98.6 (97.4, 100.0) 98.6 (97.4, 100.0)
0.95 95.8 (92.4, 100.0) 97.8 (95.9, 100.0) 98.6 (97.4, 100.0)

As we can see from the results in Table 1, the Voice data set does
not pose a challenge to the onset detection method. Therefore,
we focus on the clustering and the prediction stage. We also
notice that for smoothing lengths larger than 25 the system does
not improve significantly. Large smoothing lengths reduce the
temporal precision of onsets, which is important to good feature
extraction, since most information of the event is located in the
attack.

Clustering

We now evaluate the performance of the incremental classifica-
tion of musical events. In order to assess the clustering process
in isolation we assume error-free onset detection on the previ-
ous stage. In order to achieve this, we use the annotated onsets
as input.

Table 2: Clustering: F-recall (Equation 17), (RA ,C , R ¯A ,C̄) for
different timbral acuities a from 10 (rows) and analysis window
lengths (columns). Voice data set.

75 125 175
16 48.9 (56.0, 84.9) 82.4 (94.1, 75.8) 77.4 (96.0, 69.3)
17 51.5 (55.8, 88.9) 84.2 (93.0, 78.9) 79.8 (96.0, 72.2)
18 36.1 (39.8, 93.6) 85.8 (93.0, 81.5) 83.3 (96.0, 76.5)
19 37.4 (39.8, 95.5) 88.4 (91.4, 86.3) 82.4 (95.0, 75.6)
20 37.7 (38.3, 97.1) 70.7 (74.8, 87.3) 83.0 (95.0, 76.4)

The Table 2 shows high F-recall measure which mean that the
timbre model and clustering process can successfully classify
the audio events. We also notice that short analysis window
lengths (75ms) do not capture enough of the characteristic part
of the sound to correctly classify them. The low precision and
high recall values implies that the system is wrongly clustering
most events together. This could be due to the fact that the
first 75ms after the onsets are similar for all events, and most
information of the event is located between 75ms and 125ms

6 ISMA 2010, associated meeting of ICA 2010

Proceedings of ISMA 2010 25-31 August 2010, Sydney and Katoomba, Australia

after the onset. This test, as explained above, was performed
using the annotated onsets. The results could change when the
onsets are estimated. This effect is evaluated in the transcription
test.

Expectation

The expectation test addresses the evaluation of the performance
of the sequence learning module on the data sets. The test con-
sists in evaluating how well the sequence learning algorithm is
able to predict the next musical event ct after the realized events
c1, . . . ,ct−1. We assume that sequence c1, . . . ,ct−1 has been cor-
rectly identified by using the manually annotated symbols. We
compare the symbol ĉ = argmaxiP(c1, . . . ,cn−1, i) predicted by
the sequence learner to the actual next event ct .

Table 3: Expectation: F-recall (Equation 17), (RA ,C , R ¯A ,C̄) for
different maximum lengths of the n-gram (rows) for the Voice
data set.

hngram
3 50.8 (50.8, 65.2)
4 64.5 (63.8, 66.3)
5 69.4 (68.3, 71.6)
6 69.4 (68.3, 71.6)
7 69.4 (68.3, 71.6)

Results in Table 4 show that the sequences of the Voice data set
are actual predicted quite successfully using our hierarchical n-
gram model. We can also see that for n-gram maximum lengths
higher than 5 the result does not improve.

In a similar manner we could also evaluate the prediction of
the next note onset based on the previous inter-onset intervals.
However, here we limit our focus on the prediction evaluation
of the next event disregarding its exact onset time. Below, assess
the overall performance of the entire system including timing
information.

Transcription

The transcription test evaluates the subsystem composed of
onset detection, feature extraction, and clustering. The test was
conducted on the Voice data set. In Table 4, the detected events
were compared to the annotated labels, the ground truth, using
pairwise F-recall (Equation 17). In order to assess the stability
of the system we have tested it with different values of the
two most sensible parameters involved in the task: the window
length and the acuity. The analysis window length refers to the
frame length immediately following the detected onset. From
this analysis frame the feature vector is extracted. The acuity a
refers to the parameter controlling the resolution of the Cobweb
algorithm, see 10.

Table 4: Transcription: F-recall (Equation 17), (RA ,C , R ¯A ,C̄)
of acuity a from 10 for timbre clustering (rows) versus analysis
window length (columns) measured on the Voice data set.

75 125 175
18.5 35.3 (39.2, 92.5) 91.4 (93.5, 90.5) 83.8 (100.0, 74.5)
19 36.0 (39.2, 93.5) 90.3 (91.9, 89.7) 86.2 (100.0, 77.5)

19.5 36.0 (39.2, 93.5) 91.4 (89.5, 94.9) 83.4 (93.0, 77.5)
20 36.0 (39.2, 93.5) 91.0 (88.6, 94.9) 82.1 (85.0, 82.1)

20.5 38.7 (39.2, 98.3) 84.1 (81.6, 96.7) 84.2 (85.0, 85.7)

The transcription results in Table 4 resemble the results from
the clustering test. This is expected since the onset detection
process performs almost perfectly on the data set. However, the
onset detection evaluation considers a detected onset correct if it
is within a temporal interval from an annotated onset which we

set to be 50 ms. Given that the results of our transcription test
are almost the same, we can conclude that the onset position
difference between the annotations and the estimations will
not influence significantly the feature extraction and clustering
process.

Prediction

The prediction task consists in running the full system. After
the transcription of the events c1, . . . ,ct−1 the system calculated
a prediction ĉt of the next event ct . This prediction includes the
next symbol (derived from the clustering) and its timing. The
threshold for matching predicted events from annotated events
is larger in this task. We have set this tolerance threshold to
150 ms.

Table 5: Full Prediction: F-recall (Equation 17), (RA ,C , R ¯A ,C̄)
for different temporal acuities a from 10 (rows) and timbral
acuities a from 10 (columns). Voice data set.

19 20 21
0.0125 35.0 (42.9, 30.2) 36.9 (38.4, 36.0) 24.0 (24.5, 42.3)
0.025 41.5 (48.6, 36.8) 43.8 (45.0, 43.5) 27.4 (28.2, 47.5)

0.0375 41.7 (49.7, 36.6) 44.5 (46.7, 42.9) 31.1 (32.0, 48.1)
0.05 42.9 (50.7, 38.3) 44.9 (46.6, 43.8) 25.9 (26.6, 49.2)

0.0625 48.2 (56.7, 43.1) 51.3 (53.6, 49.4) 33.1 (33.3, 54.2)
0.075 45.7 (53.7, 41.0) 48.2 (50.0, 46.7) 30.4 (29.9, 52.1)

Examples

In this section, we present a few examples of transcription and
prediction in order to assess the performance, evolution and
shortcomings of the system. We have calculated the matching
matrix between the annotated onset events (’score’) of a class
and the detected onsets of a cluster (Hazan et al. 2009). In this
matching matrix we can iteratively yield the maximal entry,
thereby establishing a connection between a row (class) and
a column (cluster). After elimination the row and column of
the maximal entry we determine the maximal entry again until
the matrix vanishes. This procedure endows us with an optimal
mapping between the classes and the clusters. In Figures 5 and
6, we display sequences of classes and clusters on the same line
if they are interconnected through this mapping.

In Figure 5, we can see the system working at its best. The first
three predictions are wrong. The second and third prediction
are off in time. Therefore, they do not match to their annotated
counterparts. The first three cluster mismatches are expected,
since the system has no previous knowledge of the symbol
space and of the sequence and therefore cannot predict symbols
nor patterns that have not yet occurred. The time deviation
errors are due to the fact that the recorded voice does not follow
a temporally regular pattern and that it is not able to predict
fluctuations in timing. In Figure 6, we observe how the system
adapts to pattern changes within the sequence. The beginning of
the sequence is wrongly predicted due to errors in the clustering
of the sounds. However, after having processed enough sounds
the system correctly predicts the next timbre. The errors in the
middle of the sequence are due to a pattern change. The n-gram
is able to update the statistics and perform correct predictions
after two occurrences of the new pattern.

CONCLUSION

We have presented a full system that predicts the next sound
event from the previous events, operating on audio data. Taking
into account no previous knowledge, neither on the used sounds
or instruments nor on the timing and rhythmical structure of the
audio segment, the system starts from tabula rasa, performing
predictions from the very first sound event. The system adapts

ISMA 2010, associated meeting of ICA 2010 7

25-31 August 2010, Sydney and Katoomba, Australia Proceedings of ISMA 2010

0 2 4 6 8 10 12
Time (s)

ta

tschi

bum

An
no

ta
tio

n
Full Prediction of bumtatschi

Figure 5: The system quickly captures a simple ta-tschi-bum
pattern. Time (horizontal axis) is mapped versus event labels
(vertical axis). Annotated labels are indicated in black below
the lines. Above the horizontal lines we find correctly (green ◦),
incorrectly (red �), and unmatched (blue4) estimated events.

0 2 4 6 8 10
Time (s)

tschi

bom

An
no

ta
tio

n

Full Prediction of bomtschibomtschitschi

Figure 6: The system adapts to a pattern change from tschi-bom
to tschi-tschi-bom. For the graphical explanation cf. to Figure 5.

to pattern changes in the sequence as well as the appearance
of new sounds or instruments at any time. In addition, we have
presented the pairwise F-recall, a new measure to evaluate
unsupervised clustering. Currently the system is limited by the
lack of metrical analysis. This makes it specially sensitive to
missed onsets. Being central in the music listening process,
the metrical process could significantly improve the quality of
predictions.

Inspired by these ideas, we imagine a musical improvisational
dialogue between a human and a machine in which the human
may spontaneously articulate novel ideas such as new sounds,
motifs, rhythms, or harmonies. A dumb and ignorant machine
would dampen and finally stop the musical flow. But if the
machine could take up the novel idea, reply to it, varying the
suggestions of his human partner, both could continue an in-
spired musical conversation forever . . .

REFERENCES

Gérard Assayag and Shlomo Dubnov. Using Factor Oracles
for machine Improvisation. Soft Computing, 8(9):604–610,
2004.

Juan Pablo Bello and Mark B. Sandler. Phase-based note on-
set detection for music signals. Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal

Processing,ICASSP, 5(2):441–444, 2003.
J. Stephen Downie, Kris West, Andreas F. Ehmann, and Em-

manuel Vincent. The 2005 music information retrieval
evaluation exchange (mirex 2005): Preliminary overview.
In ISMIR, pages 320–323, 2005.

C. Duxbury, J. Bello, M. Davies, and M. Sandler. Complex
domain onset detection for musical signals. Proceedings
Digital Audio Effects Workshop (DAFx), 2003.

Douglas H. Fisher. Knowledge acquisition via incremental
conceptual clustering. Mach. Learn., 2(2):139–172, 1987.

M. Gluck and J. Corter. Information, uncertainty, and the utility
of categories. Proceedings of the Seventh Annual Con-
ference of the Cognitive Science Society, pages 283–287,
1985.

A. Hazan, R. Marxer, P. Brossier, H. Purwins, P. Herrera, and
X. Serra. What/when causal expectation modelling ap-
plied to audio signals. Connection Science, 21:119 – 143,
06/2009 2009.

B. Larsen and C. Aone. Fast and effective text mining using
linear-time document clustering. In Proceedings of the
fifth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 16–22. ACM, 1999.

Olivier Lartillot, Shlomo Dubnov, Gérard Assayag, and Gill
Bejerano. Automatic modeling of musical style. In Pro-
ceedings of the International Computer Music Conference
(ICMC 2001), La Havana, Cuba, 2001.

Pierre Leveau and Laurent Daudet. Methodology and tools
for the evaluation of automatic onset detection algorithms
in music. In In Proc. Int. Symp. on Music Information
Retrieval, pages 72–75, 2004.

Marco Marchini and Hendrik Purwins. Unsupervised genera-
tion of percussion sound sequences from a sound example.
In Sound and Music Computing Conference, 2010.

Ricard Marxer, Piotr Holonowicz, Hendrik Purwins, and
Amaury Hazan. Dynamical hierarchical self-organization
of harmonic, motivic, and pitch categories. In Music, Brain
and Cognition. Part 2: Models of Sound and Cognition,
held at NIPS). Vancouver, Canada, 2007.

K. McKusick and K. Thompson. Cobweb 3: A portable imple-
mentation. Technical Report No. FIA-90-6-18-2, 1990.

P. Mermelstein. Distance measures for speech recognition,
psychological and instrumental. In Pattern Recognition
and Artificial Intelligence, pages 374–388. Academic, New
York, 1976.

M.C. Mozer. Neural network music composition by prediction:
Exploring the benefits of psychophysical constraints and
multiscale processing. Connection Science, 6:247–280,
1994.

Francois Pachet. The continuator: Musical interaction with style.
Journal of New Music Research, 32(3):333–341, 2003.

J.F. Paiement, Y. Grandvalet, and S. Bengio. Predictive models
for music. Connection Science, 21(2):253–272, 2009.

Jouni Paulus and Tuomas Virtanen. Drum transcription with
non-negative spectrogram factorisation. In Proc. of the 13th
European Signal Processing Conference, Antalya, Turkey,
September 2005.

Marcus T. Pearce and Geraint A. Wiggins. Improved methods
for statistical modelling of monophonic music. Journal of
New Music Research, 33(4):367–385, 2004.

Karl Pfleger. On-line Learning of Predictive Compositional
Hierarchies. PhD thesis, Stanford University, 2002.

Jungsoon Yoo and Sung Yoo. Concept formation in numeric
domains. In CSC ’95: Proceedings of the 1995 ACM 23rd
annual conference on Computer science, pages 36–41, New
York, NY, USA, 1995. ACM Press.

Y. Zhao, G. Karypis, and U. Fayyad. Hierarchical clustering
algorithms for document datasets. Data Mining and Knowl-
edge Discovery, 10(2):141–168, 2005.

8 ISMA 2010, associated meeting of ICA 2010

	Introduction
	System Overview
	Segmentation
	Timbre Representation
	Generation of Discrete Event Sequence by Cobweb
	Prediction of Continuation by Hierarchical N-Grams

	Performance Analysis of the System
	Evaluation Measures
	Measures for Clustering Evaluation
	Pairwise F-Measure

	Data Sets
	Tests with Synthetic Data
	Expectation

	Tests with Audio Recordings
	Onset detection
	Clustering
	Expectation
	Transcription
	Prediction

	Examples

	Conclusion

