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ABSTRACT

Using the Finite Element Method (FEM), a single unflanged tonehole was simulated for a wide range of heights
and diameters in order to improve the accuracy of transmission-matrix calculations for instruments with toneholes of
large diameter and short height, as found on saxophones and concert flutes. These calculations confirm the validity of
existing models for toneholes of smaller diameter and longer height, as found on clarinets. Revised one-dimensional
transmission-matrix models of open and closed toneholes are presented to extend the validity of the models based on the
FEM results. Further, these tonehole models are verified to be valid for use with both cylindrical and conical (flare angles
up to 6 degrees) air columns.

For open and closed toneholes, new formulas for the low frequency values of the shunt and series length correction
are developed as a function of t/b and δ . Discrepancies with current theories are particularly apparent in the series
length correction term. At higher frequencies, the open shunt equivalent length increases faster than previously predicted,
corroborating recent experimental data (Dalmont et al., 2002). This effect is more important for short toneholes. These
results do not take into account any possible internal or external interactions between the toneholes on an instrument,
which may have an important effect for large-diameter toneholes.

INTRODUCTION

The design of a woodwind instrument using computer models
requires precise calculations of the resonance frequencies of an
air column with open and closed toneholes. Although there have
been many theoretical, numerical, and experimental research
studies on the single woodwind tonehole (Keefe 1982b; Keefe
1982a; Nederveen et al. 1998; Dubos et al. 1999a; Dalmont
et al. 2002), it is known that current theories are not valid if
the tonehole height t is shorter than the radius b (see Fig. 1)
because “in that case the radiation field and the inner field are
coupled” (Dalmont et al. 2002). Furthermore, the impact of the
conicity of the main bore on the toneholes parameters has never
been studied.

This paper describes improvements to the accuracy of trans-
mission-matrix (TM) models of instruments with toneholes of
large diameter and short height, as found on saxophones and
concert flutes, obtained using the Finite Element Method (FEM).
Current theoretical results from the literature are reviewed and
the methodology with which we obtain the TM parameters
from FEM simulations is presented. The FEM results are first
validated with TM methods and with available experimental
data. New results are presented that extend the validity of TM
parameters for toneholes of dimensions used in most wind
instruments. The main goal of this research is to obtain an
accurate low frequency characterization of unflanged open and
closed toneholes (up to 1 to 2 kHz).

THEORETICAL RESULTS

The TM representing a tonehole is defined as:

Thole =

�
A B
C D

�
, (1)

which, when inserted between two segments of cylindrical duct,
relates the input and output quantities:

�
pin

Z0Uin

�
= TcylTholeTcyl

�
pout

Z0Uout

�
, (2)

where Z0 = ρc/S is the characteristic impedance of the wave-
guide, ρ is the density of air, c is the speed of sound in air and
S is the cross-sectional area of the waveguide. The transmission
matrix of a cylindrical duct of length L is:

Tcyl =

�
coskL j sinkL
j sinkL coskL

�
, (3)

where k = 2π f/c is the wavenumber and f is the frequency.

Based on the assumptions that |Za/Zs| � 1 (Keefe 1982b,
p. 677) and that the tonehole is symmetric, its TM may be ap-
proximated as a symmetric T section depending on two parame-
ters, the shunt impedance Zs = Zs/Z0 and the series impedance
Za = Za/Z0 (Keefe 1981), which becomes:

Thole =

�
1 Za/2
0 1

��
1 0

1/Zs 1

��
1 Za/2
0 1

�

=



1+ Za
2Zs

Za(1+ Za
4Zs

)

1/Zs 1+ Za
2Zs



 .

(4)
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Figure 1: Diagram representing a tonehole on a cylindrical tube.

This equation was further simplified by Keefe, which replaces
all occurrences of Za/Zs by zero, an approximation that intro-
duces small but non-negligible errors in the calculation of the
resonance frequencies.

The impedances Zs and Za must be evaluated for the open (o)
and closed (c) states of the tonehole as a function of geometry
and frequency. Mathematical expressions for these impedances
are available in the literature and are reviewed below.

Open Tonehole — Shunt Impedance

The open tonehole shunt impedance may be expressed as (Keefe
1982b):

Z(o)
s = jkt(o)s +ξs, (5)

where ξs is the open tonehole shunt resistance and t(o)s the tone-
hole equivalent length. The shunt resistance does not influence
the calculated playing frequencies of a woodwind instrument
and thus, most research efforts are concentrated on the deter-
mination of the shunt length correction. In the most recent
literature (Dalmont et al. 2002), t(o)s is written:

kt(o)s = kti + tank(t + tm + tr) (6)

where t is the height of the tonehole as defined in Fig. 1, tm is
the matching volume equivalent length, tr is the radiation length
correction and ti the inner length correction. Nederveen et al.
(1998) obtained an accurate approximation for tm:

tm =
bδ
8

�
1+0.207δ 3

�
, (7)

where δ = b/a is the ratio of the radius of the tonehole to the
radius of the main bore.

The terms ti and tr are generally difficult to calculate analytically
and, in the case where t is short, the coupling between the inner
and outer length corrections prevents their separate analysis
(Dalmont et al. 2002, sec. 2.7). The radiation length correc-
tion tr depends on the external geometry; in the low frequency
approximation, it may be that of a flanged pipe (0.8216b), an
unflanged pipe (0.6133b) or another intermediary value for
more complicated situations. The expressions provided in the
literature for the inner length correction ti are summarized in
Table 2. These expressions are only valid for toneholes of large
height (t > b). Note that there is an error in Eq. (5) of Dalmont
et al. (2002), which refers to Eq. (55b) of Dubos et al. (1999a)
— the correct version of this equation is reported here as Eq. 21.

In the limiting case where t → 0 and b → 0, the low-frequency
characteristics of the tonehole are those of a hole in an infinitely
thin wall (Pierce 1989, Eq. 7-5.10) and the total equivalent
length of the hole becomes:

te = t +(π/2)b. (8)

If the tonehole height is large but the radius b → 0, the tonehole
equivalent length becomes:

te = t +0.6133b+0.8216b = t +1.4349b, (9)

that is, the length of the tonehole with an unflanged length
correction at the radiating end and a flanged radiation length
correction inside the instrument.

The resistive term ξs influences the resonance magnitudes of an
instrument but not their frequencies. In this paper, we focus on
tuning considerations and thus do not consider this term further.

Open Tonehole — Series Impedance

The series impedance of the open tonehole is a small negative
inertance:

Z(o)
a = jkt(o)a . (10)

No significant resistive term was detected experimentally (Dal-
mont et al. 2002). Table 1 summarizes the equations found
in the literature. In some publications, the exponent of δ is 2
whereas the results from our simulations as well as theoretical
calculations by Keefe (1982b) show that the series length cor-
rection depends on δ 4. These equations were corrected in this
paper.

Closed Tonehole — Shunt Impedance

The shunt impedance of a closed tonehole behaves mainly as a
compliance (Nederveen 1998). This can be written:

Z(c)
s =− j

1

kt(c)s
. (11)

The simplest expression for the shunt length correction is that
of a closed cylinder of equivalent volume:

kt(c)s = tank(t + tm). (12)

An inner length correction may be considered as well for the
closed tonehole but its influence is small relative to the cotan-
gent term and becomes significant only at high frequencies
(Keefe 1990). A recent expression including the inner length
correction is (Nederveen et al. 1998, Eq. 7):

Z(c)
s = j

�
kti − cotk(t + tm)

�
, (13)

where ti is the same as for the open tonehole as defined in
Eq. 20.
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Keefe 1982b, Eq. (68b) t(o)a =− 0.47bδ 4

tanh(1.84t/b)+0.62δ 2+0.64δ (14)

Nederveen et al. 1998, Fig. 11 t(o)a =−0.28bδ 4 (15)
Dubos et al. 1999a, Eq. (74) t(o)a =− bδ 4

1.78tanh(1.84t/b)+0.940+0.540δ+0.285δ 2 (16)

Dubos et al. 1999a, not numbered t(o)a =−(0.37−0.087δ )bδ 4 (17)

Table 1: Comparison of the expressions for the series length corrections t(o)a

Nederveen 1998, Eq. (38.3) t(o)i = (1.3−0.9δ )b (18)
Keefe 1982b, Eq. (67a) t(o)i = (0.79−0.58δ 2)b (19)
Nederveen et al. 1998, Eq. (40) t(o)i = (0.82−1.4δ 2 +0.75δ 2.7)b (20)
Dubos et al. 1999a, Eq. (73) t(o)i = t(o)s − t(o)a /4, (21)

t(o)s = (0.82−0.193δ −1.09δ 2 +1.27δ 3 −0.71δ 4)b

Table 2: Comparison of the expressions for the inner length correction t(o)i

Closed Tonehole — Series Impedance

The closed tonehole series impedance behaves as a small neg-
ative inertance, as for the open tonehole case. This can be
expressed as:

Z(c)
a = jkt(c)a , (22)

where t(c)a is the series length correction. Keefe (1981, Eq. 54)
proposed:

t(c)a =
0.47bδ 4

coth(1.84t/b)+0.62δ 2 +0.64δ
, (23)

whereas Dubos et al. (1999b, Eq. 74) calculated the length
correction in the same situation as:

t(c)a =− bδ 4

1.78coth(1.84t/b)+0.940+0.540δ +0.285δ 2 ,

(24)
where we corrected the error in the exponent of δ (4 instead of
2).

INVESTIGATION METHOD

In this section, we present a method to calculate the transmis-
sion matrix Tob j of an object from the FEM. This method is
useful to characterize an object that is part of a waveguide,
i.e. which has an input and an output plane. It can be used
to obtain the TM of any type of discontinuity in a waveguide.
One requirement is that the evanescent modes occurring near
the discontinuity must be sufficiently damped at the input and
output planes of the simulated model. In general, cylindrical
segments are thus required before and after a tonehole. The
transmission matrix obtained from the simulations is given
by T = TcylTob jTcyl where the TM of a cylindrical duct was
defined in Eq. 3. The effect of the cylinders is removed by
calculation using the inverse of the cylinder’s TM:

Tob j = T−1
cyl TT−1

cyl . (25)

The object under study in this article being a tonehole with TM
defined in Eqs. 1 and 4, we may extract the two impedances
from the finite element simulation results with:

Zs = 1/C, (26)

Za = 2(A−1)/C. (27)

A transmission matrix T contains four frequency-dependant
complex-valued parameters relating input quantities to output
quantities:

�
pin

Z0Uin

�
=

�
T11 T12
T21 T22

��
pout

Z0Uout

�
. (28)

In order to obtain these four parameters from finite element
simulation results, we need to simulate the problem two times
with different boundary conditions. By combining the results
for the two simulation cases (subscript 1 and 2), we can write a
system of linear equations to solve for the four parameters of
the TM:





pout1 Z0Uout1 0 0
0 0 pout1 Z0Uout1

pout2 Z0Uout2 0 0
0 0 pout2 Z0Uout2









T11
T12
T21
T22



=





pin1
Z0Uin1

pin2
Z0Uin2



 .

(29)

The model of a tonehole on a cylindrical tube is symmetric (re-
versing the input and output conditions leads to the exact same
system) and we take advantage of this feature to solve only one
quarter of the geometry. One symmetry plane is perpendicular
to the instrument body axis and is located on the center of the
tonehole (A) whereas the second symmetry plane is defined by
the axis of the instrument body and the axis of the tonehole
(B) (see Fig. 1). On the second symmetry plane, the boundary
condition is a null normal acceleration (symmetry). On the first
symmetry plane we define alternatively a null normal accelera-
tion for the symmetric case (case 1) and a null pressure for the
anti-symmetric case (case 2). From the values of the pressure
and normal velocity on the input plane of the model, we can
deduce the values on the output plane for both simulation cases:

pout1 = pin1 , (30)
Z0Uout1 =−Z0Uin1 , (31)

pout2 =−pin2 , (32)
Z0Uout2 = Z0Uin2 . (33)

VALIDATION

The results of our simulations are compared with the experimen-
tal data obtained by Dalmont et al. (2002) and by Keefe (1982a).
Dalmont et al. measured the shunt and series length corrections
of a flanged tonehole as a function of frequency for two tone-
holes on a tube of radius a = 10 mm: (1) δ = 0.7, t/b = 1.3
and (2) δ = 1.0, t/b = 1.01. Both toneholes were flanged at
their open end. We also compare our simulation results with
data obtained by Keefe, who measured the shunt and series
length corrections for two unflanged toneholes on a cylinder of
radius a = 20 mm: (1) δ = 0.66, t/b = 0.48 and (2) δ = 0.32,
t/b = 3.15.

The shunt length correction obtained from our simulations is
displayed in Figs. 2 and 3 in comparison to the experimen-
tal results found in the literature. Our simulation results are
in good general agreement with the experimental results of
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Figure 2: Shunt length correction t(o)s as a function of ka for the
two toneholes studied by Dalmont et al.: δ = 0.7 and t/b = 1.3
(top graph), δ = 1.0, t/b = 1.01 (bottom graph). FEM results
(filled circles), experimental data from Dalmont et al. (solid
lines) and theoretical results with Eq. 6 (dashed).

Dalmont et al. (2002) but a few interesting observation are
worth mentioning: (1) the experimental data reveals a larger
shunt length correction at low frequencies for both toneholes,
compared to both the theoretical formula and our simulation
results, which match; (2) the length correction predicted by our
simulation results matches the experimental data for the larger
diameter tonehole in the higher frequency range, predicting a
larger length correction than the current theory.

In the case of the unflanged toneholes studied by Keefe (1982a),
we found good agreement between the theoretical values, our
simulations and his experimental data for the tonehole of tall
height. For the short tonehole, there are discrepancies: the ex-
perimental data and our simulation results give larger length
corrections for the higher frequencies compared to the theory.

For the results in Table 3, our FEM simulations for the smaller
tonehole (δ = 0.7) agree with the values predicted by the the-
oretical formulas but disagree with the experimental values
obtained by Dalmont et al. (2002). In their article, Dalmont
et al. (2002) used t(o)a =−0.28bδ 2, in reference to an article by
Nederveen et al. (1998), as a theoretical formula for the series
length correction. As previously mentioned, we believe the se-
ries length correction varies as bδ 4. And in fact, Dalmont et al.
(2002) found a fairly high error with respect to that measure-
ment. For the larger tonehole (δ = 1.0), our simulations agree
with the experimental data provided by Dalmont et al. (2002)
and with all of the theoretical formulas except Eq. 14 from
Keefe. The agreement with the results in Table 4 is satisfactory.

RESULTS AND DISCUSSION

The single open tonehole was simulated using the FEM for a
wide range of geometric parameters (δ = b/a from 0.2 to 1.0
by step of 0.5, t/b from 0.1 to 0.3 by step of 0.05 and from 0.3
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Figure 3: Shunt length correction t(o)s as a function of ka for
the two toneholes studies by Keefe: δ = 0.66 and t/b = 0.48
(bottom curves), δ = 0.32 and t/b = 3.15 (top curves). FEM
results: for δ = 0.66 (filled circles) and for δ = 0.32 (filled
squares). Experimental data from Keefe (markers with error
bar) and theoretical results with Eq. 6 (dashed).

Tonehole

δ t/b Description t(o)a [mm]

0.7 1.3 FEM 0.50
Dalmont et al. 0.95±0.3
Eq. 14 0.46
Eq. 15 0.47
Eq. 16 0.52
Eq. 17 0.52

1.0 1.01 FEM 2.90
Dalmont et al. 2.8±0.3
Eq. 14 2.12
Eq. 15 2.80
Eq. 16 2.89
Eq. 17 2.83

Table 3: Series length correction t(o)a in mm. Comparison be-
tween simulation, theories, and experimental data for the tone-
holes studied by Dalmont et al.

to 1.3 by step of 0.2 and ka from 0.1 to 1.0 by step of 0.05 with
an additional low frequency point at ka = 0.01). The lowest
frequency simulated was 55Hz. For each of these parameters,
the four terms of the transmission matrix were obtained and
the shunt and series length corrections calculated using the
procedure previously described.

For the low frequency value of the shunt length correction
(te), we were able to obtain a data-fit formula that matches the
complete set of results. There is no data obtained for toneholes
with δ < 0.2 because, for such small-diameter toneholes, we
were not able to obtain precise results. In order to ensure that the
data-fit formula be valid for all values of δ , we added the two
theoretical constraints expressed in Eqs. 8 and 9. The equation
that we obtained is:

te/b = lim
k→0

t(o)s /b = t/b+[1+ f (δ )g(δ , t/b)]h(δ ), (34)

with

f (δ ) = 0.095−0.422δ +1.168δ 2 −1.808δ 3

+1.398δ 4 −0.416δ 5,

g(δ , t/b) = 1− tanh(0.778t/b),

h(δ ) = 1.435+0.030δ −1.566δ 2 +2.138δ 3

−1.614δ 4 +0.502δ 5.
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Tonehole

δ t/b Description t(o)a [mm]

0.66 0.48 FEM 0.78
Keefe 0.8±0.2
Eq. 14 0.84
Eq. 15 0.70
Eq. 16 0.93
Eq. 17 0.78

0.32 3.15 FEM 0.000019
Keefe not measurable
Eq. 14 0.000024
Eq. 15 0.000018
Eq. 16 0.000021
Eq. 17 0.000021

Table 4: Series length correction t(o)a in mm. Comparison be-
tween simulation, theories and experimental data for the tone-
holes studied by Keefe.

The open shunt impedance as a function of frequency is then
evaluated as:

Z(o)
s = j tankte, (35)

which, in the low frequency limit, becomes Z(o)
s = jkt(o)s . This

expression works relatively well when ka < 0.2. More work is
required to develop a formula that matches the simulation data
up to ka = 1.
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Figure 4: Difference between the shunt length correction t(o)s
and the tonehole height t divided by the tonehole radius b as a
function of δ : FEM results for tall (squares) and short (circle)
toneholes. Data fit formula (dotted). Current theory with Eq. 6
(dashed).

In Fig. 4, the simulation results are shown for the two extreme
cases of short (circles) and tall (squares) toneholes as well as the
data-fit formula (dotted) and the theoretical Eq. 6. This figure
shows the sum of the radiation length correction and the inner
length correction. As expected, for the toneholes of short height,
this length correction is larger than for tall toneholes, because
the unflanged tonehole ending becomes gradually “flanged” by
the body of the instrument. Even for the tonehole of larger
height, the new data-fit formula does not match exactly with
the current theory, suggesting that the inner length correction
found with our simulation is different. We can obtain the inner
length correction ti by subtracting the unflanged pipe radiation
length correction tr = 0.6133b and the matching volume length
correction tm, Eq. 7, from Eq. 34 with t → ∞:

ti/b = 0.822−0.095δ −1.566δ 2 +2.138δ 3

−1.640δ 4 +0.502δ 5. (36)
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t i/
b

Figure 5: Comparison of Eq. 36 (solid curve) for the inner length
correction t(o)i /b with equations from the literature: Eq. 19
(dash-dot), Eq. 20 (dashed), Eq. 21 (dotted).

This formula is compared with the formulas from the literature
in Fig. 5.
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kb

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

(t
(o
)

s
−

t)
/b

Figure 6: Difference between the shunt length correction t(o)s
and the tonehole height t divided by the tonehole radius b as
a function of kb for three values of δ (0.2, 0.5 and 1.0, from
top curve to bottom curve) and a value of t/b = 0.1 obtained
from FEM simulations (filled circles). Current theory with Eq. 6
(dashed), new results with Eq. 35 (dotted).

The most important discrepancy between current tonehole the-
ories and our simulation results concerns the frequency de-
pendence of the shunt length correction for toneholes of short
height, which is displayed in Fig. 6 for three toneholes with
t/b = 0.1: (1) δ = 0.2, (2) δ = 0.5 and (3) δ = 1.0. For each
of these toneholes, the shunt length correction increases with
frequency more than predicted. Equation 35 from this paper
better predicts the frequency dependence compared to current
theory but discrepancies remain. Similar results were obtained
by Keefe (1982a) (see Fig. 3). One consequence of this behav-
ior is that the higher resonances of an instrument with short
chimney height are lower in frequencies than predicted by the
current theory. This effect tends to shrink the ratio of higher
resonances relative to the fundamental. For conical instruments,
this counteracts the natural spreading of the resonances that
occurs in truncated cones.

For the low frequency value of the series length correction, we
obtained the following data-fit formula:

t(o)a /bδ 4 =− f (δ , t/b)g(δ ), (37)

where

f (t/b) = 1+(0.333−0.138δ )
�
1− tanh(2.666t/b)

�
,
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Figure 7: Series length correction t(o)a /bδ 4 as a function of δ .
FEM results: limit for large t/b (filled squares), limit for small
t/b (filled circles). Theoretical formulas: Eq. 14 (dash-dot),
Eq. 15 (dashed) and Eq. 16 (dotted).
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Figure 8: Series length correction t(o)a /bδ 4 as a function of t/b
for δ = 1.0. FEM results (filled circles). Data fit formula Eq. 37
(dotted). Theory: Eq. 16 ( dashed), Eq. 14 (dash-dot).

and
g(δ ) = 0.307−0.022δ −0.002δ 2.

Figure 7 displays the results of our simulations for two extreme
cases: short chimney height (circles) and large chimney height
(squares), in comparison to theoretical formulas from the litera-
ture and an experimental data point from Keefe (1982a). This
figure reveals that none of the theoretical equations is valid for
all values of δ and chimney height. In the case of large chimney
height, Eq. 15 provides a good approximation. The dependence
of the series length correction on the tonehole height is dis-
played in Fig. 8 for a tonehole with δ = 1.0, which reveals that
neither Eq. 16 nor Eq. 14 match our FEM results.

The results of our simulations for closed toneholes confirm the
validity of the low frequency limit of the shunt length correction.
Figure 9 shows that the low frequency value of the shunt length
correction is very well represented by the length t + tm, that is,
by the volume of the tonehole. The cotangent term in Eq. 13
tends toward infinity when k(t + tm)→ 0, consequently, the in-
fluence of an inner length correction is expected to be maximal
when k(t + tm)≈ π/2 and negligible when it goes toward zero.
As an example, for a tonehole height of 5 mm, the maximal in-
fluence of the inner length correction is above 20 kHz whereas,
for a tonehole of 5 cm chimney height, this occurs above 2 kHz.
Therefore, this term has a negligible influence even in the higher
frequency range of woodwind instruments except possibly for
instruments with very tall toneholes such as the bassoon (for
which t varies between 5 to 40 mm). Nevertheless, to study this
term, it is useful to define the impedance of the closed side hole
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δ
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t(c
)
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Figure 9: Shunt length correction t(c)s as a function of δ with
t/b = 0.1 (bottom) and t/b = 2.0 (top). FEM results (filled
circles). Theoretical value (t + tm) where tm is calculated using
Eq. 7 (dashed).

as:
Z(c)

s =− j cotk(t + tm + t(c)i ), (38)

where tm is the matching volume length correction defined in
Eq. 7 and t(c)i is the inner length correction (located inside the
cotangent term rather than outside, thus it is not equivalent to
the value from the literature). We can obtain the value of t(c)i
from our simulation results with:

t(c)i =
1
k

tan−1

�
1

jZ(c)
s

�
− t − tm. (39)

This value may be compared with the current theoretical values
by applying the previous equation to the calculated impedance
of the closed side hole using Eq. 13. This is shown in Fig. 10.
Discrepancies between the simulation results and the theoreti-
cal values exists. In the case of the short-height tonehole (top
graph), the magnitude of the inner length correction is very
small but it is remarkable that its value is negative for the two
larger-diameter toneholes (δ values of 0.8 and 1.0). Discrep-
ancies are also apparent for the large-height tonehole (bottom
graph). In this case, the discrepancies are also most important
for the larger-diameter toneholes. Further research is required
to fully characterize this effect. For instruments with normally
sized toneholes (flutes, clarinets, saxophones) this is likely neg-
ligible as explained previously.

In the case of the series length correction, we obtained a new
formula that takes into account more precisely the height and
radius of the toneholes:

t(c)a
bδ 4 =− f (δ , t/b)g(δ ), (40)

where

f (δ , t/b) = 1− [0.923−0.363δ ] [1− tanh(2.385t/b)] ,

g(δ ) = 0.302−0.019δ +0.003δ 2.

In Fig. 11, we consider the low frequency limit of the series
length correction t(c)a for short and tall tonehole heights com-
pared to previous theories. The results for the tall tonehole are
the same as for an open hole (see Fig. 7). When the toneholes
are short in height, the series length correction term diminishes
in magnitude. Figure 12 present this length correction as a func-
tion of the ratio t/b for one tonehole (δ = 1.0) in comparison
with current theories.
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Figure 10: Inner length correction t(c)i /b for closed toneholes
as a function of kb for δ = 0.2,0.5,0.8,1.0 obtained from FEM
simulations (filled circles) compared to theory (dashed). Top:
t/b = 0.5, bottom: t/b = 2.0. The dotted line is a visual aid.

Impact of Conicity

A tonehole on a conical bore is no longer symmetric. In this
situation, we propose to modify the model represented by Eq. 4
with:

Thole =

�
1+Zau/Zs Zau +Zad +Zau Zad/Zs

1/Zs 1+Zad/Zs

�
, (41)

where Zau is the series impedance for the upstream half of the
tonehole and Zad of the downstream half.

In a similar manner as for toneholes on cylindrical bores, we
obtained the TM of the tonehole on a conical bore using Finite
Element simulations. The transmission matrix Thole of the tone-
hole is obtained from the transmission matrix T of the simulated
system by multiplying this matrix by the inverse of the TM of
the two segments of truncated cones, Tconeu and Tconed :

Thole = T−1
coneu

TT−1
coned

, (42)

where the TM of a conical waveguide is (Fletcher and Rossing
2008):

Tcone =

�
−rtout sin(kL−θout) jr sinkL

jrtintout sin(kL−θout +θint) rtin sin(kL+θin)

�
,

(43)
where xin and xout are respectively the distances of the input
plane and output plane from the apex of the conical frustum and
where r = xout/xin, L = xout − xin, θin = arctan(kxin), θout =
arctan(kxout), tin = 1/sinθin and tout = 1/sinθout .

We are interested in determining whether or not the shunt
impedance Zs is different from that derived for a cylindrical
bore and to determine the effect of the asymmetry on the values
of Zau and Zad . The tonehole parameters were obtained for two
conical waveguides with taper angles of 3 and 6 degrees. As
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Figure 11: Series length correction t(c)a /bδ 4 as a function of δ .
FEM results: limit for large t/b (filled squares), limit for small
t/b (filled circles). Theoretical formulas: Eq. 14 (dash-dot),
Eq. 15 (dashed) and Eq. 16 (dotted).
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Figure 12: Series length correction t(c)a /bδ 4 as a function of
t/b for δ = 1.0. FEM results (filled circles). Data fit formula
Eq. 37 (dotted). Theory: Eq. 16 (dash-dot), Eq. 14 (dashed).

for toneholes on a cylindrical bore, we developed a data-fit
formula for the shunt equivalent length of the open tonehole
from the simulation data (with the same set of parameters).
Then we calculated the differences between the two fit formulae
and determined that the maximal difference is 4×10−5 b in
both cases. This is a very small difference and we are confident
to conclude that the shunt length corrections are unchanged
relative to their values on a cylindrical bore.

A conclusion for the series length correction is more difficult.
For the simulations of toneholes on cylindrical bores, we solved
only half the system, thus forcing the symmetry. In the case of
the conical bore, the complete system is solved and the TM is
not forced to be symmetric, which seems to augment numerical
errors. As can be seen in Fig. 13, the upstream and downstream
values of the series length correction are very close to one
another even though they become slightly different for smaller
values of δ . The impact of the series length correction being
relatively small and increasingly less important as the toneholes
become smaller, this is likely to be negligible.

From this analysis, we conclude that the use of TM parameters
developed for toneholes on cylindrical bores are valid for coni-
cal bores, at least up to an angle of 6 degrees and probably for
wider angles as well.

CONCLUDING REMARKS

We obtained new formulas for the shunt and series impedance
of an unflanged tonehole that is valid for tonehole heights com-
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Figure 13: Series length correction ta in mm for a tonehole
on a conical bore with taper angle of 3 degrees: limit for long
(squares) and short (circles) toneholes – upstream part (filled),
downstream part (unfilled).

mon in woodwind instruments. For an open tonehole, the shunt
length correction is expressed in Eq. 34 and the series length
correction in Eq. 37. For a closed side hole, the series length
correction is expressed in Eq. 40 whereas the shunt length cor-
rection from the literature, Eqs. 11 and 12, are valid.

We verified that the shunt length correction of a tonehole on a
cylindrical bore can be used as well on a conical bore.
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