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ABSTRACT

Sounding of a two dimensional(2D)) small air reed instrument with an open end was numerically studied with compress-
ible Large-Eddy Simulation (LES). Open end reflection of a 2D pipe reproduced numerically shows good agreement
with that given by the theoretical formula developed by ourselves. Vibrations of the air-reed instrument driven by an
air jet were well reproduced. The spatial distribution of aerodynamic sound source calculated with Lighthill’s formula
almost overlaps with that of vorticity near the mouth opening. The pressure detected at a point in the pipe vibrates at the
fundamental or 2nd harmonic resonance frequency of the pipe depending on the jet velocity. So it strongly correlates
with the jet oscillation. The relation of the sound frequency with the jet velocity was discussed comparing with the
prediction given by the semi-empirical theory developed by Cremer & Ising, Coltman and other authors.

INTRODUCTION

Elucidation of acoustical mechanism of air-reed instruments is
a long standing problem in the field of musical acoustics(1, 2).
The major difficulty of numerical calculation of air-reed in-
strument is in strong and complex interactions between sound
field and air flow dynamics(1, 2, 3), which is hardly reproduced
by hybrid methods normally used for analysis of aero-acoustic
noises(4). We need a direct method which allows to simulate
dynamics of the jet flow and sound field in a resonator simul-
taneously.

With recent improvement in computer performance, direct sim-
ulations based on fluid dynamics becomes applicable for study
of the sounding mechanism of air reed instruments. Yagawa
and his coworkers used a node-by-node finite element method
(NBN-FEM) for the direct calculation of the edge tone(5) Their
result shows a good agreement with the experimental data(6).
However, this method was not able to reproduce pipe reso-
nance, because the open end reflection was not reproduced
by their method(7). The lattice Boltzmann method (LBM) has
been used for a direct simulation of air-reed instruments in
MIT(8). It has succeeded in simulating the vibration of the
jet(8, 9). But the result is still not realistic, because the method
used requires an nonphysically high viscosity to stabilize os-
cillations.

The aim of our study is to reproduce sound vibration of air-reed
instruments and to analyze the interaction of the jet flow with
the sound field(10). To do this, we choose compressible Large-
eddy Simulation (LES) solver to reproduce the sound filed and
flow dynamics of the instrument by directly solving the Navier
Stokes equation, because LES is very stable for a long term
calculation, though it somewhat sacrifices accuracy(4).

Taking a 2D small air-reed instrument with an open end, we
have investigated how LES reproduces sound vibrations in the
resonator as well as the jet oscillation as a sound source. Be-

fore that we will check the numerical reproducibility of the
open end reflection of a 2D pipe with compressible LES, com-
pared with the reflectance obtained by the theoretical formula
for 2D flanged pipes developed ourselves. Numerical results
are in good agreement with the theoretical prediction.

Next, the sound vibrations in the resonator as well as the jet
oscillation are successfully reproduced for the 2D small air-
reed instrument. Spatial distributions of air density, flow ve-
locity, vorticity and Lighthill’s sound sources are calculated.
Further, the relation of the sound frequency with the jet ve-
locity qualitatively was studied. It agrees with theoretical pre-
diction by the semi-empirical theory developed by Cremer &
Ising, Coltman and other authors based on experimental results
(11, 12, 13, 14, 15, 16, 17, 18, 19, 20).

LIGHTHILL’S THEORY

The sound generated by turbulence is usually called aerody-
namics sound, which is a very small byproduct of the motion
of unsteady flows of high Reynolds number. The source of
aerodynamics sound was clarified and given the exact form by
Lighthill(21). Lighthill transformed exactly the set of funda-
mental equations, Navier-Stokes and continuity equations, to
an inhomogeneous wave equation whose inhomogeneous term
plays the role of the source:(

∂ 2

∂ t2 − c2
0∇2

)
(ρ −ρ0) =

∂ 2Ti j

∂xi∂x j
, (1)

where the tensor Ti j is called Lighthill’s tensor and is defined
by

Ti j = ρviv j +((p− p0)− c2
0(ρ −ρ0))δi j +σi j. (2)

Here, c0 denotes the speed of sound in a stationary acoustic
medium, p the air pressure with the average p0, ρ the air den-
sity with the average ρ0, and σi j the viscous stress tensor. It is
considered that the sound wave is generated by the quadru-pole
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source distribution in turbulence given by the inhomogeneous
term in RHS of eq.(1) and propagates like that in the station-
ary acoustic medium. This interpretation is called Lighthill’s
acoustic analogy.

Since the dissipation by σi j can be ignored for a high Reynolds
number and adiabaticity is well held as

(p− p0)− c2
0(ρ −ρ0) = 0, (3)

then the first term of eq.(2), ρviv j , becomes the major term of
the source. Further, particle velocities of the sound are usually
sufficiently small compared with those of the real flow and so
the source term is well approximated by that obtained from in-
compressible fluid with ρ = ρ0 and div v = 0. Then, the sound
source is given by

∂ 2Ti j

∂xi∂x j
∼ ρ0

∂ 2viv j

∂xi∂x j

= s2
i j −w2

i j

= ρ0div(ω ×v)+ρ0∇2
(1

2
v2

)
, (4)

where si j and wi j are respectively given by

si j =
1
2

(
∂v j

∂xi
+

∂ vi

∂ x j

)
(5)

wi j =
1
2

(
∂v j

∂xi
− ∂vi

∂x j

)
. (6)

For two dimensional(2D) fluid, it is further reduced into

∂ 2Ti j

∂xi∂x j
∼−2ρ0

(
∂v1

∂x1

∂ v2

∂ x2
− ∂v2

∂x1

∂v1

∂x2

)
. (7)

This formula will be used for calculation of Lighthill’s sound
sources later.

EDGE TONE

As shown in Fig.1, edge tone is an aerodynamics sound gen-
erated by the unsteady but mostly periodical oscillation of jet
emanated from the flue and collied with the edge, which is
consider as the sound source of air-reed instruments(1, 2, 3).
Production of edge tone has been a long standing problem in
the fields of aero-acoustics and musical acoustics and details
of its mechanics are not completely understood yet. However,
its features have been well captured by semi-empirical equa-
tions introduced based on experimental results. To the authors’
knowledge, the first pioneer work was done by Brown, who
introduced the following empirical formula(6):

f = 0.466 j(100V −40)(1/(100l)−0.07), (8)

where V denotes the speed of jet and l is the distance be-
tween the flue and the edge. The number j is taken as j =
1.0,2.3,3.8,5.4. For j = 1, it gives the fundamental frequency
and others denote overtones. With increase of V , the funda-
mental oscillation is excited and its frequency increases in pro-
portion to V . But it jumps to one of overtones, if V exceeds a
threshold value, and it jumps successively from one to other
with increase of V . The transitions are hysteretic and so the
the threshold values of V of the downward process are usually
different from those of the upward.

Note that the edge tone in the 2D and 3D geometries are suc-
cessfully reproduced by several schemes including the com-
pressible LES used in our study(5, 22).

Figure 1: Edge tone

MODEL AND NUMERICAL SCHEME

A 2D model of air reed instruments, which we will study in
this paper, is shown in Fig.2(a). Parameters which determine
the dimensions of the model are indicated in the figure. The
angle of the edge of 25◦ is determined referring to real air-reed
instruments. In the numerical analysis, we use compressible
LES(Large Eddy Simulation)(4) to solve a compressible fluid
motion inside the air reed instrument as well as in the near field
of it. In the LES method, the number of grid points is markedly
saved with other analytical schemes. A fluid element such as a
vortex bigger than the representative size of cells is analyzed
directly. On the other hand, the feedback of vortexes smaller
than the cell size to the macro-scale dynamics is approximates
by using the statistical averaging procedure that is called SGS
(sub-grid scale) model. Therefore, it is considered that LES
does not reproduce the fluid dynamics with a high degree of
accuracy in a boundary layer like a neighborhood of the edge
in comparison with the other methods. However, it is suitable
for long term simulations, because it is very stable. In our cal-
culation, the time evolution up to 0.1s is considered. Taking
into consideration the highness of the phase speed of sound
waves, time step is taken at ∆t = 1.0×10−7s.

The numeric scheme used for the analysis is the compression
LES solver “Coodles” in OpenFOAM ver1.5(23). The numer-
ical mesh used for calculation is shown in Fig.2(b), and its
parameters are shown in Table 1. The observation points are
points A and B in Fig.2(a). Point A is located at the point on
the center axis of the pipe 10.0mm left from the open end. At
this point, the acoustic pressure (pressure displacement from
the atmospheric pressure) is observed. Point B is 3.0mm right
from the exit of the flue on its center axis. At this point, the vor-
ticity that the jet produces is measured. According to the vor-
tex sound theory(24, 25) that Powell and Howe developed fol-
lowing Lighthill’s acoustic analogy(21), vortexes are the main
source of the aerodynamic sound. This is the reason why the
vorticity is measured.

Table 1: Parameters of mesh

points cells faces
193,212 95,662 383,592

OPEN-END REFLECTION

Before showing numerical results of the air-reed instrument in-
troduced above, we see how open-end reflection is numerically
reproduced by LES, because the reproducibility of the open
end reflection is one of the bench mark tests how a compress-
ible fluid solver effectively reproduces properties of acoustic
waves. Indeed, it was reported that a sort of finite elementary
methods, a compressible CFD scheme with node-by-node fi-
nite elements, is not available for the reproduction of open-
end reflection(7), while a certain lattice Boltzmann method
well reproduces the open end reflection of a axially symmet-
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(a)

(b)

Figure 2: Model and mesh. (a) Dimensions of 2D model (Unit
of length :mm; Unit of angle:degree). (b) Numerical mesh.

(a)

d=1

h=10
(c)

(b)

(c)
h=10

Figure 3: Two models for calculation of open-end reflection.
(a) Model 1. (b) Model 2．

ric pipe(26) and it was also reported that sounding of air-reed
instruments is partially reproduced by some other type of the
lattice Boltzmann method(9).

To check the numerical reproducibility of the open end reflec-
tion of a 2D pipe with LES, we need the theory of the radia-
tion impedance of 2D open pipes as a reference. The radiation
impedance of a 2D flanged pipe, i.e., an open pipe set in an in-
finite plane baffle, is obtained in a similar way of derivation to
that of a 3D flanged pipe, for the case of 3D pipes see Ref.(27).
First, a 2D cylindrical wave caused by a point source with a
strength Q is given by

p(r) = ρ0c
Qk
2

H(2)
0 (kr)eiωt , (9)

where H(2)
0 is the 0-th order Hankel function of the second

kind. Making use of this solution, the radiation impedance of
a 2D flanged pipe with a height h = 2a is obtained in a similar
way for the case of a 3D flanged pipe:

ZR(ω) = Z0
k
a

∫ a

0
dr′

∫ 2r′

0
drH(2)

0 (kr)

= Z0
πk
a

∫ a

0
dr′r′

×
(

H0(2kr′)H(2)
1 (2kr′)+H−1(2kr′)H(2)

0 (2kr′)
)
,

(10)

where ω = ck, the characteristic impedance of the pipe Z0 is
given by Z0 = ρ0c/(2a) and Hn denotes the Struve function.
In the small and large limits of ω , ZR is respectively reduced
into

lim
ω→0

ZR(ω) ∼− i
π

2Z0ka
(

log(ka)− 1
2

)
→ 0, (11)

lim
ω→∞

ZR(ω) → Z0 +O(1/ω). (12)

(a)

(b)

Figure 4: Time evolution of an injected pulse observed at the
fixed point (C) in Fig.3(a) and (b) (time step: ∆t = 1.0 ×
10−7s)．(a) Change of acoustic pressure for Model 1. (b)
Change of acoustic pressure for Model 2．

From ZR obtained with numerical integration, the reflectance
R is calculated through the following formula,

R(ω) =

∣∣∣∣∣ZR −Z0

ZR +Z0

∣∣∣∣∣
2

. (13)

The end correction ∆L is also obtained with

∆L(ω) =
1
2k

arg

(
−
√

R
ZR +Z0

ZR −Z0

)
(14)

∼ 2a
π

(1
2
− logak

)
, (ω ¿ 1), (15)

where the evaluation in the most RHS term is given by making
use of eq.(11).

We will show numerical results for two pipe models with dif-
ferent shapes of opening(see Fig.3). The first model in Fig.3(a)
(Model 1) has the same opening as the air-reed instrument in
Fig.2. The second model(Model 2) in Fig.3 (b) is of a flanged
opening. A Gaussian-shape pulse is injected from the left hand
side in the pipe and the time evolution of acoustic pressure is
observed at the point (c) between the input point of the pulse
and the opening(see Fig.3 (a) and (b)). For both models, as
shown in Fig.4, the positive incident pulse is reflected at the
open end and comes back as a negative pulse. However, the
reflective pulses are fairly deformed with smaller amplitudes
and are accompanied by a long oscillating tail. The frequency
of the oscillation is of about 39000Hz, nearly equal to twice the
cutoff frequency fc defined as fc = c/2a ∼ 17394Hz. It means
that the second mode instead of the first mode is excited on
the cross section of the pipe. The amplitude of the reflective
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Figure 5: Reflected intensities obtained numerically for Model
1 and 2 compared with the theoretical calculation given by
eq.(13)

Figure 6: End corrections obtained by eqs.(14) and (15).

pulse for Model 2 is larger than that for Model 1. In any case,
it seems that the open end reflection is reproduced by the nu-
merical calculation with LES.

Fig.5 shows reflected intensities for the two models as a func-
tion of frequency, which are obtained with taking the ratio of
the power spectrum of the output pulse to that of the input.
For comparison, the reflectance R obtained theoretically with
eq.(13) is also drawn in this graph. All the reflected intensi-
ties decrease exponentially with the frequency f in the range
(0 ≤ f ≤ fc). However, the reflection intensity for Model 1
is fairly smaller than that for Model 2, though the reflected
intensity for Model 2 decreases with almost the same rate as
that given by the theoretical formula for flanged pipes. Then
the compressible LES well reproduces the open end reflection.
However, Model 1 has weak resonances compared with Model
2. This is because Model 1 has no sharp edge nor flange at the
bottom of the opening, which makes the reflectivity reduced.
The reason why we take Model 1 with a smaller reflectance
rather than Model 2 with a stronger one is to reduce a numeri-
cal elapse time with decreasing the number of the grid points.
Fig.6 shows end corrections obtained by eqs.(14) and (15). The
approximation given by eq.(15) well follows the exact formula
of eq.(14) in a low frequency range. The end corrections are
estimated as ∆L ∼ 9.0mm and ∆L ∼ 6.9mm at the first and
second resonance of the pipe, f ∼ 1611Hz and f ∼ 3221Hz,
respectively.

NUMERICAL RESULTS

Stable oscillation

In this subsection, we shows results at V = 26m/s, at which
the most stable oscillation of the fundamental state is observed.
Fig.7 shows the spatial distributions of air density, flow veloc-
ity, vorticity and Lighthill’s sound source observed at a certain
time. Lighthill’s sound source is calculated by using eq.(7).
In the air density distribution in Fig.7(a), we see a stationary
oscillation with a large amplitude inside the pipe, while the
air density takes smaller values in the amplitude in the out-
side. As shown in Fig.7 (b), the jet is oscillating regularly and
there exist large eddies rolled up near the mouth over and un-
der the edge, which are created by the collision of the jet with
the edge. The distribution of Lighthill’s sound source in Fig.7
(c) almost overlaps with that of the vorticity in Fig.7 (d). This
result agrees with Powell-Howe vortex sound theory(24, 25),
which claims that the major part of the sound is emitted by
moving vortexes.

Fig.8 shows time evolution of the acoustic pressure and its
power spectrum at the observation point A. The amplitude of
the wave fluctuates in some beat pattern, but the pitch is kept at
the almost same value 1514Hz after a short starting transient.

Fig.9 shows time evolution of the vorticity and its power spec-
trum at the observation point B. Vorticity oscillates with the
amplitude more stable compared with the acoustic pressure.
The power spectrum has the peak of the fundamental pitch at
1514Hz, which is is the same as that of the acoustic pressure. It
means that the jet motion is synchronized with the sound field
of the fundamental resonance of the pipe.

Change of frequency with jet velocity

In Fig.10 we shows the change of frequency of the acoustic
pressure at the point A with increase of V . The pipe resonance
frequencies given by the acoustic theory and the edge tone fre-
quency given by Brown’s edge tone equation in eq.(8) are also
depicted in this figure.

The frequency curve of the fundamental changes linearly fol-
lowing Brown’s edge tone equation in range of V = 2∼ 18m/s.
But, for V ≥ 20m/s, the curve levels off approaching to the
fundamental resonance frequency of the pipe, which means
that the frequency rocking to the fundamental occurs. The first
overtone observed for V ≥ 30m/s increases following the Brown’s
edge tone equation in the beginning and is leveled off con-
verging on the second harmonic. From the observation of pres-
sure waves, which are not shown here though, it seems that the
transition from the fundamental to the second harmonics takes
place beyond V = 32m/s. Indeed, the wave form is change
from a fundamental wave to a second harmonic wave.

The characteristic of the frequency change with respect to V
qualitatively agrees with the theoretical prediction by Cremer
& Ising, Coltman and other authors. It supports the validity of
our numerical analysis and it is safely said that the compress-
ible LES reproduces sound vibrations of air-reed instruments.

DISCUSSION

In this paper, we reported reproducibility of open end reflection
of 2D open pipes and of sound vibration of a 2D air-reed instru-
ment with compressible LES. The reflection intensity of the
2D flanged pipe is well reproduced as a function of frequency
by the compressible LES, which is confirmed with comparing
with that given by the theoretical method developed by our-
selves.
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(a) (b)

(c) (d)

Figure 7: Spatial distributions of representative dynamical variables. (a) Air density. (b) Flow velocity. (c) Vorticity. (d) Lighthill’s
sound source.

(a)

(b)

Figure 8: Acoustic pressure at point A. (a) Acoustic pressure
oscillation. (b) Power spectrum.

Relying upon the successful reproduction of open end reflec-
tion, we have gone forward the calculation of the air-reed in-
strument with a open end. As a result, the jet oscillation and
sound production of the air-reed instrument are well repro-
duced by using the compressible LES. Spatial distributions of
characteristic dynamical variables, air density, flow velocity,
vorticity and Lighthill’s sound source, are calculated. The dis-
tributions of flow velocity and vorticity near the mouth opening
are very similar to those observed experimentally (28, 29). Es-
pecially, change of the sound frequency with the jet velocity
obtained numerically shows good agreement with the theoret-
ical prediction as well as experimental results (11, 12, 13, 14,
15, 16, 17, 18, 19, 20). For more detail comparison of the nu-

(a)

(b)

Figure 9: Vorticity at point B. (a) Vorticity oscillation. (b)
Power spectrum.

merical result with the theoretical prediction, see Ref.(10), in
which the air-reed instrument with a closed end instead of that
with the open end was studied though.

Based on the results of this paper, we are able to proceed to
comprehensively study the acoustic mechanism of the air-reed
instrument. With help of the Lighthill theory(21) and/or Powell-
Howe vortex sound theory(3, 24, 25), the place of sound sources
in turbulence will be detected clearly and their behavior will
be characterised in terms of aero-dynamics and nonlinear dy-
namics. We have already started the research for the problem
of edge tone in this direction(22). We will have to answer the
questions which mechanism, volume-flow mechanism or mo-
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Figure 10: Changes of oscillation frequencies with jet velocity.

mentum drive mechanism (11, 12, 13, 14, 15, 20, 30, 31),
dominates at a given jet velocity and what change occurs with
change of the jet velocity. It is the most important to answer
the problem what kind of interaction between the resonance of
the pipe and the jet motion works to synchronize the fluid vi-
bration with the sound oscillation. The synchronization mech-
anism should be different from that of the edge tone.

Concerning with 3D model calculation, we have already start
the calculation of some model systems(22, 32). In Ref.(32), the
3D ocarina model was studied. The ocarina uses the Helmholtz
resonance caused by an elastic property of air instead of the
pipe resonance. Then, it is quite interesting to consider the
problem how different acoustic mechanisms work for differ-
ent types of resonator with comparing numerical data of the
ocarina with that of a 3D model of the instrument with a reso-
nance pipe.
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