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ABSTRACT

The helical spring is a structure which has seen little investigation in the context of musical acoustics; though it doesnot
play a role in musical instrument acoustics, it is the primary vibrating structure in electromechanical spring reverbera-
tion devices. The response of a spring is, however, even under linear conditions, far more complex than that of a straight
rod, and consists of multiple echoes at distinct velocities, of a highly dispersive character, subject to multiple cutoff
frequencies. In the interest of developing digital emulations, it is thus useful to obtain a complete picture of the per-
ceptual importance of the various features in a reverberation context, through an investigation of dispersion curves and
associated group velocities. Additional difficulties inherent in numerical simulation methods, also with an eye towrds
perceptual considerations, will also be discussed.

INTRODUCTION

The vibration of a helical spring forms the basis for artifi-
cial spring reverberation [8, 20, 15], a popular classical elec-
tromehanical reverberation technique. Such units, while long
since superseded by digital reverberation devices (normally
based on sampled impulse responses or simple digital filter de-
signs), possess certain special qualities which make emulation,
through physical modeling methods, somewhat challenging.
Such emulation of electromechanical and analog electronicau-
dio effects has been quite popular recently—see, e.g., the re-
cent special issue of the IEEE Transactions on Audio Speech
and Language Processing [17] for a wide range of applications.
Digital emulation of the spring reverberation unit has beenap-
proached using all-pass filter design techniques [1], delay lines
[10] and finite difference schemes [4].

The typical response of a wire is complicated enormously, even
under linear conditions, by the effects of curvature—the analy-
sis of such behaviour is best approached in terms of dispersion
curves, relating wavenumber to frequency, which exhibit re-
gions in frequency of both low dispersion (leading to relatively
coherent echoes) and high dispersion (leading to a more diffuse
response or chirp-like echoes). Coherent echoes result purely
from wire curvature, and are not present in a straight wire.
More generally, such dispersion analysis allows for a means
of extracting important perceptual attributes of the spring re-
sponse, such as echo density, mode density and various cut-off
frequencies—a necessary step in the calibration of an audio
processing algorithm. Dispersion analysis has also been used,
in the context of stiff string models, as a means of designing
terminating filters for digital waveguide designs [3].

In this short paper, a model of helical spring dynamics will
be presented, in the interest of determining features of percep-
tual interest—this is preliminary work, intended as an aid to
future modeling work in conjunction with measured data, and
especially to help in the analysis of spring responses, which
are enormously complex. The model, suitable for thin springs,
is a simple two-variable form reduced from a more complete

thick-spring model and is detailed in the first section. In the
next section, dispersion curves are derived, followed by anex-
amination of the dependence of the curves on angle, cut-off
frequencies, and the dependence of group velocity (and thus
echo recurrence rates) on frequency and wavenumber. Some
simple measured spring responses are examined subsequently
in this light. Finally, there is a short discussion of the numer-
ical issues in moving from a continuous problem to a discrete
time framework (for digital emulation).

A THIN SPRING MODEL

The starting point in many investigations of helical springdy-
namics is the model of Wittrick [18]—see, e.g., [19, 11]. Such
a model, written as a system in twelve variables, incorporates
effects of large thickness, and may be considered to be an ex-
tension of the Timoshenko theory of beam vibration [7] to the
case of a beam with curvature. This system, which will not be
presented here, possesses six dispersion relations, and captures
the dynamics of the spring to very high frequencies (into the
MHz range for springs of dimensions typical in reverberation
applications). Given that (a) such springs are normally quite
thin, (b) the range of frequencies of interest in audio applica-
tions is much lower (< 20 kHz), and normally only two of the
six dispersion relations lie in the audio range and (c) computa-
tional expense will become an important issue if such a model
is to be used, eventually, as a virtual emulation, a simpler “thin"
spring model is a more useful starting point. (A comparison
between the dispersion curves of the full model and the thin
spring model appears later in this section.)

There are many such thin spring models, and it is important
that the perceptual attributes of the model not be disturbed
through such an approximation. One model, presented in [6],
is similar to that given in [2] and other standard models of
annular rings [7], and was used subsequently in [4] for vir-
tual spring emulation. Such a model assumes zero helix angle
(i.e., the spring is modelled as a series of rings), and faithfully
approximates the lowest dispersion relation. However, as will
be seen shortly, the dispersion characteristics of a springde-
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pend very strongly on angle—and furthermore, there are two
closely spaced dispersion curves in the audio range. An angle-
dependent two variable model, closely related to that givenin
[5] will be taken as the starting point here.

Model Equations

The geometry of a helical spring is as illustrated in Figure1;
indicated in the figure are the coordinatex∈ [0,L], representing
arc length along the wire, of total unwound lengthL, as well
as a transverse displacementv′ (which is nearly parallel to the
spring axis, when the helix angle is small), and a longitudinal
displacementw′ (which is in the direction of of the wire itself
at any given point along the spring). In the model which fol-
lows, the displacements will be dependent on both the spatial
coordinatex′, and timet ′, i.e.,v′ = v′(x′,t ′), w′ = w′(x′,t ′).

Figure 1: A helix, of wire radiusr, and coil radiusR. The co-
ordinatex′ (in green) runs along the midline of the wire, and
displacementsw′ (longituidnal) andv′ (transverse) are as indi-
cated. .

The wire itself is of radiusr, and of circular cross section, with
cross sectional areaA = πr2 and moments of inertiaIv andIw
about thev andw directions. The coil radius isR, and the helix
angle (in radians) is here written asα. (Angles in degrees will
be written as∠.) Material parameters for the spring are the
density,ρ, in kg/m3, and Young’s modulusE and the shear
modulusG = 1

2E/(1+ν), for Poisson’s ratioν, both in Pa. In
scaled coordinates, i.e., defining

x = x′ cos2(α)/R v = v′ cos2(α)/R w = w′ cos2(α)/R (1)

and

t = t ′/t0 t0 =

√

ρAR4

EIv cos4(α)
(2)

the following simplified model of spring dynamics follows di-
rectly from the general model of Wittrick, under the assump-
tion that the spring is thin:

Autt = Qmx Dm = Qux (3)

Here,u = [v,w]T is a vector containing the transverse and lon-
gitudinal displacements, and subscriptst andx indicate partial
differentiation with respect tox andt. The matrix operatorsA,
D are defined as

A =

[

1 0
0 1− ∂ 2

∂ x2

]

D =

[

1 0
0 d − ∂ 2

∂ x2

]

(4)

and the operatorQ as

Q =

[

−2τ τ2−1− ∂ 2

∂ x2

τ2−1− ∂ 2

∂ x2 2τ
(

1− ∂ 2

∂ x2

)

]

(5)

In this non-dimensional form, the system depends on the two
parameters

τ = tan(α) d = EIw/GIv (6)

Such a two-variable model is very similar to that given in [5]
(the discrepancy may be due to an error in this article, in Equa-
tion 5). These same authors give a value ofd = 1.3, for a spring
of circular cross-section, and for Poisson’s ratio 0.3.

Not presented here are the boundary conditions, six of which
must be supplied at each end of the spring.

DISPERSION CURVES AND EIGENSTRUCTURE

Dispersion curves for system (3) follow directly, under the as-
sumption of a wave-like solution, of angular frequencyω and
wavenumberβ . The system may then be written, at steady
state, as

ω2û = Rû R = β 2Â−1Q̂D̂−1Q̂ (7)

whereû is a vector of complex amplitudes, and where the ma-
trices above become, in terms of wavenumberβ ,

Â =

[

1 0
0 1+β 2

]

D̂ =

[

1 0
0 d +β 2

]

(8)

Q̂ =

[

−2τ τ2−1+β 2

τ2−1+β 2 2τ
(

1−β 2
)

]

(9)

Dispersion curves may be derived easily by taking the eigen-
values ofR(β ); if λ+(β ) and λ−(β ) are the two eigenval-
ues (both positive), then the dispersion relationsω+(β ) and
ω−(β ) are given simply as

ω+(β ) =
√

λ+(β ) ω−(β ) =
√

λ−(β ) (10)

For reference, in Figure2 at top, the two curves are plotted,
as a function ofβ , for a spring of thickness typical of spring
reverberation units, and for a helix angle of∠ = 5◦. The dif-
ference between the curves generated by system (3) and the
full twelve variable model is shown at bottom; it is most pro-
nounced at high wavenumbers, and is negligible over most of
the audio range.
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Figure 2: Top: non-dimensional dispersion curvesω+(β )
(grey) andω−(β ) (black) for the model (3). Bottom: Differ-
ence∆ω between curves generated by model (3), and a full
twelve-variable model, incorporating effects of thickness. In
this case, the spring hasτ = 0.0875, andd = 1.3.
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General Features

The two curves possess a similar form. Each exhibits a primary
hump covering the range of wavenumbers betweenβ = 0 and
β ≅ 1, and reaching a peak at a wavenumber slightly above
β = 0.5; the hump is thus not symmetric, even in the limit of
small angle. The lower (-) curve possesses a zero atβ = 0, and
an additional zero atβ = β0 =

√
1+ τ2. At β = β0, the mo-

tion of the spring is thus rigid body, where the corresponding
wavelength is exactly one turn of the helix. At wavenumbers
above the primary hump, both curves approach bar-like disper-
sion curves, with a general dependence onβ 2.

Dependence on Angle

The general shapes of the curves exhibit large variation, even
for very small angles (which are normally on the order of be-
tween 1 and 4 degrees for spring reverberation units). See Fig-
ure3. The lower curve retains a zero atβ = β0 =

√
1+ τ2, but

becomes progressively smoother as angle increases. The upper
curve, however, possesses a minimum which increases with
angle, until an angle of approximately∠ = 14◦, after which
it becomes purely monotonic. Notive that the curves are not
identical when the helix angle is zero; at zero helix angle, the
system decouples into pure longitudinal and transverse motion.
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Figure 3: Variation of dispersion curvesω+(β ) (grey) and
ω−(β ) (black) with helix angle for the model (3). The thick
curves represent the uncoupled dispersion relations when∠ =
0◦, and moving progressively away from them are curves with
∠ = 2◦,4◦,6◦,8◦

Cut-off Frequencies

There are various cutoff frequencies associated with the sys-
tem, allowing the determination of the number of wavelike
and evanescent solutions in a given frequency range. The lower
curveω+ possesses a maximum at (for very low angles),

ω(−)
c+ ≅ 0.3 at β ≅ 0.53

and similarly, for the upper curve,

ω(+)
c+ ≅ 0.34 at β ≅ 0.53

These are indicated as horizontal black and grey dotted lines,
respectively, in Figure4.

In spring reverberation units, these cutoffs (in dimensional units)
normally occur in the range between 2 and 5 kHz, and consti-
tute one of the major perceptual features of a spring reverber-
ation unit, the sound of which is primarily low-passed, witha
superimposed high-frequency noise-like component.
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Figure 4: Dispersion curves for system (3), where the helix
angle is∠ = 4◦. Cutoff frequencies are indicated by horizontal
dotted lines, and regions over which there are distinct numbers
of traveling components to the solution by different colors.

In addition to the high-frequency cutoffs, the (+) curve pos-
sesses an additional low-frequency cutoff slightly belowβ = 1.
For low angles, the cutoff occurs at approximately

ω(+)
c− = 2τ (11)

which is indicated as a horizontal dotted grey line in Figure4.
This frequency is normally under 1 kHz for a typical spring
reverberation unit.

Traveling and Evanescent Components

The number of intercepts of the pair of curves at a given fre-
quency indicates the number of traveling (i.e., real wavenum-
ber) components to the solution at this frequency. Regions of
distinct numbers of traveling components are indicated by col-

ors in Figure4. Belowω(+)
c− , thus, there are four such solutions

(in yellow); betweenω(+)
c− andω(−)

c+ there are six (in green);

betweenω(−)
c+ and ω(+)

c+ there are four (in blue); and above

ω(+)
c+ (at least until the range of very high frequencies, at which

point the full thick spring model will be necessary for a com-
plete count), two (in red). Such waves are uni-directional—for
the spring system, there will be a symmetric set of compo-
nents traveling in the opposite direction, thus the total number
of traveling components will be twice the count here.

This characterization is valid, provided that boundary condi-
tions are not frequency dependent—but is a spring reverber-
ation unit, they may well be slightly so, due to the nature of
the excitation mechanism (essentially a massive bead fixed to
one end of the spring and driven electromagnetically), and the
pickup (a similar bead moving within a magnetic field at the
opposite end).

Group Velocity and Echoes

One of the interesting features of spring reverberation units
is the strong presence of coherent echoes in the resulting re-
sponse; as mentioned above, such echoes are notably absent
in other electromechanical reverberation devices (such asplate
reverberation [9]), and are more prominent than in the case of
a straight wire.
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Figure 5: Group velocity curvesdω+/dβ (grey) anddω−/dβ
(black) for the model (3), with helix angle∠ = 2◦.

To this end, it is interesting to examine the behaviour of the
group velocity curves associated with the dispersion curves
ω(+) andω(−), which may be obtained by differentiation with
respect to wavenumberβ . The two curves are shown in Figure
5. Regions over which the curves are relatively flat correspond
to coherent wave propagation; of particular interest are the lim-
iting values of the curves in the limit asβ approaches zero:

v(+)
g ≅ 1 v(−)

g ≅ 1/
√

d ≤ 1 (12)

Complicating the analysis of measured responses somewhat,
in the low frequency ranges, is the presence of not merely the
coherent echo set nearβ = 0, but the also somewhat less co-
herent set which may be observed from the flat portion of the
group velocity curves nearβ = 1—which, from the dispersion
relation, lie in the same frequency range as the set mentioned
above. There are thus four distinct wave speeds very close to1
in the range of low frequencies.

Echo densities may be estimated (roughly) by dividing the group
velocity by the unwound spring length. Spring reverberation
units are often designed such that this density is between 20/s
and 50/s.

MEASURED SPRING RESPONSES

In a preliminary study, spring response measurements were
taken from a Belton MB3BB2C1B spring reverberation unit
driven by a Doepfer A-199 spring driver/preamp unit. Responses
were obtained using a sine-sweep method with a sweep-time
of 10 seconds. Individual springs (of the three in the unit) were
measured by damping the other springs using foam. The spring
responses shown in this section are all drawn from a single
spring, made of stainless steel, and of helix angle∠ = 2.2◦.

A spectrogram of a spring response is shown in Figure6. Though
the response is rather complex, various features are readily ap-
parent. First, there is a clear cutoff in the region of approxi-
mately 3 kHz, and, below it, a main series of echoes (which ap-
pears as a set of black arcs in the spectrogram) which lags pro-
gressively towards this cutoff, thus illustrating the slowdown
in velocity in the region of the primary cutoffs (see Figure5).
In the region of the first reflections, clear secondary echoesare
also visible, with an echo density slightly different from that
of the main series. Above the cutoff, the response is much sim-
pler, and consists of a series of echoes, for which velocities
increase with frequency—this is the region of a pure bar-like
response, corresponding to the rightmost branches of the dis-
persion curves as shown in Figure2.

There are various features which are not adequately explained
by the model—one is the presence of a transition at approxi-
mately 5 kHz, which could well be due to a resonance of the
driving mechanism (essentially a mass-spring system).
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Figure 6: Spectrogram of a spring impulse response.

Most interesting are discrete transition frequencies, below the
primary cutoff, dividing series of echoes which propagate at
close but distinct velocities; these are visible in Figure7, show-
ing three such transitions in the 0 to 1.5 kHz range. It is fairly
clear that these must correspond to regions of distinct group
velocity over the available branches of the dispersion curves
shown in Figure2 (as many as six). The nature of these dis-
crete transitions (as opposed to a continuous mixing of waves
of all possible speeds at a given frequency) is not clear. The
crossover is also easily visible in a spectral plot of the impulse
response, as shown in Figure8; the transition may be seen
as a region of superposition of two families of nearly equally
spaced components.

Yet another interesting feature is that, above the primary cut-
off, instead of a double series of echoes, corresponding to both
branches of the dispersion curves in this region, a clear single
set is visible; a full analysis of boundary conditions is neces-
sary to determine which of the two types of motion is dominant
over such a frequency range.
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Figure 7: Detail of a spectrogram of a spring impulse response,
illustrating transitions between families of echoes with distinct
velocities over different frequency regions; transition frequen-
cies are indicated by red lines.

NUMERICAL CONSIDERATIONS

The simulation of spring vibration, even using a simplified
model such as that presented here, presents great challenges
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Figure 8: Detail of spectrum of the spring impulse response,
showing a transition between two distinct families of relatively
equally spaced peaks.

numerically—ideally, one would like an algorithm which takes,
as input parameters, the sample rate and the various geometric
and material constants which define the spring (or, perhaps,
the reduced parameter set consisting ofd, τ andt0), apply an
input signal, and obtain a reverberant output. It is also obvi-
ously preferable to have an algorithm which operates at a rea-
sonably low sample rate, and with minimal computational and
memory requirements both in the main run time loop operat-
ing at the sample rate, and in terms of precomputation before
run time. The various techniques which are used in physical
modeling applications all lead to various distinct difficulties in
the present case of the spring; here, the hurdles to be overcome
(which are not insurmountable!) will be outlined in brief.

Digital Waveguides

Digital waveguides [14] have been used with great success in
the simulation of 1D linear systems exhibiting low dispersion,
such as, e.g., strings, and acoustic tubes of nearly cylindrical or
conical bore brofile; indeed, as the structure consists of a delay
line, with effects of dispersion and loss lumped in low-order
terminating filters, they can be far more efficient than virtually
any other simulation technique.

The low dispersion mentioned above, in, e.g., strings, leads
to a monotonically increasing dispersion relation, or, in other
words, a wave velocity of a traveling component which in-
creases with frequency, leading to perceived inharmonicity. In
the waveguide context, a practical solution is the insertion of
all-pass filter structures at the termination of the waveguide,
leading to the desired variable group velocity. Even in thissim-
ple example, there are two points worth mentioning:

First, in a stiff string, evanescent components will be present,
and there is as yet no known mechanism for representing such
components in a delay line structure. Linked to this phenomenon
is the need for specifying an additional boundary conditionat
either end of the string; such additional conditions have also
not been addressed in the literature. In strings, effects ofstiff-
ness are normally quite small, so this is not a matter of concern
in audio simulation, but for stiffer structures such as bars, the
precise form of the boundary conditions leads to great differ-
ences in perceived sound output.

Second, the order of the terminating correction filter is small
when dispersion is low, but can become quite large under higher
stiffness; thus, the efficiency advantage of a waveguide formu-
lation is progressively lost as stiffness increases.

Now consider the present case of the helical spring; at any
given frequency, there are as many as six distinct wave veloc-
ities. This implies a structure which would require six digital
waveguides, or bidirectional delay line pairs, each with anas-
sociated termination filter allowing for variation in groupve-
locity with frequency. There are several open questions: Asbe-
fore, there is the issue of the representation of evanescentcom-
ponents, which in contrast to the case of the string, are present
in a number which depends on frequency; linked to this is again
the need for setting boundary conditions, leading to a coupled

termination among the waveguides. A more delicate issue is
that of the non-monotonicity of the dispersion curves—zero
group velocity is attained at a non-zero wavenumber, implying
an infinite-length (or, in practice, extremely long) delay line.

Modal Methods

The helical spring, given that its behaviour is presumably lin-
ear (at least in audio applications), and that input and output
are applied and read at locations which are not varied, is a
good candidate for a modal approach. Given system (3), and
a set of six boundary conditions at either end of the spring, one
may, in theory, solve for the modal frequencies and shapes (or,
in this case, the amplitudes of the modal functions at the in-
put and output locations), and an exceedingly simple structure
results, relying on uncoupled digital oscillators (“two-poles").
An additional bonus is complete control over damping for indi-
vidual components, which may be set directly from measured
responses. Modal methods have been used extensively in phys-
ical modeling of musical instruments [13].

The most straightforward means of obtaining modal data is
through a steady-state approximation to (3) through, e.g., finite
element, or finite difference methods; the spatial derivatives are
discretized over a grid, with boundary conditions taken into ac-
count, and an eigenvalue problem results. This is a common
approach in mechanical engineering applications, but mustbe
used with caution in an audio setting for the following reasons:
(a) in most industrial applications, one is interested mainly in a
few low frequency modes; such is not the case in audio, where
one requires good accuracy over the entire spectrum (consist-
ing of between 400 and 1000 modes for a typical spring rever-
beration unit) and (b) one may need to make use of a very large
number of degrees of freedom (far greater than the number of
modes) in order to obtain good accuracy—such computation
must be performed off-line, and can thus introduce noticeable
latency in an audio application.

As an alternative, instead of solving the eigenvalue problem
directly, employ the dispersion curves directly, and solvefor
β (ω), yielding twelve solutions. The twelve required bound-
ary conditions (six at either end of the spring) may then be
used to construct a 12×12 matrix B(ω), whose determinant
will vanish at a modal frequency of the system. In order to de-
termine the modal frequencies of the system, one may then step
through the determinant withω, and search for changes in sign
of this determinant. Such a procedure is functionally similar to
the dynamic stiffness method employed by some authors [11],
and has the advantage of allowing the determination of the
modal frequencies to arbitrary accuracy. Here too, there are nu-
merical difficulties—modal frequencies can be extremely close
together, and one may need to step through the determinant us-
ing a very small increment in frequency, and above the primary
cutoff, where evanescent solutions are present, numericalscal-
ing issues can become very severe.

Finite Difference Time Domain Methods

In theory, a finite difference approximation to the helical spring
system should be able to sidestep all the difficulties mentioned
above; there is also no heavy precomputation of the type asso-
ciated with modal methods.

The problem, in the case of FDTD is numerical dispersion—a
direct discretization of system (3) using second-order differ-
ence schemes yields very poor results—see Figure9, illustrat-
ing dispersion relations for the model system, and numerical
dispersion relations for a simple FD scheme. At a reasonable
audio sample rate (in this case, non-dimensional, but corre-
sponding to 44.1 kHz), the scheme is only correct at very low
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frequencies, and is unable to capture many important features,
such as cutoffs; in particular, the high-frequency wave speeds
above the cutoff will be wildly inaccurate.
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Figure 9: Dispersion relations for the model system (solid
lines) and for a simple FD approximation (dotted lines). The
sampling frequency (non-dimensional) is shown as a red dot-
ted line.

There are two remedies. One is to work at a much higher audio
rate (generally, at least 200 kHz will be required for a percep-
tually accurate simulation), which can be prohibitively expen-
sive, given that system (3) will require, by its very nature, an
implicit numerical method. Another is to make use of a more
accurate scheme, and there are many choices. Higher-order ac-
curate time stepping schemes, in conjunction with accurateap-
proximations to spatial derivatives are one possibility, and do a
much better job of approximating the system over the low fre-
quency range, but are still unable to capture the behaviour of
the system above the primary cutoff—the same is true of, e.g.,
pseudospectral methods [16], which will giving very high ac-
curacy at low frequencies, generally exhibit a very high degree
of dispersion at higher frequencies and artificial bandlimiting.
A better choice is a parameterized low-order scheme (compact
implicit [12]), optimized to match the dispersion relation of
the model system over a given frequency range, and which
operates at a reasonable audio sample rate. Such schemes are
presently under study. Needless to say, a good finite difference
approximation can also be used as a means of obtaining modal
data.

CONCLUDING REMARKS

This paper is intended as a rough sketch of the dynamics of
spring reverberation units, and to indicate some of the percep-
tual features of interest; the model presented here is simplified
as far as possible from a more complete model, and it is doubt-
ful that further simplification is possible without losing per-
ceptually salient features of the spring. Even still, as hasbeen
noted above, there are features of measured responses which
are as yet not well explained by this model. Numerically, the
problem of simulation of helical spring dynamics is a very del-
icate one, regardless of the method one employs; the difficul-
ties are distinct, however, depending on the type of method
employed.

The model presented here is lacking is several features. Oneis
a model of loss; though generally small for reverberation de-
vices, it is clearly frequency-dependent to a high degree, as is
clearly evident in Figure6; loss will result from effects of ra-
diation in the spring itself (presumably quite small), internal
losses in the spring (larger), and due to the (as yet unmod-
elled) driving mechanism, which has a built-in damping mech-
anism. Another, very important consideration which has not

been discussed here, is the precise set of boundary conditions
to be applied (six) at either end of the spring—this must also
include the coupling to the excitation and readout mechanisms.
Though conditions in the longitudinal direction are fairlyeasy
to deduce, the conditions on transverse motion are harder to
ascertain, and there are numerous choices.

The measurements described here are not intended for serious
study, but for a first look at some of the properties of the re-
sponse of a spring reverberation unit. They have been taken
directly from the pickup, and thus the effects of the driving
mechanism, as well as the accompanying electronics are all
present. In a more rigorous study, one would of course want
to make pure acoustical measurements of the spring behaviour
in the absence of electronic amplification; such work is under
way.
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