Assessment of speech privacy in open plan offices

Joo Young Hong (1), Pyoung Jik Lee (1) Byung Kwon Lee (1) and Jin Yong Jeon (1)

(1) Department of Architectural Engineering, Hanyang University, Seoul 133-791, Korea

PACS: 43.50.Bn, 43.50.Qp, 43.50.Rq

ABSTRACT

The aim of this study was to find out the most appropriate single-number quantity assessing the speech privacy and to investigate the design factors affecting the speech privacy in open plan offices. At first, field measurements were conducted in open-plan offices in order to analyze the single-number quantities listed in ISO draft 3382-3: distraction distance, r_D, spatial attenuation rate of A-weighted SPL of speech per distance doubling, $DL_{2,S}$, and SPL of speech at a distance of 4 meters, $L_{p,5,4m}$. Then, laboratory experiments were carried out to investigate the effects of single-number quantities on the speech privacy in open-plan offices with variation of each single-number quantity. During the listening test, the subjects were asked to evaluate the speech intelligibility and listening difficulty; contributions of each single-number quantity to speech privacy were calculated and most appropriate single-number quantity was suggested. Finally, computer modeling was conducted in order to predict the objective measure for open plan offices.

INSTRUCTIONS

Nowadays, open plan office has become a common type of working space for a variety of businesses. Open plan office helps facilitate better communication between employees and is generally cheaper to fit out. But the high level of noise often causes disturbance and low productivity in such workplaces. At the same time, employees face the loss of privacy. Thus, it is important to achieve satisfaction with acoustic quality of the open-plan office. However, there is no standardized method to evaluate acoustic condition in open-plan offices. In order to evaluate the acoustical condition of open-plan offices in terms of speech privacy, the objective measures such as signal to noise ratio and AI [2, 3] have been used according to ASTM E1130 and E2638. Recently, spatially resolved measurements were adopted in ISO draft 3382-3 as single number quantities [4]; distraction distance, r_D, spatial attenuation rate of A-weighted SPL of speech, $DL_{2,S}$, and SPL of speech at a distance of 4 meters, $L_{p,5,4m}$. However, the contributions of each single number quantity for speech privacy have not been fully investigated yet. Therefore, in the present study, the field measurement was conducted in two open-plan offices and the effects of single number quantities were investigated through auditory experiments by evaluation of speech intelligibility and listening difficulty. In addition, computer modeling was carried out to predict the objective measure in open plan offices.

FIELD MEASUREMENT

Measurement methods

Field measurements in two open plan offices were carried out in Seoul. As recently suggested in ISO 3382-3(DIS), the single number quantities listed in Table 1 were measured. Spatial attenuation rate of speech level per distance doubling, $DL_{2,S}$, and A-weighted speech level at a distance of 4 m from the source, $L_{p,5,4m}$, were measured for speech privacy. STI calculated for speech intelligibility. Reverberation time, T_{20}, and Early decay time, EDT, were also measured. As shown in Figure 1, the measurements were conducted in unoccupied and finished open plan offices with HAVC noise. Omni-directional loudspeaker, producing pink noise, was used as a source. Omni-directional microphone and HATs were used as receivers. The microphones were positioned along a line which crosses over workstations. The measurement was made at height of 1.2 m.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{20}</td>
<td>Reverberation time</td>
</tr>
<tr>
<td>EDT</td>
<td>Early decay time</td>
</tr>
<tr>
<td>$DL_{2,S}$</td>
<td>Spatial decay rate A-weighted SPL of speech</td>
</tr>
<tr>
<td>$L_{p,5,4m}$</td>
<td>A-weighted SPL of speech at a distance of 4 m</td>
</tr>
<tr>
<td>r_D</td>
<td>Distraction distance</td>
</tr>
<tr>
<td>r_P</td>
<td>Privacy distance</td>
</tr>
<tr>
<td>$I_{B,L}$</td>
<td>Background noise level</td>
</tr>
<tr>
<td>STI</td>
<td>Speech transmission index</td>
</tr>
</tbody>
</table>

Figure 1. Pictures of two open-plan offices
HVAC noise with $L_{eq}=30\text{dBA}$ recorded at office 1 was used as background noise. Speech sources recorded by female speaker in anechoic chamber were convolved with impulse reponses measured in office 1.

Procedure

Twenty subjects who have normal hearing in their 20s and 30s took part in listening test. Listening tests were carried out in a sound-isolated test room and all test sentences were presented in random order to subjects by headphone (Sennheiser HD 600). Subjects were asked to repeat the sentences which they thought that they had heard and to rate listening difficulty simultaneously. In order to measure the speech transmission, speech intelligibility test was adopted. Speech intelligibility score was calculated as the percentage of the words correctly understood or recognized by subjects after listening to the sentence. In this test, the intelligibility score was obtained by counting all words in the sentence considering the importance of every single word. Test sheet consisted of simple and short sentences to exclude the possibility of the effect of sentence difficulty.

However, speech intelligibility score has some disadvantages to evaluate speech privacy. For instance, although the intelligibility score is high, speech transmission performance is not always satisfactory. In order to solve this problem, Morimoto [6] suggested the listening difficulty rating as a subjective measure. For rating of listening difficulty, four categories are used from not difficult to extremely difficult. Listening difficulty rating is defined as the percentage of the sum of the difficulty responses 2, 3 and 4 except 1. Before the listening test, each subject trained for ten minutes to be accustomed to the test signals and background conditions.

Results

Figure 4 shows mean word intelligibility scores obtained from listening tests in terms of $DL_{2.5}$ and $L_{p,4m}$. From the results, it was found that speech intelligibility score decreased with an increase of $DL_{2.5}$. While $DL_{2.5}$ was kept constant, speech intelligibility score decreased as the value of $L_{p,4m}$ was declined. It was shown that speech intelligibility scores more dramatically decreased when $DL_{2.5}$ changed from

AUDITORY EXPERIMENT

Experimental design

Auditory experiment was designed to investigate the effects of $DL_{2.5}$ and $L_{p,5,4m}$. As illustrated in figure 3, $DL_{2.5}$ was varied from 43 to 57 dB as a step of 7 dB and $L_{p,5,4m}$ were varied as 4, 8, 12 dB. Thus, in total, 45 cases were conducted: 3 steps ($DL_{2.5}$) x 3 steps ($L_{p,5,4m}$) x 5 steps (level). Five sentences were presented to subjects in each case.
8 to 12 dB than when it changed from 4 to 8 dB. This indicates that subjects were sensitive to changes of DL_2,S in the range of 8 to 12 dB.

The two-way ANOVA for speech intelligibility scores was carried out to investigate the main effects of the two single number quantities. The result showed that DL_2,S and L_p,S,4m were statistically significant (p<0.01), and the effects of the interaction were not significant. Thus, DL_2,S and L_p,S,4m affected the speech intelligibility score independently, and the speech intelligibility scores could be given by equation (1)

\[\text{Speech intelligibility score} \approx f(DL_{2,S}) + f(L_{p,S,4m}) \approx a(DL_{2,S}) + b(L_{p,S,4m}) \]

(1)

The standardized partial regression coefficients of DL_2,S and L_p,S,4m in Eq. (1) were -0.55 and 0.41, respectively, and these coefficients were statistically significant (p<0.01 for a and b).

Using these values, the obtained total coefficient 0.68 was significant (p<0.01). Post hoc comparisons via Tukey’s test indicated that the differences between scores from 8 and 12 dB of DL_2,S, and 4 and 12 dB of DL_2,S were significant (p<0.05), however, differences between scores from 4 and 8 dB of DL_2,S were not significant.

Figure 4. Relationship between speech intelligibility score and single number quantities (DL_2,S and L_p,S,4m)

Figure 5 shows the mean listening difficulty ratings obtained from the listening tests across all experimental conditions. Listening difficulty ratings increased with an increment of DL_2,S and decreased as L_p,S,4m increased. The results of two-way ANOVA for listening difficulty ratings represented that DL_2,S and L_p,S,4m are statistically significant (p<0.01), and the effects of the interaction between them were not significant. As the listening difficulty rating is a dependent variable, the relationship between listening difficulty and DL_2,S and L_p,S,4m is given by equation (2).

\[\text{Listening difficulty rating} \approx f(DL_{2,S}) + f(L_{p,S,4m}) \approx a(DL_{2,S}) + b(L_{p,S,4m}) \]

(2)

The standardized partial regression coefficients of DL_2,S and L_p,S,4m in Eq. (2) were 0.56 and -0.54, respectively, and these coefficients were statistically significant (p<0.01 for a and b). A post hoc Tukey’s test showed that the differences between ratings were all significant (p<0.05) except for the difference between 4 and 8 dB of DL_2,S.

Figure 6. Relation between speech intelligibility score and SN Ratio

Figure 7. Relation between listening difficulty rating and SN Ratio
Figure 6, 7 represent speech inelligibility score and listening difficulty rating as a function of SN ratio. As shown in the figures, speech inelligibility score sharply decreased when SN ratio is below 0.5 (50%=-3.5) and listening difficulty dramatically decreased when SN ratio is above 0.5 (50%=12).

COMPUTER MODELING

Computer modeling was undertaken by using Odeon 10.01. As shown in Figure 8, measured STI values showed a good agreement with predicted values obtained from computer simulation. This indicates that computer simulation can be applicable to the prediction of objective measure for speech privacy in open plan office. Therefore, in the future, the effects of design factors illustrated in Figure 9 such as partition height, absorption of partition on speech privacy will be considered through computer simulation.

SUMMARY

In this study, field measurements were conducted in two open-plan offices located in Seoul to evaluate the acoustical conditions in terms of room acoustic single number quantities presented in ISO 3382-3 draft. The acoustical quality of two open-plan offices obtained different acoustic class in respects of $\text{DL}_{2.5}$ and rp. The auditory experiments were also carried out to investigate the effects of $\text{DL}_{2.5}$ and $L_{p,5.4m}$ on speech privacy in open-plan offices. It was found that $\text{DL}_{2.5}$ and $L_{p,5.4m}$ affected speech intelligibility and listening difficulty independently, and the contribution of $\text{DL}_{2.5}$ to speech privacy was slightly larger than $L_{p,5.4m}$. It was also found that computer simulation can be applicable to predict the objective measure in open plan offices.

REFERENCES

3. ANSI S3.5; American National Standard Methods for the calculation of the articulation index, Standards Secretariat, Acoustical Society of America, New York, USA (1969)